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Abstract

In this paper, we present a new method to solve the Plateau-Bézier problem. A new

energy functional called weak-area functional is proposed as the objective functional to

obtain the approximate minimal Bézier surface from given boundaries. This functional

is constructed based on Dirichlet energy and weak isothermal parameterization condition.

Experimental comparisons of the weak-area functional method with existing Dirichlet,

quasi-harmonic, the strain energy-minimizing, harmonic and biharmonic masks are per-

formed which show that the weak-area functional method are among the best by choosing

appropriate parameters.

Mathematics subject classification: 65D17, 65D18.

Key words: Minimal surface, Plateau-Bézier problem, Weak isothermal parameterization,
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1. Introduction

The problem of finding a surface that minimizes the area with prescribed border is called

the Plateau problem [3, 4, 15, 16]. Such surfaces are called minimal surfaces and characterized

by the fact that the mean curvature vanishes. The minimal surface has attracted scientists for

many years and has been studied extensively in many literatures, such as [5,12,13,21–23]. Part

of the interest stems from the fact that it is so easily realizable physically in the form of soap

films, and for this reason it has been studied not only mathematically, but also physically for

many years [19]. The fascinating characters of minimal surface make it to be widely used in

many areas such as architecture, material science, ship manufacture, biology and so on [17].

For instance, architecture inspired from minimal surface embodies the unite of economy and

beauty. Furthermore, scientists and engineers have anticipated the nanotechnology applications

of minimal surface in areas of molecular engineering and materials science [20]. Applications of

minimal surface in aesthetic design have also been presented in [18].

As we know, only a few minimal surfaces have been found in closed form. Hence, numerical

methods have been devised to construct approximate minimal surface. Brakke proposed an

approach to compute a parametric minimal surface with the finite element method [1]. Direct

simulation of surface tension forces on a grid of marker particles is used for the minimal surface

approximation in [2,9]. Jung et al. proposed a variational level set approach for the surface area

minimization of triply-periodic surfaces [10]. Tr̊asdahl and Rønquist presented an algorithm for

finding high order numerical approximations of minimal surfaces with a fixed boundary [19].

In order to find an approximate Bézier solution of the Plateau problem, J. Monterde pro-

posed the Plateau-Bézier problem [12], which is to find the surface of minimal area from among
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all Bézier surfaces with given boundary curves. Because of the high nonlinearity of the area

functional, several energy functionals are used to approximate the area functional, which lead to

easy management for the Plateau-Bézier problem. The first one is the Dirichlet functional em-

ployed as a replacement to solve the Plateau-Bézier problem in [12]. Based on this functional, a

multiresolution analysis method with B-splines is proposed to obtain the parametric surface of

minimal area in [7]. Moreover, the minimal quasi-Bézier surfaces in non-polynomial space are

also investigated by the Dirichlet method and harmonic method in [8]. A new energy functional

called quasi-harmonic energy functional is proposed in [21] as the objective functional to ob-

tain the quasi-harmonic Bézier surface from given boundaries. Bending energy functional [11]

and mean curvature energy functional [24] are also used for approximating the solution of the

Plateau-Bézier problem.

Harmonic surface is related to minimal surface. The corresponding Euler-Lagrange equation

of the Dirichlet functional is ∆r = 0, which defines the harmonic surface. Therefore, harmonic

Bézier surface and biharmonic Bézier surface are also proposed as an approximation solution of

the Plateau-Bézier problem [14]. A surface with isothermal parameterization is minimal surface

if and only if it is harmonic surface. This is exactly the theoretical basis of the Dirichlet func-

tional and quasi-harmonic functional to replace the area functional. However, both these two

functionals are constructed without any thought of the isothermal parameterization. Therefore

in this paper, we introduce a new energy functional constructed based on Dirichlet functional

and isothermal parameterization to solve the Plateau-Bézier problem.

The remainder of this paper is organized as follows. Some preliminaries and weak-area

energy functional are introduced in Section 2. Section 3 presents the sufficient and necessary

conditions for Bézier surfaces with minimal weak-area energy. Some comparisons among dif-

ferent methods are presented in Section 4. Finally, we conclude and list some future works in

Section 5.

2. Preliminary and Weak-Area Functional

In this section, we shall review some concepts and results related to minimal surfaces [15,16],

and introduce the weak isothermal parameterization and weak-area functional.

2.1. Preliminary

For a parametric surface r(u, v), the coefficients of the first fundamental form are

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈rv, rv〉,

where ru, rv are the first-order partial derivatives of r(u, v) with respect to u and v respectively,

and 〈, 〉 defines the dot product of the vectors. The coefficients of the second fundamental form

of r(u, v) are

L = (ru, rv, ruu), M = (ru, rv, ruv), N = (ru, rv, rvv),

where ruu, rvv and ruv are the second-order partial derivatives of r(u, v) and (, , ) defines the

mixed product of the vectors. Then the mean curvature H and the Gaussian curvature K of

r(u, v) are

H =
EN − 2FM + LG

2(EG− F 2)
, K =

LN −M2

EG− F 2
.
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Definition 2.1. If r(u, v) satisfies E = G, F = 0, then r(u, v) is called surface with isothermal

parameterizations.

Definition 2.2. If r(u, v) satisfies H = 0, then r(u, v) is called minimal surface.

Theorem 2.1. The surface with isothermal parameter is a minimal surface if and only if it is

a harmonic surface.

2.2. Weak-area functional

Since the isothermal parameterization condition is too strong to satisfy for a parametric

surface r(u, v), and it may impose too many restrictions on the resulting surface, from Definition

2.1, we introduce the following weak isothermal parameterization.

Definition 2.3. If r(u, v) satisfies

∫

Ω

(E −G)dudv = 0,

∫

Ω

Fdudv = 0,

then r(u, v) is called a surface with weak isothermal parameterizations.

Clearly, the weak isothermal parameterization condition is defined on the whole surface,

while the isothermal parameterization is on every point of the surface. Moreover, a surface with

isothermal parameterization satisfies naturely the weak isothermal parameterization condition.

Due to the high nonlinearity of area functional, the Dirichlet functional D(r) is commonly

used instead:

D(r) =
1

2

∫

Ω

(E +G)dudv.

Moreover, the area and the Dirichlet functional are equal only if E = G, F = 0, i.e., for

isothermal patches. Based on this point, we propose a new energy functional W (r) as objective

functional to solve the Plateau-Bézier problem:

W (r) =
1

2

∫

Ω

(E +G)dudv + λ

(
∫

Ω

(E −G)dudv +

∫

Ω

Fdudv

)

,

where λ is a parameter balancing the Dirichlet functional and the weak isothermal parameteri-

zation condition. In this paper, W (r) is called weak-area functional. Obviously, the weak-area

functional is defined as a linear combination of Dirichlet energy and weak isothermal parame-

terization.

Since the weak isothermal parameterization condition could be positive or negative, here

we restrict λ ∈ [−1, 1] to ensure that 1
2
(E + G) + λ(E − G) + λF ≥ 0 and the extremal of

W (r) exists. When λ is set to zero, then W (r) is just a Dirichlet one. Once the value of λ

is determined, all the corresponding inner control points can be obtained by directly solving a

system of linear equations as the Dirichlet method does.

3. Extremals of the Weak-Area Functional

In this section, we will present the sufficient and necessary condition for the extremals of

the weak-area functional. Let us say we are not computing the Euler-Lagrange equations of the

functional, but compute the surface where the gradient of the functional vanishes.
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Theorem 3.1. Given the boundary control points {P0j ,Pnj} and {Pi0,Pim} of a tensor prod-

uct Bézier surface r(u, v) =
n
∑

i=0

m
∑

j=0

PijB
n
i (u)B

m
j (v), then r(u, v) is the extremal of the weak-area

functional W (r) if and only if the inner control points {Pij}
n−1,m−1
i,j=1 satisfy

n−1
∑

k=0

m
∑

l=0

∆1,0
Pkl

(

(2λ+ 1)n2

(2n− 1)(2m+ 1)
(An−1

i−1,k − A
n−1
i,k )Am

j,l +
λ

4
(Am−1,m

j−1,l − A
m−1,m
j,l )An,n−1

i,k

)

(3.1)

+
n
∑

k=0

m−1
∑

l=0

∆0,1
Pkl

(

(1− 2λ)m2

(2n+ 1)(2m− 1)
(Am−1

j−1,l − A
m−1
j,l )An

i,k +
λ

4
(An−1,n

i−1,k −A
n−1,n
i,k )Am,m−1

j,l

)

= 0,

where

A
n,m
i,j =

(

n
i

)(

m
j

)

(

n+m
i+j

) , An
i,j = A

n,n
i,j . (3.2)

Proof. Let us compute the gradient of the weak-area functional with respect to the coordi-

nates of a inner control point Pij = (x1
ij , x

2
ij , x

3
ij). For any a ∈ {1, 2, 3}, i ∈ {1, ..., n− 1}, j ∈

{1, ...,m− 1},

∂W (r)

∂xa
ij

=

(

1

2
+ λ

)
∫

Ω

∂E

∂xa
ij

dudv +

(

1

2
− λ

)
∫

Ω

∂G

∂xa
ij

dudv + λ

∫

Ω

∂F

∂xa
ij

dudv. (3.3)

Note that

ru = n

n−1
∑

k=0

m
∑

l=0

Bn−1
k (u)Bm

l (v)∆1,0Pkl, rv = m

n
∑

k=0

m−1
∑

l=0

Bn
k (u)B

m−1
l (v)∆0,1Pkl.

Then we have

∂ru

∂xa
ij

= n(Bn−1
i−1 (u)− Bn−1

i (u))Bm
j (v)ea,

∂rv

∂xa
ij

= mBn
i (u)(B

m−1
j−1 (v) −Bm−1

j (v))ea,

∂E

∂xa
ij

= 2

(

ru,
∂ru

∂xa
ij

)

= 2n2

n−1
∑

k=0

m
∑

l=0

(Bn−1
i−1 (u)−Bn−1

i (u))Bn−1
k (u)Bm

j (v)Bm
l (v)(∆1,0Pkl, e

a),

∂G

∂xa
ij

= 2

(

rv,
∂rv

∂xa
ij

)

= 2m2

n
∑

k=0

m−1
∑

l=0

Bn
i (u)B

n
k (u)(B

m−1
j−1 (v) −Bm−1

j (v))Bm−1
l (v)(∆0,1Pkl, e

a),

∂F

∂xa
ij

=

(

∂ru

∂xa
ij

, rv

)

+

(

ru,
∂rv

∂xa
ij

)

= mn

(

n
∑

k=0

m−1
∑

l=0

(Bn−1
i−1 (u)−Bn−1

i (u))Bn
k (u)B

m
j (v)Bm−1

l (v)(∆0,1Pkl, e
a)

+

n−1
∑

k=0

m
∑

l=0

Bn
i (u)B

n−1
k (u)(Bm−1

j−1 (v)−Bm−1
j (v))Bm

l (v)(∆1,0Pkl, e
a)

)

,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Note that the Bernstein function has the following formulas:

Bn
i (u)B

m
j (u) =

(

n
i

)(

m
j

)

(

n+m
i+j

) Bn+m
i+j (u),

∫ 1

0

Bn
i (u)du =

1

n+ 1
. (3.4)



872 Y.X. HAO

By using the notation of (3.2), we obtain

∂W (r)

∂xa
ij

=
n−1
∑

k=0

m
∑

l=0

(∆1,0Pkl, e
a)

(

(2λ+ 1)n2

(2n− 1)(2m+ 1)
(An−1,n−1

i−1,k −A
n−1,n−1
i,k )Am,m

j,l

+
λ

4
(Am−1,m

j−1,l −A
m−1,m
j,l )An,n−1

i,k

)

+

n
∑

k=0

m−1
∑

l=0

(∆0,1Pkl, e
a)

(

(1− 2λ)m2

(2n+ 1)(2m− 1)
(Am−1,m−1

j−1,l −A
m−1,m−1
j,l )An,n

i,k

+
λ

4
(An−1,n

i−1,k −A
n−1,n
i,k )Am,m−1

j,l

)

.

So fixing the boundary control points and taking the inner control points as unknowns, the

linear system (3.1) is always compatible and can be solved in terms of the boundary control

points. �

If n = m = 2, then there is just one equation corresponding to the inner control point P11.

Proposition 3.1. Given the boundary control points, the biquadratic Bézier surface is an ex-

tremal of the weak-area functional if and only if P11 satisfies the condition:

P11 =−
1

8

(

(−3− 5λ)P00 + (1 − 10λ)P01 + (5λ− 3)P02 + (10λ+ 1)P10 + (10λ+ 1)P12

+ (5λ− 3)P20 + (1 − 10λ)P21 + (−3− 5λ)P22

)

.

If n = m = 3, there are four equations corresponding to the inner control pointsP11,P12,P21,P22.

Proposition 3.2. Given the boundary control points, the bicubic Bézier surface is an extremal

of the weak-area functional if and only if

P11 =
1

22533λ4
− 207336λ2 + 121680

(

(−58373λ4
− 145218λ3

− 15404λ2 + 128456λ + 74880)P00

+ (−110257λ4
− 164008λ3 + 54344λ2 + 161696λ − 34320)P01

+ (−46816λ4 + 92168λ3
− 125008λ2

− 78496λ + 37440)P02

+ (37226λ4
− 39372λ3 + 38808λ2

− 37456λ)P03

+ (85351λ4 + 239912λ3 + 47848λ2
− 232864λ − 34320)P10

+ (96292λ4 + 19703λ3
− 37754λ2 + 31364λ + 23400)P13

+ (114016λ4 + 30728λ3
− 191312λ2

− 63136λ + 37440)P20

+ (102424λ4 + 219332λ3
− 101768λ2

− 56464λ − 6240)P23

+ (52906λ4
− 55052λ3

− 95592λ2 + 96944λ)P30

+ (−73360λ4 + 87023λ3 + 104150λ2
− 34396λ + 23400)P31

+ (−122584λ4
− 149308λ3 + 156728λ2 + 35696λ − 6240)P32

+ (−54292λ4
− 135908λ3

− 42376λ2 + 48656λ + 6240)P33

)

,
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P12 =
1

22533λ4
− 207336λ2 + 121680

(

(52906λ4 + 55052λ3
− 95592λ2

− 96944λ)P00

+ (114016λ4
− 30728λ3

− 191312λ2 + 63136λ + 37440)P01

+ (85351λ4
− 239912λ3 + 47848λ2 + 232864λ − 34320)P02

+ (−58373λ4 + 145218λ3
− 15404λ2

− 128456λ + 74880)P03

+ (−73360λ4
− 87023λ3 + 104150λ2 + 34396λ + 23400)P10

+ (−110257λ4 + 164008λ3 + 54344λ2
− 161696λ − 34320)P13

+ (−122584λ4 + 149308λ3 + 156728λ2
− 35696λ − 6240)P20

+ (−46816λ4
− 92168λ3

− 125008λ2 + 78496λ + 37440)P23

+ (−54292λ4 + 135908λ3
− 42376λ2

− 48656λ + 6240)P30

+ (102424λ4
− 219332λ3

− 101768λ2 + 56464λ − 6240)P31

+ (96292λ4
− 19703λ3

− 37754λ2
− 31364λ + 23400)P32

+ (37226λ4 + 39372λ3 + 38808λ2 + 37456λ)P33

)

,

P21 =
1

22533λ4
− 207336λ2 + 121680

(

(37226λ4 + 39372λ3 + 38808λ2 + 37456λ)P00

+ (96292λ4
− 19703λ3

− 37754λ2
− 31364λ + 23400)P01

+ (102424λ4
− 219332λ3

− 101768λ2 + 56464λ − 6240)P02

+ (−54292λ4 + 135908λ3
− 42376λ2

− 48656λ + 6240)P03

+ (−46816λ4
− 92168λ3

− 125008λ2 + 78496λ + 37440)P10

+ (−122584λ4 + 149308λ3 + 156728λ2
− 35696λ − 6240)P13

+ (−110257λ4 + 164008λ3 + 54344λ2
− 161696λ − 34320)P20

+ (−73360λ4
− 87023λ3 + 104150λ2 + 34396λ + 23400)P23

+ (−58373λ4 + 145218λ3
− 15404λ2

− 128456λ + 74880)P30

+ (85351λ4
− 239912λ3 + 47848λ2 + 232864λ − 34320)P31

+ (114016λ4
− 30728λ3

− 191312λ2 + 63136λ + 37440)P32

+ (52906λ4 + 55052λ3
− 95592λ2

− 96944λ)P33

)

,

P22 =
1

22533λ4
− 207336λ2 + 121680

(

(−54292λ4
− 135908λ3

− 42376λ2 + 48656λ + 6240)P00

+ (−122584λ4
− 149308λ3 + 156728λ2 + 35696λ − 6240)P01

+ (−73360λ4 + 87023λ3 + 104150λ2
− 34396λ + 23400)P02

+ (52906λ4
− 55052λ3

− 95592λ2 + 96944λ)P03

+ (102424λ4 + 219332λ3
− 101768λ2

− 56464λ − 6240)P10

+ (114016λ4 + 30728λ3
− 191312λ2

− 63136λ + 37440)P13

+ (96292λ4 + 19703λ3
− 37754λ2 + 31364λ + 23400)P20

+ (85351λ4 + 239912λ3 + 47848λ2
− 232864λ − 34320)P23

+ (37226λ4
− 39372λ3 + 38808λ2

− 37456λ)P30

+ (−46816λ4 + 92168λ3
− 125008λ2

− 78496λ + 37440)P31

+ (−110257λ4
− 164008λ3 + 54344λ2 + 161696λ − 34320)P32

+ (−58373λ4
− 145218λ3

− 15404λ2 + 128456λ + 74880)P33

)

.
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4. A Comparative Study

In this section, we discuss a study we have undertaken to compare among the weak-area

functional method, the quasi-harmonic method [21], Dirichlet method [12], harmonic and bi-

harmonic method [14] and the strain energy-minimizing method [11].

(a) Boundary curves for Example 1. (b) Boundary curves for Example 2. (c) Boundary curves for Example 3.

(d) Control points for Example 1. (e) Control points for Example 2. (f) Control points for Example 3.

Fig. 4.1. Given boundary curves and control points of Examples 1-3 by different mask methods.

In [6], the authors introduced the following mask form:

α β α

β • β

α β α

with 4α + 4β = 1, denoted by Mα(Pij) in [12]. Following this idea, the quasi-harmonic mask

can be denoted as M 19

44

(Pij), the Dirichelt mask is M 3

8

(Pij), the harmonic mask is M 1

4

(Pij)

and the bending mask from biharmonic functional is M 1

11

(Pij). Compared with above mask

methods, the linear relation between one inner control point and its eight neighboring control

points from the extremal of the weak-area functional is

−
1

8
×

−3− 5λ 1− 10λ 5λ− 3

10λ+ 1 • 10λ+ 1

5λ− 3 1− 10λ −3− 5λ

.

Obviously, the mask of the weak-area functional has no symmetry as Mα(Pij) unless λ = 0,

i.e., the Dirichlet energy.

Since the minimal surface in the Plateau problem has both the minimal area and zero mean

curvature, as a means of checking the surface quality and making qualitative comparisons, we

compare these methods with both area and average mean curvature in the approximation of

the Plateau-Bézier problem.
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(a) quasi-harmonic mask for Example 1. (b) quasi-harmonic mask for Example 2. (c) quasi-harmonic mask for Example 3.

(d) Dirichlet method for Example 1. (e) Dirichlet method for Example 2. (f) Dirichlet method for Example 3.

(g) λ = 0.04 for Example 1. (h) λ = −0.2 for Example 2. (i) λ = 0.1 for Example 3.

(j) harmonic mask for Example 1. (k) harmonic mask for Example 2. (l) biharmonic mask for Example 3.

(m) bending mask for Example 1. (n) bending mask for Example 2. (o) bending mask for Example 3.

Fig. 4.2. Examples 1-3 by different mask methods.
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Table 4.1: Comparison among different methods for Example 1. AVMC: the average value of mean

curvature at the 50 × 50 sampling points on the corresponding Bézier surface. The underline values

are the minimal absolute values in the corresponding column.

Method Area AVMC

quasi-harmonic 5.6758 0.4839

Dirichlet 5.6790 0.5422

harmonic 5.6947 0.6696

strain energy-minimizing 5.7313 0.8321

λ = 0.04 5.6750 0.4392

Table 4.2: Same as Table 4.1, especially for Example 2.

Method Area AVMC

quasi-harmonic 4.4950 -0.3048

Dirichlet 4.4954 -0.3130

harmonic 4.4968 -0.3316

strain energy-minimizing 4.4994 -0.3568

λ = −0.2 4.4945 -0.2779

Examples 1-3. In order to compare the different masks, three comparison examples are shown

in Figs. 4.1-4.2. We first fix the four boundary curves with its control points, then construct the

surface by computing the inner control point through the weak-area functional, the Dirichlet

mask, the quasi-harmonic mask, the bending energy mask, the harmonic and biharmonic mask

respectively. Different colors of the inner control points are used to represent different methods.

Fig. 4.1 gives the different boundary curves and the comparison of corresponding control points

obtained from different mask methods. Fig. 4.2 shows the comparison of the corresponding

approximate minimal Bézier surfaces from different methods. The corresponding area values

and mean curvature information are listed in Tables 4.1-4.3. For these examples, we can find

that the proposed weak-area method can achieve the smallest area value and the smallest

absolute average value of mean curvature by choosing appropriate parameters.

Table 4.3: Same as Table 4.1, especially for Example 3.

Method Area AVMC

quasi-harmonic 10.3375 0.2173

Dirichlet 10.3155 0.5518

biharmonic 11.3223 0.5621

strain energy-minimizing 10.6965 0.7963

λ = 0.1 10.3139 0.2148

Remark 4.1. For the above examples one could note that, in some cases, the method resulting

in the smallest surface area is for the extremal Bézier surfaces of weak-area functional with

negative λ. It is also noteworthy that the results obtained by the methods presented here for

the examples are better than those obtained by the minimisation of the Dirichlet or harmonic

functionals. This is indeed true when isothermal parameterization condition is present in the

energy functional.
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5. Conclusion

In this paper, we propose a new method to solve the Plateau-Bézier problem. Consider-

ing the importance of isothermal parameterization in the construction of minimal surface, we

present a new energy functional called weak-area functional by combining the Dirichlet func-

tional and weak isothermal parameterization condition. For some cases of given boundary

Bézier curves, compared with the previous methods, Bézier surface with smaller area and mean

curvature absolute values can be achieved by using the proposed weak-area energy functional

with appropriate parameter λ. Several modeling examples show the efficiency of the proposed

method.

Similarly, we can also construct a new energy functional by combining quasi-harmonic func-

tional and weak isothermal parameterization, and obtain the corresponding results. In the

future, we plan to obtain a better characterization of the isothermal parameterization, thus

constructing a better approximation of the area functional to solve the numerical approxima-

tion problem of minimal surface.
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