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Abstract. In this work we are interested in the existence and uniqueness of solutions
for the Navier problem associated to the degenerate nonlinear elliptic equations

A [wl (x)|AulP " Au 4 o1 (x) |Au|qZAu]

— div {wz(x)Wueru + vz(x)|Vu|52Vu}
=f(x) —div(G(x)) in Q,

in the setting of the weighted Sobolev spaces.
Key Words: Degenerate nonlinear elliptic equation, Weighted Sobolev spaces.
AMS Subject Classifications: 35]J60, 35]70

1 Introduction

In this work we prove the existence and uniqueness of (weak) solutions in the weighted
Sobolev space X = W2P((Q), wl)ﬂW5’r(Q, wy) (see Definition 2.4 and Definition 2.5 for
the Navier problem

Lu(x) = f(x) —div(G(x)) in Q,
(P) { u(x) = Aj:t(x) =0 on 9Q),

where L is the partial differential operator
Lu(x) =A [wl(x) |AuP 2 Au + vy (x) |Au|‘7_2Au]
—div [wz(x) IVu| "2V + va(x) |Vu\52Vu] ,
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where () is a bounded open set in R", w1, wy, v1 and v, are four weight functions, A is
the Laplacian operatorand 2 < g,s <r < p < co.

Let Q) be an open set in R”. We denote by W(Q)) the set of all measurable, a.e. in ()
positive and finite functions w = w(x), x€Q. Elements of W(Q)) will be called weight
functions. Every weight w gives rise to a measure on the measurable subsets of R"
through integration. This measure will be denoted by . Thus,

Hw(E) = /Ecu(x)dx

for measurable sets ECIR".

In general, the Sobolev spaces W7 (Q)) without weights occur as spaces of solutions
for elliptic and parabolic partial differential equations. For degenerate partial differential
equations, i.e., equations with various types of singularities in the coefficients, it is natural
to look for solutions in weighted Sobolev spaces (see [1-3,5,10] and [15]).

A class of weights, which is particularly well understood, is the class of A,-weights
(or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [12]). These classes
have found many useful applications in harmonic analysis (see [14]). Another reason for
studying A,-weights is the fact that powers of the distance to submanifolds of IR" often
belong to A, (see [11]). There are, in fact, many interesting examples of weights (see [10]
for p-admissible weights).

In the non-degenerate case (i.e., with w(x) = 1), for all f€L? () the Poisson equation
associated with the Dirichlet problem

{ —Au = f(x) in Q,
u(x) =0 on 0Q),

is uniquely solvable in W27 (Q)) ﬂW& 7(Q) (see [9]), and the nonlinear Dirichlet problem

{ —Apu = f(x) in Q,
u(x) =0 on 0Q),

is uniquely solvable in Wé’p (Q) (see [3]), where A,u = div(| Vu|P2Vu) is the p-Laplacian
operator. In the degenerate case, the weighted p-Biharmonic operator has been studied
by many authors (see [13] and the references therein), and the degenerated p-Laplacian
has been studied in [5]. The problem with degenerated p-Laplacian and p-Biharmonic
operatorsinthecase w; =wy, =v1 =mandp=g=r=s

{ Alw(x)|AulP2Au) — diviw(x)|Vu|P 2Vu] = f(x) — div(G(x)) in Q,
u(x) = Au(x) =0 on 0Q),

has been studied by the author in [2].
The following theorem will be proved in Section 3.
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Theorem 1.1. Let 2 < gq,5 <r < p < oo and QCIR" is a bounded open set. Assume
(H1) wi€Ap, wr€A, and v1,v2 € W(QY);

(H2) Zelr/r=a(Q,wr) and ZeL” 79(Q, wy);

(H3) w%GL’/(Q, wy) and %EU’(Q,wZ), where G = (g1, ,8n)-

Then the problem (P) has a unique solution u€ X = W?(Q, w1)NW," (Q, w,). Moreover, since
0< 3+ <1, then

Mp’fl Mr’fl
+ ),

Jullx < Cor (= + =

where
M = CQHf/w2HLr/(Q,w2) + H|G|/w2”U'(Q,w2)I

Cq is the constant in Theorem 2.2 and Cp, = pr/(pr —p — 7).

2 Definitions and basic results

Definition 2.1. Let 1 < p < oo. A weight w is said to be an A,-weight, if there is a
positive constant C = C(p, w) such that, for every ball BCRR"

(1/w(x)dx) (1/w1/(1_p)(x)dx>pl <C if p>1

|B| /B B| /B - '
g o) (essue ) ‘

— [ w(x)dx ) |esssup —— | <C, if p=1,

(a7 Jye P o) i

where | - | denotes the n-dimensional Lebesgue measure in R”".

If 1 < g <p,then A;CA, (see [8,10] or [14] for more information about A,-weights).
We say the weight w satisfies the doubling condition if there exists a positive constant
C such that u(B(x;2r)) < Cu(B(x;r)) for every ball B = B(x;r)CR", where u(B) =
[z w(x)dx. If we A, then y is doubling (see Corollary 15.7 in [10]).

As an example of Ap-weight, the function w(x) = [x|%, x€R", is in A, if and only if
—n < wa < n(p—1) (see Corollary 4.4, Chapter IX in [14]).

Definition 2.2. Let w be a weight, and let QCIR" be open. For 1 < p < co we define
LP(Q), w) as the set of measurable functions f on ) such that

1/p
Il = ([, F0P@ar) <o
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We denote [LP(Q), w)]" = LP(Q, w) X - - - XLP(Q, w).
If weA,, 1 < p < oo, then w=VP=1) s locally integrable and we have
LP(Q), w)CL} (Q) for every open set ) (see Remark 1.2.4 in [15]). It thus makes sense to

loc
talk about weak derivatives of functions in L? (Q), w).

Definition 2.3. Let QCIR" be open, k be a nonnegative integer and w€A, (1 < p < o0).
We define the weighted Sobolev space W7 (Q, w) as the set of functions u€L?(Q, w)
with weak derivatives D*ucL?(Q,w) for 1 < |a| < k. The norm of u in WP (Q, w) is
defined by

1/p
llwisiow = ([ @ Fw@drs T [ puePed) . @
Q 1<[a]<k 7O
We also define Wg’p(Q,w) as the closure of Cj°(Q)) with respect to the norm

1 lwer (0,0)-
If wEA,, then WEP(Q), w) is the closure of C*(()) with respect to the norm (2.1) (see

Theorem 2.1.4 in [15]). The spaces W*?(Q), w) and Wg’p (Q), w) are Banach spaces.
It is evident that the weight function w which satisfies 0 < ¢; < w(x) < ¢ for xeQ)

(c1 and c; positive constants), gives nothing new (the space Wg’p (Q), w) is then identical
with the classical Sobolev space Wg’p (Q2)). Consequently, we shall be interested above
in all such weight functions w which either vanish somewhere in (2 U 0Q) or increase to
infinity (or both).

The space W&’p (Q), w) is the closure of C§°(€)) with respect to the norm (2.1). The dual
space of Wy (Q, w) is the space

Wy (Q, @] = W 7(0,w)
~{T=f-divG: G = (g1, a0, L S Qw), j=1,--- .
w' w
In this article we use the following results.

Lemma 2.1. Let 1 < p < co.

(a) There exists a constant a, > 0 such that
16772 = [y1"y| < apla =yl (x| + |y))P % Vx,yeR";
(b) There exist two positive constants B, yp such that for every x, y€R"
By(Ix1 + lyD)P 2l =yl < (P e = [ylP%y) - (x = y) < (] + y))P2lx =y

Proof. See [4], Proposition 17.2 and Proposition 17.3. O
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Lemma 2.2. IwaAp, then

IEIY? H(E)
<|B\> =GBy

whenever B is a ball in R" and E is a measurable subset of B (where u(E) = [, w(x)dx).
Proof. See Theorem 15.5 Strong doubling of A,-weights in [10]. O

By Lemma 2.2, if w€A,, then u(E) = 0 if and only if |E| = 0; so there is no need
to specify the measure when using the ubiquitous expression almost everywhere and
almost every, both abbreviated a.e..

Theorem 2.1. Let w€A,, 1 < p < oo, and let ) be a bounded open set in R". If u,—u in
LP(Q), w) then there exist a subsequence {1y, } and a function ®€LP (Q, w) such that

(i) U, (x)—u(x), mg—oo, a.e. on C);
(i1) |t (x)| < ®(x), a.e. on QL.
Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [7]. O

Theorem 2.2 (The weighted Sobolev inequality). Let () be an open bounded set in R" and

w€Ap, 1 < p < oo. There exist positive constants Cq and & such that for all uewol’p(ﬂ, w) and
all 0 satisfying1 <6 <n/(n—1)+9,

||u||LP9(Q,w) < CQHV”HLP(Q,wy (2.2)
where Cq, depends only on n, p, the Ap-constant C(p, w) of w and the diameter of Q).

Proof. Its suffices to prove the inequality for functions ucCg°(Q2) (see Theorem 1.3 in [6]).
To extend the estimates (2.2) to arbitrary uEWS’p(Q,w), we let {u,,} be a sequence of

C5’(Q) functions tending to u in Wg (0, w). Applying the estimates (2.2) to differences
U, — Umy, We see that {u,,} will be a Cauchy sequence in L?(Q), w). Consequently the
limit function u will lie in the desired spaces and satisfy (2.2). O

Definition 2.4. We denote by X = W??(Q, wl)ﬂwol’r (Q), wy) with the norm

[l = 11Vl + 184l o0

Definition 2.5. We say that an element uc€ X is a (weak) solution of problem (P) if, for all
peX,

/\Au!pﬂAuAgowldx—l—/ |Au|T 2 AuA oy dx
o) )
+/Q|Vu|r_2(Vu,V(p>w2dx+/Q|Vu\s_2<Vu,Vgo>vzdx

:/Qf(x)(p(x)dx+/0<G,V(p(x))dx.
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Remark 2.1. Since2 < g,s <r < p < oo, if

ﬂEL’”/(’“"”(Q,wl) and 2eLr/(V’““")((l,cc)z),
w1 (€%)

there exist two constants M; > 0, M, > 0 such that
ull ooy < Mallullipaw) and  [ulliqp,) < Mallullw,)

where

o p/(p—1q) (r—4)/pa
M = {/Q (M) wldx] = Hv1/w1||Lp/p =0 (Q,w;)’

0y \ 7/ (9) (r=s)/rs

In fact, since2 < g,s <r < p <oo,wehaved =p/qg>1land 0 =p/(p —q),

H”Hm (Q,01) _‘/Q ’u‘qvldx :/ ’M|qiw1dx
1/6 . o' 1/0'
S(/Q|u|‘79w1dx> (/Q((Ull) wldx>
q/p 01 p/(p—9) (p—9)/p
:</Q‘u|1"w1dx> </Q<(U1> wldx> .

Hence, HuHM(Q,v]) < MlHMHLP(Q,w])‘
Analogously, we obtain

1|12 (0,00) < Mol (02,009

Remark 2.2. In this paper, we will use many times the following Convergence Principle
in Banach spaces: Let X be a Banach space, x€X and a sequence {x,} in X. If every
subsequence of {x, } has, in turn, a subsequence which converges strongly to x, then the
original sequence converges strongly to x, i.e., x,—x as n — oo (see [16], Proposition
10.13).

3 Proof of Theorem 1.1

The basic idea is to reduce the problem (P) to an operator equation Au = T and apply
the theorem below.

Theorem 3.1. Let A : X—X* be a monotone, coercive and hemicontinuous operator on the real,
separable, reflexive Banach space X. Then for each T€X* the equation Au = T has a solution
ueX.
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Proof. See Theorem 26.A in [17].

75

O

To prove the existence of solutions, we define B, By, By, B3, By : XxX—R and T :

X—R by
B(u, ¢) = Bi(u, ¢) + Ba(u, ) + B3 (u, ) + Ba(u, 9),
Bi(u, @) = / |Au|P2Aul gy dx,
0

B(u, ) = / |Au|T 2 AuAgo,dx,

QO
Bs(u, ¢) = /Q Vi "2 (Vu, Vo) wads,
Bs(u, ¢) :/Q]Vuf*z(Vu,V(p)vzdx,

T(¢) :/()fq)dx—k/()(G,Vgo)dx.

Then u€X is a (weak) solution to problem (P) if for all p€X

B(u, ¢) = B1(u, ) + B2(u, @) + B3(u, @) + Ba(u, ) = T(o).

Step 1. We define the operator F; : X—L? (Q, w;) by
(Fiu)(x) = |Au(x)|P~*Au(x).

We now show that operator F; is bounded and continuous.
(i) We have

Fuul|”, :/P P’d:/A”*ZA”d
il 0y =, 1181 crde QH ulP~"Au|” widx
= [ 180l = [aul g, < Il

Therefore, by (3.1) we obtain

-1
VBl gy < el

and hence the boundedness.

(3.1)

(3.2)

(ii) Let u;,—u in X as m — oo. We need to show that Fyu,,—Fju in L”I(Q, wi). If uy—u
in X, then |Auy,|—|Aul| in LP(Q, w1y ) and |V, |—|Vu| in L(Q), w,). Using Theorem 2.1,
there exist a subsequence {u,, } and two functions ®;€L?(Q), w;) and P€L"(Q), wy) such

that
| Vit (x)|—|Vu(x)] a.e. in (),
|Vity, (x)] < Pa(x) a.e. in (),
| Aty ()| = |Au(x)| a.e. in (),
| Aty (x)| < P1(x) a.e. in Q.

(3.3a)
(3.3b)
(3.3¢)
(3.3d)
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Now, since p > 2, using (3.3¢), (3.3d),a = p/p' =p—1andda’ = (p—1)/(p —2), there
exists a constant a, > 0 (by Lemma 2.1(a)) such that

’ ’
HFll/lmk — FluHILJP/(Q,wl) = /(:2 \Flumk — F]L[‘p wldx
’

p
:/ ’|Aumk|p_2Aumk —|AulP 2 Au| widx
0

/

4
g/ {aP\Aumk — Aul(|Auyy, | + \Au|)”_2} wydx
0
<al, /Q | Aty — Aul? (201) P2V wdx

:2(”_2)’7/&5// | Aty — Au|p/d>§p_2)p/w1dx
0

/ / 1/a i 1/(1,
<2(p=2)p aﬁ (/Q | Aty —Au|p“w1dx> </Q<I>§p2)paw1dx>

o p/p (r—2)/(p—-1)
_o(p=2)p “5 (/ | Aty —Au|’”w1dx> </ Cpfwldx>

2)
:2(p 2 P “p HAumk AuHLP le ||®1||€pp(2wl

2)
<2 2P o |t — ui]y ||®1pr'§)wl
Hence,

|t — Eritlr gy) < 2 2pllttm, — ull 10111252

Therefore (since 2 < p < o0), we obtain || Fyu,, — Fyul| 17 (Oy) 0 that is,
Fiuy,—Fu  in LY (Q, w1).
By the Convergence Principle in Banach spaces (see Remark 2.2), we have
Fum—Fu in LY (Q,w). (3.4)

Step 2. Define the operator F, : X—L7 (Q,v1), (Fou)(x) = |Au(x)|" *Au(x). We also
have that the operator F, is continuous and bounded. In fact:

(i) If g > 2, we have by Remark 2.1
1Bl :/ || Au]2Au| vy dx :/ |AulToydx
=[18ullTs 000y < MINIAUIT 0 ) < M1l

H
ence, H || , - || ||
12” [4 ((2/0 ) = IVI] u X
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(i) Now using (3.3c), (3.3d), Remark 2.1, b = g/ = g—1and V' = (g —1)/(g —2) (if

q > 2), there exists a constant &; > 0 (by Lemma 2.1(a)) such that

! !
| Fatt, = Eaul[ Ty, = /Q | Egthy, — Fout| T 0ydx
!/

q
= Aty |72 Aty — |Au|T2Au| vidx
o) k k

/

q
< /Q [ucq|Aumk — Au|(|Aup, | + |Au])(”’2)} v1dx

gzxgl/ | Atty, — Au|7 (21)1-27 py dx
o)

1/b . /v
<22 o8 < /. |Aumk—Au|’7bvldx> < / <I>§q‘2)"bv1dx)
7/q (9-2)/(9-1)
—0422‘7 2)7 </ | Aty _A”|q01dx) (/ Qledx)

B 2)
= 2027 | At — Bty g, 111302

quZHCDquZ

ql 72 ’ q/
<ay 2(1-2)g M || Auy, — L7 (O0n)

AMHU, (Qwr)
/ _ 2
gaZ 209 Z)q'M?Humk —”H HQHWM

Hence,
1
| Eatt, — Bott]| gy 0y < 29 20 M{ ||<I>1||Lp (o) 1t — 1]l

In the case g = 2, we have (Fu)(x) = Au(x). Hence,

1B2ulli2(000) = B0l i2(0000) < Mal|Aut]| 000y < Mallullx,

| Fatdy, — P2u||Lz(Q,v1) < M || Aupy, — AMHLP(Q,wl) < M|, — ull -
Therefore, for 2 < g < oo, we obtain ||Fu, — Fu| 14 (O,0) 0, that is,
Fotty,—Fu in LT (Q,07).
By the Convergence Principle in Banach spaces (see Remark 2.2), we have

Buy—Fu in L7 (Q,0y).

(3.5)

Step 3. We define Fs : X—[L" (Q, wy)]" by (Fsu)(x) = |Vu(x)|" *Vu(x). We also have

that the operator F; is continuous and bounded. In fact, we have
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(i) if ue X, since r > 2, we have

.
HF3uHrL,,(Q/w2):/Q\Fg,u]erdx:/Q‘\Vu]rZVu wodx

= [ 190" wadx = [ [Vul @ = 1Vl ) < 0l

Hence,
-1
1Esttll gy < Mlull

(i) If up—u in X, then |Vuy,|—|Vu| in L"(Q), w;). Using Theorem 2.1, there exists a
subsequence {uy, } and ®,€L"(Q), w;) such that

| Vit | =Vl a.ein (), (3.6a)
Vi, | < D a.ein Q. (3.6b)

Hence, using (3.6a), (3.10), vy = r/r' = r—1and v = (r —1)/(r — 2), there exists a
constant a, > 0 (by Lemma 2.1(a)) such that

/ /
| Fsttm, — B3|} (o = [ |F3ttm, — Fsu|” wodx
( ,(Uz) o)

= Vit " Vi — |Vul "2Vu| wodx
O k k

/

< /Q [txr|Vumk — Vu|(|Viy, |+ ]Vu|)r_2] wodx

§sz/ |V, — Vu|" (20,) 2" wydx
0

’o / 1y I vy
<=2y (/ \Vity, — V”\mwzdx> </ ‘Dg_z)wwdx)
a

:2(7 2)1’ D‘: Hvumk - VMHZ’ sz Hq)ZHU sz
<2020 [t — ull |l A
Hence,
||F3Mmk _ P3uHU’(Q,w )y S <2 2()¢r||(p2||Lr (Qw,) ||umk - UHX.

Therefore (since 2 < r < c0), we obtain ||Fzi,, — FgL{HU/(Q wZ)—>0 as my— oo, that is,

Fuy,,—F, in L" (), w>). By the Convergence Principle in Banach spaces (see Remark
2.2), we obtain
Fu,—Fu in L’ (Q,CUZ). (3.7)

Step 4. We define F; : X—[L¥ (Q),v,)]" by (Fau)(x) = |Vu(x)[* >Vu(x). We also have
that the operator F; is continuous and bounded. In fact, we have
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(i) If s > 2 and u€ X, by Remark 2.1, we obtain

S
|\F4u||SLS/(Q,vz):/Q|F4u\svzdx:/0‘\Vu]sZVu vodx

= [ 190l st = [ [Vuloadx = [[[Vul
<MVl o) < M3l

Hence,

— -1
| Fau < My Hulx

|Ls’(0,v2)
(i) If uy—u in X, then |Vu,,|—|Vu| in L"(Q, wy). Using Theorem 2.1, there exists a
subsequence {uy, } and ®,€L"(Q), wy) such that
|Vt | =Vl a.ein (), (3.8a)
|Vity,| < & a.ein Q. (3.8b)

Hence, using (3.8a), (3.8b), = s/s’ = s—1and ' = (s —1)/(s — 2), there exists a
constant a; > 0 (by Lemma 2.1(a)) such that

/ /
HF4umk - F4MHSLS/(Q,02) - /Q ‘F‘iumk - F4“’S v2dx
!

Z/Q‘!Vumkls_zvbtmk—IVu\HVu vodx

!/

< [ [a T = 9l 1977 ot
<ol [ [V, — V¥ 202) o
Q

, 1/1 I
<272y (/ Vit — Vul* ﬂvzdx> </ ®f 2 Ude)
0

_ / !
=2(572)5'ys [Vt — v”|||LS (Q,02) Hq)ZHU QUZ

1/

§2(S 2)s' st Vi, — v”|||U(sz)M ||CI) HU sz

<2620 M 14y, — ]| P2

HL' sz)

Hence,
[ Fattm, — Faul| v 0,y < 2°7 as M3~ 1||q>2HU (O0c00) [t — 1l

In case s = 2, we have (Fy(u))(x) = Vu. Then

[Esttlli2(00) = 11Vl 12(000) < MallI V[l 2(000) < Mallullx,

| Esttm, — Fattl 21y < Malltm, — .
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Therefore (for 2 < s < o0), we obtain that ||Fyu,,, — Faul| LS/(Q,UZ)—>0 as m;—oo, that is,

Fyuyy, —F4u in L¥ (), v;). By the Convergence Principle in Banach spaces (see Remark
2.2) we obtain

Fyum—Fyu  in L¥(Q, ). (3.9)

Step 5. We also have, by (H3) and Theorem 2.2,

1(¢)| < [ Ifllpldx+ [ |GIIVolax
il /\G\
—/Qw2|qo|w2dx+ A w2|V(p|w2dx

<IF /@2l 0 1911 () + NG/ @21l g V@ 2
<Callf /@2l (e 1V 9 1 rcn) + NG/ 021l 0y V0N 2

<(Callf /s n) + 11612l ) I
and Te [Wg’r(Q, wy)]*CX* (i.e., TEX*). Moreover, we also have for all u, p€X
[B(u, )| < [Bi(u, )| + [B2(u, ¢)| + |Bs(u, ¢)| + |Ba(u, ). (3.10)

Note that by Definition 2.4, we have

B, )| < [ 18ul"" [ Bglwrdx

1/p'
</ |Au| P paqu) </Q|A(p|pw1dx>

-1
—IIAuIILp o 18] L0y < lully llollx,

1/p

by Remark 2.1

Baln,9)| < [ |aul™" A glordx

1/q
</ |Au|~ qvwlx) (/Q|Aq)|qvldx>

=[|8u)l] 3 00 182 Lo 010

1 -1
<M HAMHU« ey MGl 0,0y < Ml llellx,

1/q
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and by Definition 2.4,

Ba(u, )| < [ V0l |Volwadx
) 1/v 1/r
§</ |V | a)zdx) </ \Vgo\erdx)
o)
—H|VM‘HU (Q,ws) H|V¢H‘U(Q,w2) < H“H?lHG”HX

Moreover, by Remark 2.1,

Ba(u, ) < [ |Vu! [ Voloadx

) 1/s' 1/s
g(/ V|15 vzdx) </Q]V(plsvzdx>

=11Vl (00 11V @ 12 (0105)
1
<M M IVl Mel IV 0l () < M3IIE 1l

Consequently, we obtain in (3.10) that

1 -1
|B<u,qo>rs<uuui MUl Ml )quux-

Since B(u, -) is linear, for each ueX, there exists a linear and continuous functional on
X denoted by Au such that (Au, ¢) = B(u, ¢), for all u, peX (where (f,x) denotes the
value of the linear functional f at the point x). Moreover,

-1 -1

Aull, < [l + MYl + el + M ulls (3.11)

where || Au||, = sup{|(Au, ¢)| = |B(u, ¢)| : p€X, ||¢|x = 1} is the norm of the operator
Au.

Hence, we obtain the operator

A: X—X5,
ur—Au.

Consequently, problem (P) is equivalent to the operator equation

Au=T, ueX.
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Step 6. If 11, upc€ X we have by Lemma 2.1(b) and 2 < g,s <r < p < 0o,
<Au1 — Auz, Ui — u2> = B(ul,m — u2) — B(uz, Ui — Mz)
:/ <|Au1|p_1Au1 — |Au2|p_2Au2>A(u1 — Up)widx
Q
—|—/ (]Aul\qlAm — ]Auzlqum)A(ul — up)vrdx
)
+/ (]Vuﬂ’*le — ]Vuz\r*ZVuQ, Vu1 — Vu2>w2dx
)

+ /Q (IVur " 'Vuy — |Vuo|* *Vug, Vg — Vug)vadx
p—2
2/3;7/0 <]Au1! + yAuzy) |Auy — Ay |y dx
9-2
+ By /Q <]Au1| + ]Au2|> |Auy — Au2|zvldx
r—2
+ ﬁr/ﬂ <|Vu1| + |Vu2|> |Viuy — V| wodx
s—2
+ Bs /Q <|VM1| + |Vu2|> Vg — V| vpdx
p—2
>Bp /Q <]Au1’ + ]Auzl) |Auq — Auz\zwldx

+ 5r/Q (IVmI + |Vuz|>r_2|Vu1 — V| Pwopdx
>By /Q |Auy — Aug|P 2| Auy — Aup|Pwrdx

+ Br /Q \Vuy — Vu2|r_2|vu1 — Vuz\zwzdx
=PBp /Q |Auy — Aug|Pwidx + ﬁr/Q |Vuy — Vup| wdx > 0.

Therefore, the operator A is monotone. Moreover, we have

(Au,uy = B(u,u)
=B1(u,u) + By(u,u) + Bs(u,u) + By(u, u)

:/ |Au\pw1dx+/ |Au]qvldx—|—/ |Vu\rw2dx—|—/ |Vul vpdx
o) 0 o) o)
2/ |Au\pw1dx+/ |Vul| wodx

o) o)

=180 0y + 11Vl -
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Hence, since 2 < r < p < oo, we have

(Au,u)
[[uellx

— +oo as |ully— + oo,

. . . . . tP +a"
that is, A is coercive (using that lim
t+a—oco t+a

Step 7. We need to show that the operator A is continuous. Let u,,—u in X as m — co.
We have,

= oo, with f > 0 and a > 0).

|B1 (tm, @) = B1(u, 9)|
g/ ‘|Aum\p2Aum — | At [P Au||Ag|wrdx
0
:/Q]Flum—FluHAgo\wldx

SHFlum - PluHLPI(Q,wl) HAGOHLP(Q,M)

<[Pt = Fyull o o 10 0
and by Remark 2.1,
|B2 (14, ¢) — Ba(u, 9)|
S/ ']Aum\quum — |Au|T 2 Au||Ag|ordx
0

:/Q]FQum—quHAqo|v1dx

<||Fottm — FZ”HM’(Q,vl) HA(PHM(Q,m)
<M | Fats — Fat 1y gy 180l 5 20,
<M || Pty — PZuHLq’(Q,wl) ollx,

and
|B3(tm, ¢) — Ba(u, ¢)|
S/Q ’IVumIT_2Vum — |Vu|r_2Vu |V ¢|wrdx

:/Q|P3um—1-"3u]|V(p|w2dx

SHFE’;um — F3u”Lr/(Q,w2) ||V(PHL’(Q,w2)
SHFS”m - F3uHU’(Q,w2) H(PHXf
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and by Remark 2.1
|Ba(ttm, @) — Ba(u, 9)|
g/ ‘\Vum\s_ZVum — | Vul" 2Vu||Vg|vadx
Q
:/Q | Fatty, — Fau||V @|vadx
SHFALum - F4u||LS’(Q,UZ) H ‘Vq)‘ HLS(Q,vz)
<M || Fsum — Fatt]| 15 (005 IV @1 1 (0,00)
<Ma||Fyuty, — F4”HLS’(Q,UZ)H(PHX‘
Hence,

|B(um, ¢) — B(u, 9)|
<[B1(tm, ) — B1(u, ¢)| + [Ba(um, ¢) — Ba(u, ¢)|
+ |B3(ttm, @) — Bs(u, @)| + [Ba(ttm, ) — Ba(u, 9)]

< (HPlum — PluHU”(Q,wl) + M1||P2um — quHLqr(lel)

+ HFgum — F3uHU/(Q,w2) + M2HP4um — Fu

|LS’(Q’1)2)> ||§0||X
Then we obtain
||A1/lm - AMH*

§||F1um — PluHLPI(Q,wl) + M1 ||F2Mm — quHL‘?/(Q,vl)

+ HF3um — F3MHL"(Q,0J2) + M2HF4Mm - F4“HLS/(Q,Z;2)'

Therefore, using (3.4), (3.5), (3.7) and (3.9), we have ||Au,, — Aul|,—0 as m — +oo, that
is, A is continuous (and this implies that A is hemicontinuous).

Therefore, by Theorem 3.1, the operator equation Au = T has a solution u€X and it
is a solution for problem (P).

Step 8. Let us now prove the uniqueness of the solution. Suppose that 11, u,€X are two
solutions of problem (P). Then

/|Aui]7’*2AuiA(pw1dx+/ |Aui]q72AuiA(pvldx
Q Q
+/ \Vui|r_2<Vui,Vgo>w2dx+/ (V)" (Vi Vg)vadx
Q Q

:/Qfgodx+/ﬂ<c,vgo>dx,
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for all p€X, and i = 1,2. Hence,

/ (\AuﬂpzAul — \Auz\plAuz) Apwydx
o)

+/ <|Au1|q_2Au1 - ]Au2|q_1Au2> Agovidx
o)
-1—/0 (V1| 7 2Vuy — |Vua|" *Vua, Vo) wdx

+/ (V1" Vg — |Vua|* *Viuy, Vo)vadx = 0.
o)
Therefore, we obtain for ¢ = u; — u; and by Lemma 2.1(b) and 2 < r < p < ©
0 :/ <|Au1|p_2Au1 — |Au2|p_2Au2>A(u1 — up)wydx
0

—|—/ <]Au1]q2Au1 - \AuQIqZALQ)A(u] — up)vrdx

0

—l—/ (V1| 2Vuy — |Vua| " *Viug, Vi, — Vg wadx
0

+ /Q (IVur|" 2V — |Vua|* 2V, Vg — Vg )vpdx
p—2
Z,Bp /Q (‘AM]’ + ‘AMQ’) \Aul — Au2|2w1dx
-2
+ B4 /Q (\Aull + |Au2]> |Auy — Au2|201dx
r—2
+ 5r/0 <|VM1| + |VM2|) (Vi — Vi [*wodx
52
+/5s/0 <|V”1| + |Vu2|> Vg — V| vpdx
p—2
Z,Bp /Q (‘AM]’ + ‘AMQ’) \Aul — Au2|2w1dx

r—2
+,Br/Q (|Vu1|+|Vu2!> |Vl/l1—vu2|2w2dx
>B, /Q Aty — M|~ Ay — Aua[Peondx
+ ,Br/ |VM1 — Vuzlr_ZWul — Vu2|2a)2dx
(@)

=Py /Q |Auy — Aup|Pwrdx + B, /Q |V — V| wodx.

85
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Hence
IVur = Va1, = 1801 = Duiz| 10,y = 0.

Since uq, up€X, then u; = up a.e..
Step 9. Estimate for ||u||y. Since u€X is solution for problem (P), then for ¢ = u in
Definition 2.5, we have

/]Au\pwldx—l—/ ]Au]qvldx—i—/ \Vu\erdx—i—/ |Vul vpdx
o) ) o) o)

— [ fudx+ [ (G, Vu)dx.
/qu X Q( u)dx
Hence,
/]Au|pw1dx+/ |Vul| wopdx
0 0
g/ ]Au|pw1dx+/ |Au|qvldx+/ |Vu|rw2dx+/ |Vul vadx
0 Ja 0 0
= d +/ G,Vu)d
/qu x Q( u)dx
<Callf/wall (e 1Vl - (n) + G/ W2l 1 ) TV 8 (00)
<(Callf /o2l yn) + 116102l ) Il
=Mullx,
where
M = Callf /w2l () + G/ @2l 1 (0
With that we obtain

/ \AufPwrdx < Ml[ul|y, and / V| wadx < M|ulx.
(@) @)

Therefore, by Young’s inequality, we obtain
lullx =lAullLooe) + VUl 0
<MYP|lully7 + MY ]|
MPP | M7 |l
Ml Ml

g p r r
_M_’_MT'/V—’_ 1+1 HMH
7 r por)

Hence, since
1 1
0<—+-<1,
p r
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we obtain
MpP -1 M1
lul < Gy (40— + M),
where C,, = pr/(pr — p — r). This completes the proof of Theorem 1.1. O

Example 3.1. Let QO = {(x,y)€R? : x2+y?> < 1}. Consider g = s = 2, r = 3 and
p =4 Letwl(yy) = (P+y)7% wvy) = @+ ni(ny) = (& +17)
and vy (x,y) = (x2 + yz)*l/ 3 (we have wi€A4 and wrE€A3). Let us consider the partial
differential operator

Lu(x,y) = A|wi (x,y)|Aul*Au + vl(x,y)Au] —div [wg(x,y) |Vu|Vu + vy (x, y)Vu} .

Therefore, by Theorem 1.1, the problem

Lu(x) = cos(xy) _8( sin(xy) >_8< sin(xy) ) O
() VErg a\erg) o) T

u(x) =Au(x) =0 on dQ),

has a unique solution ue X = W4(Q, wl)ﬂW(}’a(Q, wy).
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