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1 Introduction

Let n ≥ 2 and Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue
measure dσ. Suppose that Ω is a homogeneous function of degree zero on Rn that satisfies
Ω ∈ L1 (Sn−1) and ∫

Sn−1
Ω(x′)dσ(x′) = 0. (1.1)

In 1960, Hörmander (see [6]) introduced the following parametric Marcinkiewicz func-
tion µ

ρ

Ω of higher dimension by

µ
ρ

Ω f (x) =
( ∫ ∞

−∞

∣∣∣∣2−ρt
∫
|y|≤2t

f (x− y) |y|−n+ρ Ω(y)dy
∣∣∣∣2 dt

) 1
2
, (1.2)

∗Corresponding author. Email addresses: Laith.hawawsheh@gju.edu.jo (L. Hawawsheh), alsalman@squ.
edu.om (A. Al-Salman), s.momani@ju.edu.jo (S. Momani)

http://www.global-sci.org/ata/ 52 c©2020 Global-Science Press



L. Hawawsheh, A. Al-Salman and S. Momani / Anal. Theory Appl., 36 (2020), pp. 52-59 53

where ρ > 0. When ρ = 1, the corresponding operator µΩ = µ1
Ω is the classical

Marcinkiewicz integral operator introduced by Stein (see [7]). When Ω ∈ Lipα(S
n−1),

(0 < α ≤ 1), Stein proved that µΩ is bounded on Lp for all 1 < p ≤ 2. Subsequently,
Benedek-Calderón-Panzone proved the Lp boundedness of µΩ for all 1 < p < ∞ un-
der the condition Ω ∈ C1 (Sn−1) (see [4]). Since then, the Lp boundedness of µΩ has
been investigated by several authors. For background information, we advise readers to
consult [1–3, 7], among others.

Concerning the problem whether there are some Lp results on µ
ρ

Ω similar to those on
µΩ when Ω satisfies only some size conditions, Ding, Lu, and Yabuta (see [5]) studied the
general operator

µ
ρ

Ω,h f (x) =
( ∫ ∞

−∞

∣∣∣∣2−ρt
∫
|y|≤2t

f (x− y) |y|−n+ρ h(|y|)Ω(y)dy
∣∣∣∣2 dt

) 1
2
, (1.3)

where h is a radial function on Rn satisfying h(|x|) ∈ l∞(Lq)(R+), 1 ≤ q ≤ ∞, where the
class l∞(Lq)(R+) is defined by

l∞(Lq)(R+) =
{

h : |h|l∞(Lq)(R+) = sup
j∈Z

( ∫ 2j

2j−1
|h(r)|q dr

r

) 1
q
< ∞

}
.

For q = ∞, we set l∞(L∞)(R+) = L∞(R+). It is clear that

l∞(L∞)(R+) ⊂ l∞(Lr)(R+) ⊂ l∞(Lq)(R+) ⊂ l∞(L1)(R+),

1 < q < r < ∞. Ding, Lu, and Yabuta (see [5]) proved the following result:

Theorem 1.1 ([5]). Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree
zero on Rn satisfying (1.1) and h(|x|) ∈ l∞(Lq)(R+) for some 1 < q ≤ ∞. If Re(ρ) = α > 0 ,
then

∣∣∣µρ

Ω,h f
∣∣∣
2
≤ Cα−

1
2 | f |2, where C is independent of ρ and f .

In [1], Al-Salman and Al-Qassem considered the Lp boundedness of µ
ρ

Ω,h for p 6= 2.
which was left open in [5]. They proved the following result:

Theorem 1.2 ([1]). Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree
zero on Rn satisfying (1.1). If h(|x|) ∈ l∞(Lq)(R+), 1 < q ≤ ∞, and α = Re(ρ) > 0, then∣∣∣µρ

Ω,h f
∣∣∣

p
≤ Cα−1 | f |p for all 1 < p < ∞, where C is independent of ρ and f .

In light of Theorem 1.1, it is clear that the dependence of the Lp bounds on α in The-
orem 1.2 is not sharp. More precisely, we have the following long standing natural open
problem:
Problem:

(a) Is the power (−1/2) of α in Theorem 1.1 sharp?
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(b) Does the result in Theorem 1.2 hold with power of α greater than (−1)?

It is our aim in this note to consider this problem. In fact, we shall prove the following
result which completely resolves the above problem:

Theorem 1.3. Suppose that Ω ∈ L(log+ L)(Sn−1) is a homogeneous function of degree zero on
Rn satisfying (1.1). If h(|x|) ∈ l∞(Lq)(R+), 1 < q ≤ ∞ , and α = Re(ρ) > 0, then∣∣∣µρ

Ω,h f
∣∣∣

p
≤ Cα

− 1
p | f |p for all 1 < p < ∞,

where C is independent of ρ and f . Moreover, the power (−1/p) is sharp in the sense that it can
not be replaced by larger power.

It is clear that Theorem 1.3 substantially improves Theorem 1.2 as far as the power of
α is concerned. Concerning the function Ω, we present in Section 3 of this note a subclass
of the class l∞(Lq)(R+) where the corresponding operator µ

ρ

Ω,h is bounded on L2 under
the sole integrability condition Ω ∈ L1(Sn−1).

Throughout the rest of the paper the letter C will stand for a constant but not neces-
sarily the same one in each occurrence.

2 Proof of main result

This section is devoted to present a proof of Theorem 1.3. We start by recalling the fol-
lowing well known interpolation theorem:

Theorem 2.1 ([8]). Let T be a sublinear operator satisfying

|T( f )|Lp1 (Rn) ≤ Cp1 | f |Lp1 (Rn)

and

|T( f )|Lp2 (Rn) ≤ Cp2 | f |Lp2 (Rn)

for some 1 ≤ p1, p2 ≤ ∞ and Cp1 , Cp2 > 0 . Then for all θ ∈ [0, 1], we have

|T( f )|Lpθ (Rn) ≤ Cpθ | f |Lpθ (Rn) ,

where pθ satisfies 1
pθ

= θ
p1
+ 1−θ

p2
and Cpθ

= Cθ
p1

C1−θ
p2

.

Proof of Theorem 1.3. The proof is based on an interpolation argument. By Theorem 1.1
and Theorem 1.2, we have ∣∣∣µρ

Ω,h f
∣∣∣
2
≤ C√

α
| f |2 (2.1)
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and ∣∣∣µρ

Ω,h f
∣∣∣
1+ε
≤ C

α
| f |1+ε , (2.2)

for any ε > 0. Thus, (2.1) and (2.2) show that the operator µ
ρ

Ω,h is a bounded operator
from L2(Rn) to L2(Rn) and from L1+ε(Rn) to L1+ε(Rn), respectively. Thus, by Theorem
2.1, (2.1) and (2.2), we have ∣∣∣µρ

Ω,h f
∣∣∣

p
≤ Cα−

( ε− ε+1
p

ε−1

)
| f |p (2.3)

for all 1 + ε < p < 2. Letting ε→ 0+, we would get∣∣∣µρ

Ω,h f
∣∣∣

p
≤ C

α
1
p
| f |p

for 1 < p < 2. Similarly, for M > 2, we have by Theorem 1.2 that∣∣∣µρ

Ω,h f
∣∣∣

M
≤ C

α
| f |M . (2.4)

Interpolating between (2.1) and (2.4) yields

∣∣∣µρ

Ω,h f
∣∣∣

p
≤ Cα

−
( 1

M−
1
p

2
M−1

)
| f |p (2.5)

for all 2 < p < M. Letting M→ ∞ gives∣∣∣µρ

Ω,h f
∣∣∣

p
≤ C

α
1
p
| f |p

for 2 < p < ∞.
Now, we show that the power (1/p) is sharp. We shall work out the case p = 2 and

ρ = α is a positive real number. We shall also assume 0 < α < 1. Set

Ω(x) = (x1)
′ =

x1

|x| .

Then Ω satisfies (1.1) and Ω ∈ L2(Sn−1). On the other hand, let f (x) = x1 if |x| < 1 and
f (x) = 0 if |x| ≥ 1. Then f ∈ L2(Rn). In fact,

| f |2 =
1√

n + 2
|Ω|2 .

Now, ∣∣∣µρ
Ω,h f

∣∣∣2
2
≥
∫

Rn

∫ ∞

3

∣∣∣∣∫
Sn−1

∫ t

0
Ω(y′) f (x− ry′)

dr
r1−α

dσ(y′)
∣∣∣∣2 dt

t1+2α
dx

≥
∫
|x|<1

∫ ∞

3

∣∣∣∣∫
Sn−1

∫ t

0
Ω(y′) f (x− ry′)

dr
r1−α

dσ(y′)
∣∣∣∣2 dt

t1+2α
dx.
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By noticing that f (x − ry′) = 0 whenever |x| < 1 and r > 2, it follows from the last
integral that∣∣∣µρ

Ω,h f
∣∣∣2
2
≥
∫
|x|<1

∫ ∞

3

∣∣∣∣∫
Sn−1

∫ 2

0
Ω(y′)(x1 − ry′1)

dr
r1−α

dσ(y′)
∣∣∣∣2 dt

t1+2α
dx

=
∫
|x|<1

∫ ∞

3

∣∣∣∣∫
Sn−1

∫ 2

0
(Ω(y′))2rαdrdσ(y′)

∣∣∣∣2 dt
t1+2α

dx

= |Ω|42
( 2α+1

1 + α

)2( 1
32α

) 1
2α
|B(0, 1)|

≥ C√
α
| f |2 , (2.6)

where |B(0, 1)| is the volume of the ball B(0, 1) = {x ∈ Rn : |x| < 1} and C is a constant
independent of α. Here, (2.6) follows by (1.1). This completes the proof. �

3 Further study

As pointed out in the introduction section, in this section we present a subclass of the
class l∞(Lq)(R+) where the corresponding operator µ

ρ
Ω,h is bounded on L2 under the

condition Ω ∈ L1(Sn−1). If q = ∞, l∞(L∞)(R+) = L∞(R+). For 1 ≤ q < ∞, let Dq be the
space of all measurable radial functions h on Rn which satisfy

h(r)
r1/q′ ∈ l∞(Lq)(R+), (3.1a)

∞

∑
j=1

(∫ 2j+1

2j
|h(r)|q dr

r

)1/q

< ∞. (3.1b)

It is obvious that Dq ⊂ l∞(Lq)(R+) and this inclusion is proper for 1 ≤ q < ∞. In fact,
for j ∈ Z−, we have(∫ 2j+1

2j
|h(r)|q dr

r

)1/q

=

(∫ 2j+1

2j

∣∣∣∣ h(r)r1/q′

∣∣∣∣q r
q
q′

dr
r

)1/q

≤ C
∣∣∣h/r1/q′

∣∣∣
l∞(Lq)(R+)

.

On the other hand, for j ∈ Z+, by (3.1b) we have(∫ 2j+1

2j
|h(r)|q dr

r

)1/q

≤
∞

∑
j=1

(∫ 2j+1

2j
|h(r)|q dr

r

)1/q

< ∞.

Notice further that the constant functions are contained in l∞(Lq)(R+) but not in Dq.
On the other hand,

Dq * L∞(R+). (3.2)
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To see (3.2), we construct a function h ∈ Dq\L∞(R+). For convenience, we consider the
case q = 2. Define h on R+ by h(r) = 4

√
n r, if r ∈ [1 + 1

n+1 , 1 + 1
n ], n ∈ N and h(r) = 0

otherwise. It is clear that h is not bounded. To see that h ∈ Dq, we first observe that since
h(r) = 0 for all r ≥ 2, it follows that h satisfies (3.1b). To see that h satisfies (3.1a), notice

(∫ 2

1

∣∣∣∣h(r)r1/2

∣∣∣∣2 dr
r

)1/2

=

(
∞

∑
n=1

∫ 1+ 1
n

1+ 1
n+1

∣∣∣∣h(r)r1/2

∣∣∣∣2 dr
r

) 1
2

=

(
∞

∑
n=1

√
n

n(n + 1)

) 1
2

< ∞.

Now, we have the following result:

Theorem 3.1. If h ∈ Dq for some 1 ≤ q < ∞ and Ω ∈ L1(Sn−1) is a homogeneous function of
degree zero on Rn satisfying (1.1), then µ

ρ

Ω,his bounded on L2(Rn).

Proof. By simple change of variables and Plancherel’s theorem, we have

∣∣∣µρ
Ω,h

∣∣∣2
2
≤
∫

Rn

∣∣∣ f̂ (ξ)∣∣∣2 [∫ ∞

0

∣∣∣∣t−ρ
∫
|y|≤t

e−2πiy·ξ |y|−n+ρ h(|y|)Ω(y)dy
∣∣∣∣2 dt

t

]
dξ. (3.3)

On the other hand, by Minkowski’s integral inequality, we have

(∫ ∞

0

∣∣∣∣t−ρ
∫
|y|≤t

e−2πiy·ξ |y|−n+ρ h(|y|)Ω(y)dy
∣∣∣∣2 dt

t

) 1
2

=

(∫ ∞

0

∣∣∣∣∫ ∞

0

∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)χ[0,t](r)r
ρ−1dσ(y′)dr

∣∣∣∣2 dt
t1+2ρ

) 1
2

≤
∫ ∞

0

(∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)χ[0,t](r)dσ(y′)
∣∣∣∣2 dt

t1+2α

) 1
2 dr

r1−α

=
∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ (∫ ∞

r

dt
t1+2α

) 1
2 dr

r1−α

=
1√
2α

∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r
. (3.4)

In view of (3.4), we need only to show that

sup
ξ∈Rn−{0}

∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r
< ∞. (3.5)

We consider two cases:
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Case 1. If |ξ| > 2, then ∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

=
∫ 2/|ξ|

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

+
∫ 1

2/|ξ|

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

+
∫ ∞

1

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r
=:I + I I + I I I. (3.6)

By the cancellation property (1.1), we get

I =
∫ 2/|ξ|

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

=
∫ 2/|ξ|

0

∣∣∣∣∫
Sn−1

(
e−2πiry′·ξ − 1

)
h(r)Ω(y′)dσ(y′)

∣∣∣∣ dr
r

=
1

∑
−∞

∫ 2j/|ξ|

2j−1/|ξ|

∣∣∣∣∫
Sn−1

(
e−2πiry′·ξ − 1

)
h(r)Ω(y′)dσ(y′)

∣∣∣∣ dr
r

≤C |Ω|L1(Sn−1) |h|l∞(Lq)(R+)
, (3.7)

where the last inequality was obtained using (3.1b). Next, choose jξ ∈ Z such that 2jξ ≤
2/ |ξ|. Then

I I =
∫ 1

2/|ξ|

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

≤
∫ 1

2jξ

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

≤ |Ω|L1(Sn−1)

∣∣∣h/r1/q′
∣∣∣
l∞(Lq)(R+)

0

∑
j=jξ+1

(
2j−1

)1/q′

≤C |Ω|L1(Sn−1)

∣∣∣h/r1/q′
∣∣∣
l∞(Lq)(R+)

, (3.8)

where C does not depend on the choice of jξ . Finally, notice that

I I I =
∫ ∞

1

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r
≤ C |Ω|L1(Sn−1) , (3.9)
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where the last inequality was obtained using (3.1b). This proves (3.5) for all ξ ∈ Rn with
|ξ| > 2.
Case 2. If |ξ| ≤ 2, then ∫ ∞

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

=
∫ 2

0

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r

+
∫ ∞

2

∣∣∣∣∫
Sn−1

e−2πiry′·ξ h(r)Ω(y′)dσ(y′)
∣∣∣∣ dr

r
. (3.10)

To estimate (3.10), we follow similar argument as in Case 1. This completes the proof.
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