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Abstract. In this note, we obtain sharp L7 estimates of parametric Marcinkiewicz in-
tegral operators. Our result resolves a long standing open problem. Also, we present
a class of parametric Marcinkiewicz integral operators that are bounded provided that
their kernels belong to the sole space L! (S"71).
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1 Introduction

Let n > 2 and $"! be the unit sphere in R" equipped with the normalized Lebesgue
measure do. Suppose that () is a homogeneous function of degree zero on R" that satisfies
Qe L' (8" 1) and

/S O@)do(x') = 0. (1.1)

In 1960, Hérmander (see [6]) introduced the following parametric Marcinkiewicz func-
tion p, of higher dimension by

2

N=

st = (e [ sl oy

—00

dt) , (1.2)
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where p > 0. When p = 1, the corresponding operator jn = puf, is the classical
Marcinkiewicz integral operator introduced by Stein (see [7]). When Q € Lip, (5" 1),
(0 < a < 1), Stein proved that piq is bounded on L? for all 1 < p < 2. Subsequently,
Benedek-Calderén-Panzone proved the L? boundedness of jq forall 1 < p < oo un-
der the condition Q € C! (S”_l) (see [4]). Since then, the L7 boundedness of yq has
been investigated by several authors. For background information, we advise readers to
consult [1-3,7], among others.

Concerning the problem whether there are some L? results on y{, similar to those on
1a when Q) satisfies only some size conditions, Ding, Lu, and Yabuta (see [5]) studied the
general operator

ponf) = ([

—00

2

N|—=

dt) ) (1.3)

2" /Iygzt fle—=y) [yl h(ly)Q(y)dy

where & is a radial function on R" satisfying h(|x|) € I*(L7)(R"), 1 < q < oo, where the
class I°(L7)(R") is defined by

j 1
(L) RY) = {h: [l ey = sup ( / ()7 )" < eo)
For g = co, we set I®°(L*)(R") = L*(R"). It is clear that
I®(L®)(RF) CI%(L)(RF) € I7(LT)(RT) € I7(LY)(RT),
1 < g <r < 0. Ding, Lu, and Yabuta (see [5]) proved the following result:

Theorem 1.1 ([5]). Suppose that Q € L(log"* L)(S"~1) is a homogeneous function of degree
zero on R" satisfying (1.1) and h(|x|) € I*°(L7)(R™) for some 1 < q < oo. If Re(p) =a >0,

then ‘V’;l,hf‘Z < Ca2 |f|,, where C is independent of p and f.

In [1], Al-Salman and Al-Qassem considered the L” boundedness of V?),h for p # 2.
which was left open in [5]. They proved the following result:

Theorem 1.2 ([1]). Suppose that Q € L(log* L)(S"~1) is a homogeneous function of degree
zero on R" satisfying (1.1). If h(|x|) € I®(L7)(R"), 1 < g < oo, and &« = Re(p) > 0, then

;fn,hf‘p < Ca! |1, forall1 < p < co, where C is independent of p and f.

In light of Theorem 1.1, it is clear that the dependence of the L¥ bounds on & in The-
orem 1.2 is not sharp. More precisely, we have the following long standing natural open
problem:

Problem:

(a) Is the power (—1/2) of & in Theorem 1.1 sharp?
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(b) Does the result in Theorem 1.2 hold with power of a greater than (—1)?

It is our aim in this note to consider this problem. In fact, we shall prove the following
result which completely resolves the above problem:

Theorem 1.3. Suppose that Q € L(log™ L)(S"~1) is a homogeneous function of degree zero on
R" satisfying (1.1). If h(|x]) € I°(L1)(R"),1 < g < oo, and « = Re(p) > 0, then
’]fQ,hf’ < Ca™r \f\p forall 1 < p < oo,
p
where C is independent of p and f. Moreover, the power (—1/ p) is sharp in the sense that it can
not be replaced by larger power.

It is clear that Theorem 1.3 substantially improves Theorem 1.2 as far as the power of
« is concerned. Concerning the function (), we present in Section 3 of this note a subclass
of the class [*(L7)(IR") where the corresponding operator i, , is bounded on L? under
the sole integrability condition ) € L}(S"~1).

Throughout the rest of the paper the letter C will stand for a constant but not neces-
sarily the same one in each occurrence.

2 Proof of main result

This section is devoted to present a proof of Theorem 1.3. We start by recalling the fol-
lowing well known interpolation theorem:

Theorem 2.1 ([8]). Let T be a sublinear operator satisfying

T rey < Cp If

LP1 (]Rn)
and
‘T(f)|LP2(1Rn) < sz ’f’LF”Z(IR")

for some 1 < py,pa < coand Cp,,Cp, > 0. Then for all § € [0,1], we have
|T(f)|U’9(]R”) < Clﬂs |f|LP9(IR") ’

where py satisfies % = % + 1;,;29 and Cp, = C§ C, .
Proof of Theorem 1.3. The proof is based on an interpolation argument. By Theorem 1.1
and Theorem 1.2, we have

P C
.”Q,hf‘z < 7a |1 2.1)
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and
¢
o

‘f‘l—i—e’ (22)

for any € > 0. Thus, (2.1) and (2.2) show that the operator VZ),h is a bounded operator
from L2(R") to L?(R") and from L*¢(IR") to L!T¢(R"), respectively. Thus, by Theorem
2.1,(2.1) and (2.2), we have

4
<
Vo,hf ’1 e =

e— e;l
1

wouf| < ) g, 23

forall1+4 e < p < 2. Letting e — 07, we would get

C
Houf| < If,
P g
b
for 1 < p < 2. Similarly, for M > 2, we have by Theorem 1.2 that

0 C
Houf|, <= 1flu- 24)

Interpolating between (2.1) and (2.4) yields

Honf ‘p < Ca

forall2 < p < M. Letting M — oo gives

1, 25)

for2 < p < oco.
Now, we show that the power (1/p) is sharp. We shall work out the case p = 2 and
p = & is a positive real number. We shall also assume 0 < a < 1. Set
X1

Q(x) = (x1) = Tk

Then Q satisfies (1.1) and Q € L?(S"~!). On the other hand, let f(x) = x; if |x| < 1 and
f(x) =0if |x| > 1. Then f € L?>(R"). In fact,

1
= |Q,.
‘f‘Z \/m’ |2

Now,

2 4t
t1+21x

Z 4t
t1+20¢

dr

iz [ [T [ owse-m) Eaoty)

(o]
> /)C /3
| ‘<

dx

dr

/S,H /Ot Q) f(x - W’)rlﬁd(f(y/) dx.
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By noticing that f(x — ry’) = 0 whenever |x| < 1 and r > 2, it follows from the last

integral that
dr ; 2t
S
2
dt
. 2 o
/x<1/ /sn 1/ drdo(y') tl+2a ax
a1 1 1
-t (77 <3za>2 50
fla, (2.6)

\f 2
where |B(0,1)]| is the volume of the ball B(0,1) = {x € R" : |x| < 1} and C is a constant
independent of «. Here, (2.6) follows by (1.1). This completes the proof. U]

3 Further study

As pointed out in the introduction section, in this section we present a subclass of the
class I®°(L7)(R") where the corresponding operator V?),h is bounded on L? under the
condition ) € L(§"71). If g = o0, I°(L®)(R") = L*(R™). For 1 < g < o0, let D, be the
space of all measurable radial functions & on R"” which satisfy

hl(/), € 1®°(L)(RY), (3.1a)

) j+1 r /4
Z</2 |(>qu> < o. (3.1b)

J

It is obvious that D, C I°(L7)(IR") and this inclusion is proper for 1 < g < co. In fact,
forj € Z—, wehave

(/f| ok d) - (/

On the other hand, for j € Z*, by (3.1b) we have

j+1 00 j+1 1/q
(/22 |<>\"‘”> 2(/2 \hw‘f) <o

Notice further that the constant functions are contained in [**(L7) (IR ") but not in D,
On the other hand,

h(r)
ri/q

1/q
q
r;’dr> gC‘h/rl/q, .
r 1°(LT)(RT)

D, ¢ L®(R). (3.2)
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To see (3.2), we construct a function & € D,\L®(IR™"). For convenience, we consider the
case g = 2. Define hon R" by h(r) = /nr,ifr € [1+ ;11,14 3], n € Nand h(r) =
otherwise. It is clear that & is not bounded. To see that i € D, we first observe that since
h(r) = 0 for all r > 2, it follows that & satisfies (3.1b). To see that h satisfies (3.1a), notice

() = (BT - (Btn) <

n(n+1
Now, we have the following result:
Theorem 3.1. If h € D, for some 1 < q < oo and Q) € L'(S"~1) is a homogeneous function of
degree zero on R" satisfying (1.1), then V?),his bounded on L*(IR").

h(r)

/172

e

1/2
717

1

Proof. By simple change of variables and Plancherel’s theorem, we have

i, = [ |F@f [/0‘”

On the other hand, by Minkowski’s integral inequality, we have

(I )

- ( I eI (O i (1) do (3
0

(0
L

2 dt

t] 4. (3.3)

0 [y (g Oy
lyl<t

0 [ ey (| ) )dy
lyl<t
1
2 dt 2
t1+2p
1
2 4t \? dr
t1+2a rli—uc

© gt \? dr
/r t1+21x ﬂ

gn—1

[ e 0 0 (o)

L e (o ly)

—oiry- dr
:E /O /S eIy )do(y)| (34)
In view of (3.4), we need only to show that
® —2miry’-¢ / n|ar
sup e h(r)Q(y")do(y')| — < co. (3.5)
gerr—{0} /0 [/S"! r

We consider two cases:
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Case 1. If || > 2, then

[ee]

dr

L e h(nay)do(y)

J
:/OZ/IC

dr

L e (e (y)

1 iry' dr
—27iry -gh 0 ,d n|ar
+/2/|c /snfle (NQy)de(y')| =
+/ / 372mry,'¢h(7’>Q<y/)do'(y/) ﬂ
1 gn—1 »
=:1+ I + II1. (3.6)

By the cancellation property (1.1), we get

I —/
0

S Y o )
= [ (s ) oty
1

Z /Zj/lé
Sy

Z /_r, (7 ¢ —1) h(r)O(y')de(y)

<ClQ gy [Pl (rayry) - (3.7)

dr

dr

dr

where the last inequality was obtained using (3.1b). Next, choose jz € Z such that 2/t <

2/ |¢|. Then
1
II:/
2/1¢]
1
< —2miry’-& / n| 4
< [ AL e nina)dely)| S

0 !
<|Q‘1 - Z (2]71)1/[1
= e IR Ay

dr

r

[ e 0w oty
S)l*

dr

h/rte

SC |Q|L1(Sn—1)

1/4'
hir ‘zw(m)(nw)’

where C does not depend on the choice of jz. Finally, notice that

m= [T\ [ e ooy
1 Sn=
< ClQpi(gr-1y, (3.9)

dr
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where the last inequality was obtained using (3.1b). This proves (3.5) for all ¢ € R"” with
& >2.

Case 2. If || < 2, then

dr

T
dr

r

L e (0o ()

L e h(naly)doly)
L e h(naly)de(y)
/

To estimate (3.10), we follow similar argument as in Case 1. This completes the proof. [

00
2

dr
- (3.10)

)
-

Acknowledgements

The work is a part of the first author’s PhD thesis, which had been done under the super-
vision of the second and third authors.

References

[1] A. Al-Salman and H. Al-Qassem, On the L boundedness of rough parametric
Marcinkiewicz functions, J. Inequal. Pure Appl. Math., 8(4) (2007), 108.

[2] A. Al-Salman, H. Al-Qassem, L. Cheng and Y. Pan, L? bounds for the function of
Marcinkiewicz, Math. Res. Lett., 9 (2002), 697-700.

[3] A. Al-Salman, Marcinkiewicz functions along flat surfaces with hardy space kernels, J. Inte-
gral Equations Appl., 17(4) (2005), 357-373.

[4] A. Benedek, A. Calderén and R. Panzone, Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci., 48 (1962), 356-365.

[5] Y. Ding, S. Lu and K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J.
Austral. Math. Soc., 72 (2002), 13-21.

[6] Hormander, Translation invariant operators, Acta Math., 104 (1960), 93-139.

[7] E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer.
Math. Soc., 88 (1958), 430-466.

[8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press, Princeton NJ, 1970.

[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory In-
tegrals, Princeton University Press, Princeton, NJ, 1993.



