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Abstract. Effective medium methods for the attribution of micro-structures to macro
elastic properties of shales are important for the prediction of sweet spots in the shale-
gas production. With X-ray micro-computed tomography (XMCT), the micro-structures
of shale core samples from Longmaxi Formation are visualized and characterized by
3D digital images. As an efficient alternative to conventional effective medium meth-
ods for estimating elastic properties, we propose a consistent workflow of lattice spring
modeling (LSM) to emulate the digital cores using three types of lattices. Particular
attention is paid to investigate the effective Young’s moduli, Poisson’s ratios, and pre-
ferred orientations, by uniaxial compression tests along two directions. Within elastic
deformation, the impact of lattice arrangements on the anisotropy is even more than
those of stress disturbances and micro-structural features. Compared with analytical
approximations and theoretical predictions, the LSM numerical scheme shows general
applicability for heterogeneous porous rocks.

AMS subject classifications: 37K60, 65C20, 74B05, 74E10

Key words: Elastic characteristics, lattice spring model (LSM), X-ray micro-computed tomogra-
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1 Introduction

Shale gas is a kind of unconventional natural gas that is found trapped within the shale
formations. In China, Longmaxi Formation at Sichuan Basin, due to its great deposition
thickness, stable distributions and rich organic contents, is currently one of the most im-
portant stratigraphic horizons for shale gas exploration and exploitation. Knowledge on
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the characteristics of elastic properties, especially those related to TOC (total organic car-
bon), maturity, reservoir thickness, mineral composition, brittleness, permeability, poros-
ity and pore pressure [1], is imperative for sweet spot prediction. Rather than experimen-
tal measurement and theoretical prediction, numerical simulation based on digital cores
is an efficient alternative to investigate the dependence of shale elasticity on mineral com-
positions and micro-structures. Thus, it is fundamental to reconstruct petrophysically the
geological structure of shale reservoirs.

For realistic modeling of the shale gas reservoirs, structural characteristics, natu-
ral fracture system, multi-fractured horizontal well, and the like, should be taken into
account [2]. Currently, the micro-structures can be captured at micrometer resolution
by imaging facilities such as scanning electron microscopy (SEM) and X-ray computed
micro-tomography (µCT), hopefully enabling the numerical investigation for the relation
between micro-structures and the physical or mechanical properties of shales. Based on
these high-resolution imaging techniques, howbeit several publications have reported
numerical simulations of mechanical and seismic properties of geo-materials mainly im-
plemented by finite difference methods (FDM) and finite element methods (FEM) [1].
Arns et al. [3] used FEM to obtain the elastic properties of Fontainebleau sandstone,
which could agree with experimental measurements over a wide range of porosity. With
higher resolution representation of complex micro-structural geometries, a deeper under-
standing of rock properties could be attained, e.g., elastic and transport properties [4, 5],
electrical properties [6], pore fluid properties [7] and reservoir characteristics [8]. Zhang
et al. attempted to derive the dependence of elastic properties on porosity and kerogen
by FEM and described the micro-structural, lithological and petrophysical characteristics
of the Longmaxi shale core [1].

Such studies principally are based on the continuum theories, yet it’s more suitable to
regard the rocks as granular media, which exhibit varying degrees of anisotropy (ori-
entation dependence) caused by their crystalline structure, stress orientations, shape,
and configuration. That’s because the spatial heterogeneity and material anisotropy
strongly influence crack patterns and effective fracture toughness, particularly seismic
prospecting [9]. Crampin in his work ever mentioned that the coupling effects among
the three body waves (qP, qS1, and qS2) motions may be sensitive even to quite weak
anisotropy [10]. Therefore, discontinuum based methods which could account for granu-
lar texture, particle-scale kinematics and force transmission [11], like molecular dynamics
(MD) and discrete element method (DEM), were proposed and developed for granular
materials modeling. Hagenmuller [12] acquired DEM models according to the voxel (for
3D)/pixel (for 2D) coordinates, in order to study the rapid and large deformations of
granular materials. Even though this kind of grain arrangement is one of the most con-
venient way to model discontinuum media, it may cause artificial anisotropy [13]. So
as to avoid the anisotropic effects linked to regular packings, Harthong et al. [14] gener-
ated polydisperse packings to emulate rock masses, using the softer components [15] or
discrete fracture networks (DFNs) [16] to represent the local heterogeneity and lamina-
tion. To some extent, despite the anisotropic nature of shale could be characterized, the
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impacts caused by multiphase minerals are neglected. Moreover, as for shale modeling,
to the best knowledge of the authors, the correlated studies are quite scarce with limited
technical details [1, 17].

Triggered by this current research status and the signification of shale modeling, a lat-
tice model (LM) is applied here. Unlike the numerical approaches based on continuum
assumptions that may barely handle large-scale fracturing, complex discontinuity sim-
ulations, or microscopic mechanisms [13], without the limitations of scale features and
complex potential functions from discontinuum based methods (MD and DEM, etc.), LM
scheme bears obvious advantages over others. At first, LM approach is flexible to model
both granular media and continuum systems [18], whose scale characteristics of spec-
imens may be extended by a coarser lattice idea [19]. Secondly, the singularity issues
involved in the stress concentration around crack tips might be avoided. Additionally,
this numerical strategy may have the easiest access to crack onset and propagation sim-
ulations, or cross-scale modeling for rock physics.

As a result, LMs have been proved to be sufficiently general for applying to sys-
tems ranging from metals, composites, ceramics and polymers to functionally graded
and granular materials [18]. Due to the discrete nature of soil, rocks and the like, LMs
are expansively used in the field of geophysics. As early as 1941, Hrennikoff developed
the lattice spring model (LSM) to study the mechanical responses of solids with a fixed
Poisson’s ratio [19]. Based on this concept, in 1978, Nayfeh and Hefzy proposed a regu-
lar truss-like lattice model to calculate the effective mechanical properties [20]. Then, this
approach was utilized to investigate distributed disorder influence [21], stress concentra-
tions and toughness increases [22]. Also, other mechanical and acoustic behaviors could
be studied by this methodology, eg. tectonic processes [23], earthquake dynamics [24],
wave propagation [25], and earthquake generation and spread [26]; the fracture of elastic
foundations on soft sand beds [27]; the generation of compaction bands in high-porosity
sedimentary rock [28]; the scale effect in rock dowels [29]; the determination of static
and dynamic fracture mechanics parameters and crack growth simulation [30]. Addi-
tionally, in order to extend the method into other fields besides geophysics and to avoid
the Poisson’s ratio limitation from conventional LMs, some other advanced models were
proposed as well, like the Born spring model, the beam element model, the multibody
shear spring, the nonlocal potential and the fourth-dimensional LSM [31].

While, the objective of this work is to develop a surrogate and potential approach
regarding the shale core modeling with simple implementation and present a consistent
simulation procedure with set-up details. Meanwhile, to attain complementary insights
and an in-depth understanding of geological microstructures for the Longmaxi shale
core, X-ray micro-CT techniques are employed. Some factors, like lattice arrangements,
micro-structures and stress fields, that may attribute to anisotropic elasticity features are
quantitatively compared and analyzed by bounding methods and a modified fabric ten-
sor, accordingly. Based on these goals, the remaining parts of this paper are organized as
follows.

The imaging means, composition identification, and evaluation for elastic parame-



N. Liu and L.-Y. Fu / Commun. Comput. Phys., 28 (2020), pp. 518-538 521

ters are outlined in Section 2. Subsequently, modeling algorithm of the adopted lattice
models, including basic concepts, modeling procedure, the relations between inputs and
effective elastic properties of lattice unit cells, and fabric tensors are expressed in Section
3. In Section 4, the numerical data of uniaxial compression tests are presented, covering
comparisons with theoretical values to validate the model and to calibrate material pa-
rameters, prediction for effective elastic properties and evaluation of various bounding
methods, and anisotropy characterization from the viewpoint of lattice orientations, in-
herent micro-structural features, and stress influences. Then, the predictive capability of
this numerical scheme is discussed in Section 5. Finally, conclusions and future work are
underlined in Section 6.

2 Digital core imaging and elastic properties

A Longmaxi shale core is scanned by X-ray micro-computed tomography (XMCT) with
a proper resolution to obtain a digital core image. Otsu’s method is used to segment the
digital core image according to the absorption coefficients of various constituents. We
introduce several effective medium theories to estimate the specimen’s elastic constants.

2.1 Digital core imaging

XMCT scanning of the Longmaxi shale core with a diameter of 800 µm and a length of 3
mm is performed at Shanghai Synchrotron Radiation Facility (SSRF) using a third genera-
tion synchrotron radiation light source. For reconstructed precision improvement, the or-
dered subset expectation maximization (OSEM) algorithm is introduced. Figs. 1 illustrate
the 3D model from three views, which is generated by 1080 projections at micrometer res-
olution with a 3.5 s exposure time. To capture mineral components and micro-structures
of the sample more precise, we extract a cube with a size of 390×390×455 µm3. The ob-
jective 3D digital image in a resolution of 0.65 µm, consists of 600×600×700 voxels. Fig. 2
displays the resulting digital image (8-bit) converted from the original reconstructed im-
age (32-bit), with the color scale ranging from 0 to 255 based on the X-ray absorption
coefficients.

2.2 Identification of constituents

Shales consist of diverse minerals—detrital, clay, and mental minerals—, with irregular
pores. The XMCT technique enables the possibility to visualize and characterize those
minerals in digital cores, according to the X-ray reflectivity of different constituents. In
other words, gray scale intensities change in the brightness of X-ray images reflect the
chemical and optical properties of different minerals. For example, pyrite has a high
absorption coefficient of X-ray than other minerals, leading to greater brightness in the
image, whereas kaolinite, montmorillonite, and quartz have lower values. The absorp-
tion coefficients of those common minerals are reported in Table 1 [32]. We see that some
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Figure 1: Three views of the original 3D model with the scanned cube.

Figure 2: Reconstructed 3D image (left) with its 2D slices (right) in the XY, XZ, and YZ planes.

of those minerals share similar values and could be classified into the same category of
mineral components.

The 3D grayscale data is segmented into a few binary images using Otsu’s method
in terms of absorption coefficients listed in Table 1. From Fig. 3, see that Group 1 takes
the majority of grayscale values. Pyrite just accounts for a small proportion, implying
the Longmaxi shale might be deposited in a strong reducing sedimentary environment.
Fig. 4(a) shows the percentage of three mineral groups and pores in the 3D image. We
see that the Longmaxi shale core contains Mineral Group 1 up to 78.33% with a high
percentage of detrital minerals. The other two mineral groups and pores hold 16.53%,
0.64%, and 4.51%, respectively.

Table 1: Absorption coefficients of X-ray with 20 keV energy for common minerals in the shale sample [1].

Mineral Kln Mnt Qtz Ill Kfs Dol Gp Cal Py

Coefficient (cm−1) 5.7 6.4 6.5 8.9 10.3 10.5 13.1 15.0 76.7
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Figure 3: Percentage of the 3D image voxel at every grayscale value in the range of 0 to 255: Group 1 (kaolinite,
quartz, and montmorillonite) in 37–58, Group 2 (illite, K-feldspar, calcite, dolomite, and gypsum) in 59–130,
Group 3 (pyrite) in 131–255, and pores in 0–36.
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Figure 4: Composition statistics of the Longmaxi shale core: (a) the proportions of mineral groups and pores;
(b) the composition distributions of 700 slices in Z direction.

Therefore, the Longmaxi shale seems brittle and tight, with its permeability and con-
nectivity sensitive to stress fields. Fig. 4(b) shows the percentage of three mineral groups
and pores for 700 2D slices in the XY planes. All the values for each group fluctuate
around the average line. That is because every slice along the Z direction displays ap-
proximately the similar mineral distribution. Hence for simplicity, we can emulate the
Longmaxi shale sample just from one of the 2D slices in the XY planes, as illustrated
in Fig. 5. Based on these 2D cross-section slices, we can identify and separate mineral
phases and porous structures by image segmentation. In the binary images, the black
pixels present the mineral groups and pores, with their percentages of 76.17% (Mineral
Group 1), 19.41% (Mineral Group 2), 1.06% (Mineral Group 3), and 3.36% (pores), corre-
spondingly.
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Figure 5: Composition identification of the digital core: one of the 2D slices along the Z direction (left); binary
images of three mineral groups and porous structures (right).

2.3 Estimation of effective elastic properties

As described in Fig. 5, Groups 1 and 2 are the fundamental constituents in the Longmaxi
shale core. We can estimate the effective elastic modulus of each mineral group for nu-
merical simulations. The upper-and-lower bound method usually act as a powerful and
robust tool to attain the limit on the material parameters, and are used in the current
study.

Because of the complexity of micro-structures, the geometric details of grains and
pores are rarely taken into account. Solely based on phase volume fractions, the Voigt-
Reuss model presents upper and lower bounds on the effective linear elastic moduli of
multi-phase composites. It can be constructed from the principle of energy minimum
at the equilibrium state. In the field of rock physics, the Voigt-Reuss bounds have been
popularly used, written as:

M̄α= f1Mα
1+ f2Mα

2+···+ fi M
α
i +··· , (2.1)

where α= 1 or α=−1 for Voigt or Reuss bounds, correspondingly. M̄, Mi and fi stand
for the effective modulus, and the individual modulus and volume fraction of the ith

constituent. Then, the Voigt-Reuss-Hill average is applied, since sometimes an estimate
of the actual value is taken as the average of the two:

M̄=
MV+MR

2
, (2.2)

where MV and MR represent the effective moduli based on Voigt and Reuss bounds. A
more accurate estimation of bounding methods can be obtained for two-phase compos-
ites based on variational principle, which has been developed for multiphase media [33]
and expressed in a general form

KHS+=

[

N

∑
i=1

fi

Ki+zHS+
K

]−1

−zHS+
K , zHS+

K =
2(d−1)

d
µmax;

KHS−=

[

N

∑
i=1

fi

Ki+zHS−
K

]−1

−zHS−
K , zHS−

K =
2(d−1)

d
µmin;

(2.3)
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µHS+ =

[

N

∑
i=1

fi

µi+zHS+
µ

]−1

−zHS+
µ , µHS− =

[

N

∑
i=1

fi

µi+zHS−
µ

]−1

−zHS−
µ ; (2.4)

zHS+
µ =

µmax(9Kmax+8µmax)

6Kmax+12µmax
, zHS−

µ =
µmin(9Kmin+8µmin)

6Kmin+12µmin
(d=3), (2.5)

zHS+
µ =

Kmaxµmax

Kmax+2µmax
, zHS−

µ =
Kminµmin

Kmin+2µmin
(d=2). (2.6)

Here, K and µ are bulk and shear moduli; the superscripts HS+ and HS− symbol the
upper and lower values of the Hashin-Shtrikman-Walpole bounds, respectively; the sub-
script max (min) represents the maximal (minimal) value; and d=2 or d=3 is the spatial
dimension.

The contents and material constants of each constituent in Groups 1 and 2 are listed
in Table 2, computed by Eqs. (2.1)-(2.6) in terms of X-ray diffractions [1, 34]. In the ta-
ble, ρ and f denote the density and the percentage of each phase, respectively. Reason-
able assumptions are included, i.e., kaolinite/montmorillonite in Mineral Group 1 and
illite/gypsum in Mineral Group 2 take the lower and higher elastic values for the clay ag-
gregates [35], respectively. Table 3 summaries the effective bulk and shear moduli calcu-
lated by the Voigt-Reuss model, the Voigt-Reuss-Hill average, and the Hashin-Shtrikman
bounds, as well as other indispensable material parameters.

Table 2: Material constants of the constituents in Groups 1 and 2 [1,34].

Parameter Group 1 Group 2

Qtz Kln,Mnt Kfs Dol Cal Ill,Gp

ρ (g/cm3) 2.65 2.13 2.75 2.87 2.71 2.83

f (%) 48.20 51.80 34.00 27.30 23.70 15.00

K (GPa) 36.40 6.00 92.00 95.00 77.00 12.00

µ (GPa) 31.14 4.00 41.00 45.00 32.00 6.00

Table 3: Effective elastic properties of mineral groups.

ID Volume Density Modulus Bounding Methods

(%) (g/cm3) (GPa) Voigt Reuss V-R-H H-S+ H-S−

1 76.17 2.38 K 20.65 10.04 15.35 17.01 12.13

µ 17.08 6.90 11.99 13.28 8.78

2 19.41 2.79 K 59.02 52.44 55.73 68.02 53.20

µ 34.71 25.41 30.06 32.08 26.16

3 1.06 4.93 K 147.40 147.40 147.40 147.40 147.40

µ 132.50 132.50 132.50 132.50 132.50
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3 Lattice modeling methods

3.1 Theoretical foundations

Lattice modeling (LM) methods stem from the atomic lattice structure of materials, in
which the object is discretized into mass nodes, or rheological elements, connecting with
springs or beams [18]. Specifically in this paper, the shale core is represented by a lattice
spring model (LSM) whose nodes interact with each other through normal and shear
springs. Assuming that the springs behave in a linear elastic way, the interaction forces

between two lattice nodes i and j, including normal force F
ij
n and tangential force F

ij
s , can

be written as
F

ij
n = knu

ij
n , F

ij
s = ksu

ij
s , (3.1)

where kn, ks, u
ij
n and u

ij
s are the normal and shear spring stiffness and the relative distances

in normal and tangential directions, correspondingly.
In this lattice model, every nodal force is accumulated from the interaction. Verlet

leapfrog scheme, commonly used in molecular dynamics (MD), is introduced to inte-
grate individual motion equations related to every node. Based on the algorithm, a set of
vectors, coordinate xi, velocity vi, and acceleration ai of the ith node, the acceleration at t,

ai
(t), and the velocity at t+ ∆t

2 , vi
(t+ ∆t

2 ), are formulated by x
(t)
i , vi

(t− ∆t
2 ) and ai

(t−∆t) as

ai
(t)=

∑Fi
(t)∆t

mi
, vi

(t+ ∆t
2 )=vi

(t− ∆t
2 )+ai∆t, xi

(t+∆t)=xi
(t−∆t)+vi

(t+ ∆t
2 )∆t, (3.2)

where Fi is calculated from Eq. (3.1). A limit, called the critical time step ∆tcr, is imposed
on the time step ∆t to ensure the stability for this explicit integration algorithm, which is
expressed by

∆t≤∆tcr , ∆tcr =
2

ωmax
, (3.3)

where ωmax is the largest eigenfrequency within the model. In order to obtain quasi-static
solutions, a non-viscous damping is used to dissipate kinetic energy [36]. The damped
force ∆Fdamped of node i may be written as follows,

(∆F)i
damped

Fi
=−ξsgn

(

v
(t− ∆t

2 )
i +

ai∆t

2

)

. (3.4)

3.2 Simulation procedure

LM is different from the numerical methods based on continuum theories, the discretiza-
tion may affect not only the accuracy but also the anisotropy. Fig. 6 gives three basic types
of lattice arrangements: Model 1 (basic square lattices), Model 2 (nonlocal square lattices),
and Model 3 (regular triangle lattices). The lattice nodes of Models 1 and 2 are generated
based on the coordinates of the image pixels, which is a quite simple and common way.
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Figure 6: Three lattice arrangements for computation of the Longmaxi shale core.

For Model 3, the coordinates of mass nodes are set by the approximate zones of the pix-
els within the digital core image as shown in Fig. 5, which differs from the traditional
meshing means. After initial positions are pre-determined, the nodes are connected by
normal and shear springs within given lattice spacings. It is worth mentioning that the
nonlocal model (Model 2) contains two force structures with: Structure I (a basic square
network as same as Model 1) and Structure II (a square network with long-range inter-
actions whose spacings are

√
2 times those of Models 1 and 3. The forces acting on every

node are calculated by Eq. (3.1), and then the position of every node could be updated on
every time step by Eq. (3.2). More implementation details can be found in our previous
work [37] as well.

3.3 Parameter identification

To establish the relation between lattice parameters and macroscopic material properties,
the conservation law of strain energy is introduced [18],

Ucell=Ucontinuum, ωcell=
Ucell

Acell
, (3.5)

where Ucell and ωcell are the energy and energy density of a unit cell, and Ucontinuum is the
counterpart in continuum theories. Thereby, the elastic moduli could be calculated by:

Cijkl =
∂2ωcell

∂”ij∂”kl
. (3.6)

The fourth-rank elasticity tensors could be reduced to second-rank ones using Voigt no-
tation. From Table 4, the relations between material elastic properties and lattice inputs
are calculated by Eqs. (3.5) and (3.6). We estimate the effective elastic constants of each
mineral group by the V-R-H average. Then, all the spring parameters for Model 3 can
be calculated by substituting the elastic properties (listed in Table 3) into the formulas
shown in Table 4.
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Table 4: Relationships between spring stiffness and Lamé parameters [18].

Parameters Model 1 Model 2 Model 3

λ 0 ( 1
2 (kn−ks)) − 1

2 ks ( 1
2 (kn−ks))

√
3

8 (kn−ks)

µ 1
2 ks

1
2 (kn+ks)

√
3

8 (kn+ks)

3.4 Fabric tensors

Shale is known as a kind of strongly anisotropic medium. Usually, this anisotropy is
stereotypically characterized by directional features of granular contacts or micro-structures,
which could be termed as fabric tensors [11]. Ken-Ichi [38] postulates mathematically
three types of fabric tensors. Zysset and Curnier [39] formulates a fourth-rank repre-
sentation as an alternative for micro-structural characteristics. Generally, the directional
distribution function f can be expanded in a convergent Fourier series as follows [40]:

f (N)=G(0) ·1+G(2) : F(2)(N)+G(4) :: F(4)(N)+··· , (3.7)

where N is the fabric tensor of the first kind. The zeroth-rank, second-rank, fourth-rank
and eighth-rank fabric tensors are given with i, j,k,l,m,n,p,q=1,2 for 2D problems by

N(0)=1, Nij
(2)=

Nc

∑
α=1

1

Nc
n
(α)
i n

(α)
j , Nijkl

(4)=
Nc

∑
α=1

1

Nc
(ninjnknl)

(α)

, (3.8)

Nijklmnpq
(8)=

Nc

∑
α=1

1

Nc
(ninjnknlnmnnnpnq)

(α)

, (3.9)

where Nc and n are the number and normal vector of each interaction in the domain. The
superscript α means the αth interaction in the assembly.

4 Numerical results

In this section, we aim at the investigation of effective elasticity and anisotropy in the
Longmaxi shale core based on the LSM numerical simulation of several uniaxial com-
pression tests. The numerical implementation is verified by performing numerical tests
using regular triangle lattices and comparing with the theoretical solutions of Young’s
modulus E and Poisson’s ratio ν calculated from Table 4. The applicability of the bound-
ing methods to shale core simulations is evaluated. The major factors that may cause
anisotropy are discussed, such as lattice arrangements, mineral and porous features, and
stress fields.

4.1 Validation by theoretical solutions

Table 5 shows an excellent agreement for the Young’s moduli between the numerical
and theoretical results, but with relatively larger errors for the Poisson’s ratios. We can
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Table 5: The assessment of simulation errors of each group.

Group ID Young’s modulus E (GPa) Poisson’s ratio ν

Theoretical Numerical Error Theoretical Numerical Error

1 26.93 26.90 1.01% 0.12 0.11 8.11%

2 78.11 70.40 9.87% 0.30 0.29 1.91%

3 279.11 302.00 8.20% 0.05 0.05 3.92%

see the errors remain within a reasonable range (less than 10%), indicating the general
applicability of LSM modeling in this study.

4.2 Elasticity compared with bounding methods

In this study, we emulate the 2D Longmaxi digital core by uniaxial stress tests in the X
and Y directions, with the corresponding Young’s moduli and Poisson’s ratios written as
Exx, Eyy, νxy and νyx. Taking Model 1 for instance, Model 1-1 and Model 1-2 denote the
uniaxial compression tests of Model 1 along the X and Y directions, respectively. Even
though the breakage-and-creation mechanism is not considered, we still regard it as an
interaction increase (decrease), when the distance between two lattice nodes is smaller
(bigger) than the original value. The kind of number variation of the lattice interactions

quantified by Nc−N0
c

N0
c

×100% is summarized in Fig. 7, where the interaction number at

the initial time step N0
c is the reference value. From this figure, it can be seen that the

lattice node positions change with the compressive strain increasing, the lattice spacings
become smaller and the original pore structures are compacted. Since the axial strain
reaches 2%, the change tends to be more obvious and the variation of compression along
the Y-axis is larger than that of the tests along X-axis. This tendency could hint that in
this digital core slice, the apertures in Y direction are higher than those along the X-axis.
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Figure 7: Interaction variation with axial strain.
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Figure 8: Elastic constant estimation: (a) for Young’s moduli; (b) for Poisson’s ratios.

Figs. 8 show the variations of axial stresses and transverse strains with increasing ax-
ial strains, whose ratios are the Young’s modulus and Poisson’s ratio, respectively. We see
that for each model the two curves with the uniaxial compression along the X and Y di-
rections seem to be coincident, with small differences identified by zooming in on a part
of the graph. In conclusion, the Longmaxi shale core under study has a small porosity
and few internal micro-cracks, and only by effective elastic constants, it may be straight-
forward to treat falsely the sample as isotropic medium, which might be improper.

Fig. 9 reports the theoretical prediction of bulk moduli regarding increasing porosi-
ties, with comparison to the numerical results by bounding methods. It can be noted
from the figure that all the numerical values fall in the zone given by bounding methods,

Figure 9: Bulk moduli of numerical simulations compared with bounding models.
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even though some samples behave slightly anisotropic, which violates the assumption of
isotropy. It might be explained by the weakly directional preferences and the roughness
of bounding methods. Particularly, the bulk moduli of Models 2 and 3 fall into the en-
closed region surrounded by V-R-H average and the HS+ bounds, whereas the data of
Model 1 are between the V-R-H curve and the lower H-S bound, possibly because of the
aforementioned calculation artifacts. In conclusion, the zone covered by V-R-H and HS+

bounds might be a better estimation of the effective elasticity for these numerical models.

4.3 Anisotropy of LSM assemblies

4.3.1 Anisotropy of lattice arrangements

In order to investigate the orientation dependence on the lattice arrangements, we em-
ulate the homogeneous samples without micro-pores or multiphase contents, by three
lattice types. To distinguish them from the LSMs of the Longmaxi shale core, they are
named as Model 1∗, Model 2∗, and Model 3∗. According to Eqs. (3.8) and (3.9), the orien-
tation distributions with the zeroth- (black line), second- (red line), fourth- (green line),
and eighth- (blue line) rank fabric tensors are calculated for the three lattice arrange-
ments, as shown in Figs. 10. We see that the directional distributions approximated by
the zeroth-rank or second-rank fabric tensors are not enough to characterize the preferred
orientation. Higher-order fabric tensors, like the fourth-rank, or even the eighth-rank
are more accurate. Comparison of Figs. 10(b) and 10(c) seems to indicate that nonlocal
square lattices (Model 2∗) are more suitable for simulating isotropic media than triangle
ones (Model 3∗), because all the curves of the model are nearly circles. However, from
Table 4, Model 2∗ has two conflicting algebraic expressions for λ. They are equivalent
only if ks = 0, inconsistent with the input condition in the modeling. It might illustrate
that this kind of conventional fabric tensors is not a reasonable choice for the LSMs due
to the absence of ample information with respect to lattice features (e.g., lattice spacing).
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Figure 10: Polar plots for approximate orientation distributions by fabric tensors: (a) Model 1∗; (b) Model 2∗;
(c) Model 3∗.
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Figure 11: Polar plots for approximate orientation distributions by modified fabric tensors: (a) Model 1∗; (b)
Model 2∗; (c) Model 3∗.

By reference to damage tensors [40], we replace 1
Nc

in Eqs. (3.8)-(3.9) by Lα
2

A , where Lα

is the length of the αth lattice interaction, and A is the area of the numerical specimen.
As demonstrated in Figs. 11, the modified fabric tensors describe well the azimuthal
preference of three models in the polar coordinates. According to the approximation
of higher-order fabric tensors (the eighth-ranks), we can classify these polar plots into
several preferred directions: 0◦, 90◦, 180◦ and 270◦ for Model 1∗, 45◦, 135◦, 225◦ and 315◦

for Model 2∗, and 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ for Model 3∗. Particularly, the curves
of Model 3∗ for the zeroth-, second-, and fourth-ranks are almost round (see Fig. 11(c)),
which verifies and explains that the regular triangle lattice is an appropriate choice for
modeling isotropic media. From the mathematical standpoint, there exists a formal link
between the fabric tensors and the fourth-rank elasticity tensor [39]. Also, supported by
Figs. 11, the fourth-rank of the modified fabric tensors seems to be an ideal candidate to
characterize the biased orientations in the granular media.

4.3.2 Anisotropy by micro-structural features

The micro-structural features in shale cores playing an important role in the prediction
of shale-gas production, particularly the void space where the natural gas are immersed.
The inhomogeneity and discontinuity in the shale cores are believed to bring about local
phenomena which give rise to anisotropy. In this work, since pore spaces are free of lattice
nodes, the LSM numerical modeling for the digital porous core has fewer interactions of
lattice nodes than those for homogeneous specimens. Figs. 12 compare the orientation
distributions based on the fourth-rank of the modified fabric tensors between the digital
shale core and a homogeneous specimen for the three lattice types. We see that with
decreasing interactions between lattice nodes in the digital shale core, the area occupied
by simulated directional plot becomes smaller, with its curve falling into the curve of the
homogeneous square specimen. However, the discrepancy between them, is quite slight.
According to the results, we may argue that within elastic deformation, the contributions
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Figure 12: Comparison of the digital shale core and homogeneous square specimens based on modified fabric
tensor approximation: (a) basic square lattices; (b) nonlocal square lattices; (c) regular triangle lattices.

that the void space and other micro-structural features made to the anisotropy are limited
and easy to be ignored, but the discontinuities could lead to the stress concentration
around them, cause an inelastic behavior, or even generate fracture networks, which will
result in strong anisotropy.

4.3.3 Stress-induced anisotropy

This section discusses the characteristics of stress-induced anisotropy. Stresses (particu-
larly compressive stresses) mostly tend to close micro-cracks, micro-pores, and disconti-
nuities, or generate new fractures, thus make rock anisotropy pressure dependent [33].
Figs. 13 demonstrate how stress affects the anisotropy of three models at ε = 2.73%,
ε=5.45% and ε=8.00%, which is characterized by the fourth-rank modified fabric tensors.
We see that with increasing compressive strain, the statistical direction of lattice interac-
tions is likely to be gradually perpendicular to the applied-stress axis. Holding Model 3
up as an example, in contrast to the circle curves for the unstressed homogeneous square
sample (see Fig. 11(c)), the curves in Figs. 13(c) and 13(f) turn to be elliptical. As the strain
becomes larger, the longer the major axis is. Only by effective mechanical parameters, this
kind of azimuth variations is hardly captured, but it could pose extensive impacts on the
anisotropy in mechanical behavior, failure strength, and seismic prospecting [41].

5 Discussions

The elastic properties of a shale core sample, like Young’s modulus and Poisson’s ratio,
are essential mechanical parameters in the lattice spring model. These properties are de-
cided by the normal and shear stiffness in the expressions listed in Table 4. Theoretically,
the appropriate lattice arrangement is determined for given mechanical properties. Here
three lattice networks are applied, in which Models 1 and 2 could be acquired in a much
easy way. However, as mentioned above that Model 1 and Model 2 are not applicable
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Figure 13: The approximate orientation distribution functions of fourth-rank fabric tensors at different strain
levels: (a) Model 1-1; (b) Model 2-1; (c) Model 3-1; (d) Model 1-2; (e) Model 2-2; (f) Model 3-2.

to isotropic media, Jiang et al. [42] also reported that the nonlocal square lattices can’t
reproduce the correct elastic boundary value problems. Thereby, for this research, Model
3 seems to be a better choice and this scheme could exactly predict the mechanical behav-
ior of rocks in the elastic deformation domain. As illustrated in Subsections 4.1 and 4.2,
the elasticity acquired by the numerical simulation does agree well with the analytical
prediction.

Also, the shale core used in this study might be mistakenly treated as an isotropic
medium only by the effective elastic parameters calculated from compression tests along
two different axes. Actually, this phenomenon based on the assumption of isotropy can’t
fully explain the local stress concentrations and uneven distributions of stress fields. The
lattice spring model can flexibly emulate both continuous media and granular materials,
but the numerical anisotropy caused by lattice arrangements may contribute to elastic
anisotropy as well. As tested by numerical results, the modified fabric tensors can better
characterize and quantify the anisotropy of shale cores. Within the elastic stage, for the
lattice spring models, the anisotropy mainly comes from the lattice arrangements, fol-
lowed by the disturbances induced by the stress fields, in which the influences caused by
the micro-structures are relatively weak. It may ascribe the phenomena to the elastic as-
sumption we employed here, lack of failure/yield criterion controlling the breakage and
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creation of the interactions and the onset and propagation of cracks, which actually are
ubiquitous around the interfaces of compositions, micro-pores and micro-cracks. While,
these parts are beyond the scope of this paper, and will be further discussed in future
study.

Summarily, this work as the fundamental research for further exploration, concen-
trates on the mechanical properties in the elastic range and the main factors of reduc-
ing the numerical errors in the modeling process and quantifying the weak anisotropy
of the Longmaxi shale core. The existing fractures, like bedding planes, preferred ori-
entation or arrangement of minerals and cracks, the breakage-and-creation mechanism
of the interactions between lattice nodes and the inelastic behaviors (viscous damping
and temperature-dependent effect, etc.) will take into consideration in the subsequent
researches. Fortunately, as for the anisotropic elasticity of the Longmaxi shale core sam-
ple, this lattice spring approach manifests its potential for reconstructing the realistic
structural features with multi-scale cracks, which may help to deeper comprehend the
complexity of shale and predict the shale gas plays.

6 Conclusions

A guideline for LSM simulations of Longmaxi shale cores via X-ray micro-CT images is
present in details consistently. Distinct from the existing papers, regular triangle lattices
are utilized to approximate the region of each mineral group, instead of direct meshing
according to pixel coordinates. The essential characteristics regarding micro-structural
features and anisotropic elasticity are investigated by emulating uniaxial compression
tests. The major conclusions and merits of this scheme are organized as follows.

1. This work confirms that XMCT as a high-resolution imaging technique is suitable to
capture and identify the spatial distributions and the alteration of various minerals,
pores or cracks within geo-materials. Based on this approach, a comprehensive
insight of the unique and complex geological features within a Longmaxi shale core
could be acquired.

2. This proposed LSM scheme may be treated as a surrogate choice to numerically
investigate the shale core at mesoscale in an effective way. Compared with the
theoretical approximations, this algorithm could be verified and used to test the
applicability of the effective medium theories.

3. Limited elastic constants (Young’s moduli and Poisson’s ratios along different com-
pression axe) are insufficient to characterize the elastic properties of an anisotropic
rock. Modified fabric tensors cooperating with lattice features should be introduced
to quantify the direction distributions. By LSM numerical simulations, the extent of
the factors that affect the anisotropy arranged in descending order could be lattice
arrangements, stress field variations and micro-structural features. Additionally,
basic triangle lattices are suitable to model isotropic media.
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