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Abstract. In this article, natural convection of a temperature-sensitive magnetic
fluid in a porous media is studied numerically by using lattice Boltzmann method.
Results show that the heat transfer decreases when the ball numbers increase. When
the magnetic field is increased, the heat transfer is enhanced; however the average
wall Nusselt number increases at small ball numbers but decreases at large ball
numbers due to the induced flow being more likely confined near the bottom walls
with a high number of obstacles.
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1 Introduction

Ferrofluids are a mixture of ferromagnetic nanoparticles in suspension in a carrier
fluid [1] which makes them reactive to the presence of a magnetic field. The ferrous
particles are usually coated with a surfactant, which allows the suspension to remain
in a stable state. Among these fluids, temperature-sensitive magnetic fluids (TSMF)
have their magnetization strongly dependent of the temperature [2]. Thus, with prop-
erties such as energy transfers and flow which can be controlled with a magnetic
field, TSMF have various promising applications, ranging from heat transfer tech-
nologies [3,4] to spatial engineering [5], and have been the subject of many researches
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during the past years [6–10]. Finlayson [6] first studied thermomagnetic convection of
the TSMF and showed the existence of a critical parameter beyond which the thermo-
magnetic convection occurs. Schwab et al. [7] conducted an experimental investiga-
tion of the convective instability in a horizontal layer of the TSMF and characterized
influences of the magnetic Rayleigh number on the Nusselt number. Krakov and Niki-
forov [8] addressed influences of the relative orientation of the temperature gradient
and magnetic field on thermomagnetic convection in a square cavity. Yamaguchi et
al. [9, 10] performed experiments and numerical analyses in a square enclosure and
characterized the heat transfer in terms of a magnetic Rayleigh number.

However, the behaviors of TMSF still lack studies in cases such as natural con-
vection in porous media, though many practical situations involve a porous struc-
ture. Porous media flows have themselves a wide application, from sand filters to
petroleum engineering and hydrogeology [11, 12]; therefore the understanding of the
magnetic fluid flow in such media could yield useful applications. In the follow-
ing, we will discuss the results of the numerical simulations of natural convection
of TSMF in a porous cavity. To ensure accurate and fast calculations for the com-
plicated magnetohydrodynamics equations in such cases, we used the lattice Boltz-
mann Method (LBM), a recently developed computational fluid dynamics (CFD) tech-
nique [13]. While conventional CFD methods use finite differences or volumes to dis-
cretize the continuous fluid dynamics equations, LBM emerges from the Boltzmann
equation (BE), and describes the fluid dynamics by means of a density distribution
in virtual mesoscopic-scale particles placed along a 2- or 3-dimensional regular lat-
tice. Since then, efforts have been made to extend the basic lattice Boltzmann model to
include effects such as heat transfer and convection, or magnetic influence in ferroflu-
ids [14, 15]. For this study of thermal effects in magnetic fluids, the LBM for TMSF
described in [15] has been successfully implemented in modeling the ordinary porous
flow phenomena. The porous media itself is modeled by different sizes and num-
bers of spherical obstacles evenly spread across the cavity. The purpose of the present
study is to study the effect of the magnetic field to the heat transfer characteristics
of flows in the porous media, which is a prototype of a cooling system with porous
structure adjacent to the heating wall.

The rest of the paper is organized as follows: in Section 2 we will discuss the
methodology of the study, and in particular, the details of lattice Boltzmann method
used for the simulation; Section 3 focuses on the results obtained and their explana-
tion. Finally, a conclusion is given in Section 4.

2 Methodology and numerical simulation

2.1 Lattice Boltzmann models

In the theory of the magnetic fluids, as the flow under influences of the magnetic field,
it undergoes magnetic force. The magnetic hydrodynamics for the non-conductive
magnetic fluid in porous media can be described by the following governing equa-
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tions [1, 2]

∂tρ +∇ρ0u = 0, (2.1a)
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)
· ∇ϕ = 0, (2.1e)

where ρ0 is the constant density, u is the velocity, p is the pressure, and T is the tem-
perature; η is the dynamical viscosity, µ0 is the magnetic permeability of vacuum, β is
the expansion coefficient under the Boussinesq approximation, H is the magnetic field
intensity and H its modulus, M is the magnetization and

M = χ0

(
1 − T − T0

Tc − T0

)
,

its modulus with T0 and Tc being respectively the reference and the Curie tempera-
tures and χ0 the magnetization rate at T0; ϕ is the scalar potential (with ∇ϕ = H for
the non-conductive magnetic fluid), λ and λS are respectively the coefficients of ther-
mal conductivity of the fluid and the solid media, Cp and CPS being their respective
specific heats at constant pressure.

In terms of lattice Boltzmann theory, Eqs. (2.1a)-(2.1e) can be solved by using three
distribution functions for velocity, thermal and magnetic field [15] respectively fα, gα

and hα with:

fα(r + ξαδt, t + δt)− fα(r, t) = − fα(r, t)− f eq
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The equilibrium distribution functions are given as:
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The force and source term are respectively:

F = µo M∇H − ρ0β(T − T0)g, (2.4a)

S = −
µ0TM · DH

Dt[
ρ0CP − µ0H ·

(∂M
∂T

)
H

] . (2.4b)

Here r = r(x, y, z) is the spatial vector, uT = −∇(M/H) is an effective velocity, γ is
an adjustable preconditioning parameter introduced to ensure that the solution of the
LB scheme (2.2c) remains close to a solution of the original scalar potential equation
(2.1e). The relaxation parameters in Eqs. (2.2a)-(2.2c) are given by:

τf =
η

ρ0c2
s δt

+ 0.5, (2.5a)
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with D being the dimension of the problem. In numerical simulation, the value of
the preconditioning parameter γ is chosen by setting τh close to 1 and avoiding the
unphysical effects [16] due to the large value of (1 + M/H)/δt.

The speed of sound cs, the weight coefficient wα and the discrete velocity ξα used
in the above LBM equations are those from the D3Q19 discrete velocity model for 3-
dimensional simulations [17]. The density, velocity, and temperature are then obtained
by calculating the sum of the distribution functions over all the discrete directions α:

ρ = ∑
α

fα, ρ0u = ∑
α

fαξα + 0.5δtF, (2.6a)

T = ∑
α

gα, ϕ = ∑
α

hα. (2.6b)

A number of previous researches [15] have shown that the macroscopic equations
(2.1a)-(2.1e) can be deduced from the lattice Boltzmann equations (2.2a)-(2.2c) by the
Chapman-Enskog analysis.

2.2 Numerical implementation and boundary conditions

To study the porous media case, we used the LBM to simulate the flow of the TSMF.
The simulations set up a rigid cubic cavity of length L = 8mm with different number
of obstacles modeled evenly placed acrylic balls. Temperatures of the bottom and
upper walls are fixed at respectively Tb and Tu = T0 = 295.15K. Other properties and
values used in the simulation are summed up in Table 1. In the cavity, the temperature-
sensitive magnetic fluid was submitted to a uniform vertical upwards magnetic field
and a temperature difference

∆Tre f = Tu − Tb,
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Table 1: Cavity dimension, fluid properties used in present study.

Scale length of cavity L(mm) 8 Specific heat Cp (J/kg·K) 1.39 × 103

Density ρ0 (kg/m3) 1.397 × 103 Expansion coefficient β (1/K) 6.90 × 10−4

Viscosity η (Pa·s) 1.680 × 10−2 Curie temperature Tc (K) 477.35
Thermal conductivity λ (W/(m·K)) 1.750 × 10−1 Reference temperature T0 (K) 298.15
Thermal conductivity λS (W/(m·K)) 1.11 × 102 Magnetization rate χ0 0.2650
Permeability of vacuum µ0 (H/m) 4π × 10−7 Gravitational acceleration g (m/s2) 9.8
Density ρS (kg/m3) 8.52 × 103 Specific heat CPS (J/kg·K) 3.85 × 102

is applied, where the bottom wall is the hottest.
The purpose of the simulation is to study the influence of the number of obstacles

(Fig. 1) as well as the effect of different values of the magnetic field. To parameterize
the simulation, we used the Rayleigh number Ra and the magnetic Rayleigh number
Ram given by:

Ra =
ρ2

0gβ∆Tre f L3Cp

η0λ
, Ram =

ρ2
0µ0χ0H2

0 L2∆Tre f Cp

η0λ
. (2.7)

As a result, we calculated the effective Nusselt number Nu to characterize the effec-
tiveness of the heat transfer in the cell. We first carried investigations to ensure the
grid-independence of the simulation over grids of size 21 × 21 × 21 and 41 × 41 × 41
before setting the number of Lattice-Boltzmann nodes to 31 × 31 × 31 in all the fol-
lowing simulations. The study is carried for 1, 8 and 64 balls, as shown by Fig. 1; the
porosity is kept constant at 0.477. In all the simulations the Rayleigh number was set
to 40000 and the study was carried for three different values of the magnetic Rayleigh
number: 0 (no magnetic field), 1.0 × 107 and 1.25 × 107. All results are calculated in
non-dimensional forms by using scaled parameters of r/L,

Ure f =
√

gβL∆Tre f ,

T/∆Tre f and the preconditioning parameter is set as 5 × 10−3.
The cavity walls are assumed to be non-slip. The side boundaries of the cell are

adiabatic, and temperature is imposed at the top and at the bottom. The resulting
boundary conditions of the macroscopic variables u and T are summed up in Fig. 2.
Magnetic field is constrained by conditions over the magnetic potential ϕ:

∂ϕ

∂x

∣∣∣
x=0,L

= 0,
∂ϕ

∂y

∣∣∣
y=0,L

= 0,
∂ϕ

∂z
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z=0,L

= H. (2.8)

In the simulation, the temperatures on the isolated walls and the scalar potentials
on all walls are calculated with a second-order extrapolation scheme. For distribution
functions fα, gα and hα on the boundaries, the non-equilibrium bounce-back boundary
conditions [15] are used:

fα(r, t)− f eq
α (r, t) = fα(r, t)− f eq

α (r, t), (2.9a)
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[
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]
, (2.9b)

hα(r, t)− heq
α (r, t) = −

[
hα(r, t)− heq

α (r, t)
]
, (2.9c)
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(a) (b) (c)

Figure 1: Porous media simulation cells: (a) 1 ball, (b) 8 balls, (c) 64 balls.

with α being the opposite directions of the unknown distribution function.

3 Results and discussions

Fig. 3 shows the velocity vectors calculated by the simulation for the different cav-
ities at the three values of the magnetic Rayleigh number. In Fig. 4 we plotted the
temperature contour along with velocity vectors on two cross-sections for each case.

We can notice with these plots that the ball number has influence over the heat
transfer capacity of the overall system. In fact, the more obstacles there are, the less
the transfer seems to be efficient. In Fig. 3, the color of velocity vectors represents
the temperature variation in the neighborhood. As the flow is more blocked when
the ball number increases, it implies that the heat transfer efficiency decreases as the
ball number increases. This can further be validated by Fig. 4, which displays the
heat transportation inside the cavity enclosures with one ball ((a), (d), (g)), eight balls
((b), (e), (h)) and sixty-four balls ((c), (f), (i)). From this figure, we observe that the
heat is trapped in bottom region when the numbers of ball increase. In fact, the more

u=0, Tu=0

u=0  xT=0

H=H0

g

u=0 Tb=1

u=0

 xT=0
u=0  yT=0

u=0

 yT=0

Figure 2: Porous media simulation boundary conditions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Velocity vectors for different magnetic Rayleigh numbers: (a)-(c) Ram = 0, (d)-(f) Ram =
1.0 × 107, (g)-(i) Ram = 1.25 × 107.

obstacles there are, the less the transfer is efficient. However the magnetic field also
changes the heat transfer effectiveness, as we can see in Fig. 4. Increasing the magnetic
field enhances the flow velocity in the pores, hence the better heat transportation.

To show clearly how the two effects interact, we will calculate the Nusselt number,
an important parameter to measure the heat transfer of the materials. Here we will
calculate the bulk Nusselt number in the whole domain and the average of the top or
bottom wall Nusselt number.

Nua =
∫∫ (

− ∂T
∂Z

)∣∣∣
z=0,L

dxdy, Nub =
∫∫∫ (

− ∂T
∂Z

)
dxdydz. (3.1)

The result has been plotted for the given simulations in Figs. 5 and 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Velocity vectors and temperature on two cross-sections for different magnetic Rayleigh numbers:
(a)-(c) Ram = 0, (d)-(f) Ram = 1.0 × 107, (g)-(i) Ram = 1.25 × 107.

The first plot (Fig. 5) shows the effect of the number of balls and the magnetic
field on the global heat transfer. As expected, increasing the number of balls makes
the overall convective heat transfer decrease. Also, we see clearly that magnetic ef-
fects enhance the heat transfer, facilitating the flow in the cavity, hence the increase of
the bulk Nusselt number in all cases when the magnetic Rayleigh number increases.
On the other hand, we can notice in Fig. 6 that for small ball numbers (i.e., 1 and
8), the average wall Nusselt number increases with the magnetic Rayleigh number,
while for high ball number, we observe a reverse effect: instead of increasing, the wall
Nusselt number decreases when magnetic Rayleigh number increases, the flow being
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Figure 5: Variation of bulk Nusselt number with ball numbers.

Figure 6: Variation of average Nusselt number with ball numbers.

”trapped” in the bottom (see Figs. 3(g)-(i) and 4(g)-(i)). With a large number of balls,
the heat near the bottom is difficult to bring up due to the flow hindered by the balls.

4 Conclusions

A numerical simulation was performed to study the natural convective heat transfer
problem of TSMF inside a porous medium-filled cubic enclosure under different mag-
netic fields. The porous media is represented by a number of evenly-placed balls in the
cavity. Results show that the heat transfer decreases when the ball numbers increase.
When the magnetic field is increased, the heat transfer is enhanced; however the av-
erage wall Nusselt number increases at small ball numbers but decreases at large ball
numbers due to the flow being more likely confined near the bottom walls with a high
number of obstacles.
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