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Abstract. In this work, we present and discuss some modifications, in the form
of two-sided estimation (and also for arbitrary source functions instead of usual
sign-conditions), of continuous and discrete maximum principles for the reaction-
diffusion problems solved by the finite element and finite difference methods.
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1 Motivation

Consider the following boundary-value problem of elliptic type: find a function
u∈C2(Ω), such that

− ∆u + cu = f , in Ω, (1.1a)
u = 0, on ∂Ω, (1.1b)

where Ω⊂Rd is a bounded domain with Lipschitz continuous boundary ∂Ω and the
reactive coefficient c(x)≥0 for all x∈Ω. We also assume that c and the right-hand side
(be shortly called RHS, or source, in what follows) function f are both from C(Ω).

The classical solution of problem (1.1) is known to satisfy the so-called maximum
principle (MP), which is often written as follows:

f (x) ≥ 0, in Ω =⇒ max
x∈Ω

u(x) ≥ 0. (1.2)
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For more general forms of MPs (for example in case of nonhomogeneous Dirichlet
or mixed boundary conditions, see e.g., [13,18]), however it is important to emphasize
that MPs often considered for problems of elliptic type in the numerical community
have a form of implication involving certain sign-type conditions only (like in (1.2)).
The problem of construction (and proofs of validity) of suitable discrete analogues (the
discrete maximum principles, or DMPs in short) of MPs for various types of numerical
discretizations has also attracted a lot of attention by numerical scientists during last
decades, see [4, 6, 7, 13, 16, 21, 24–26] and references therein.

However, from (1.2) we can only get an information on the sign of the unknown
solution u, which can be often important to know (and provide on the discrete level
in practical calculations especially if u models some physical quantity which is non-
negative by definition-absolute temperature, density, concentration, etc. [17]). At the
same time there exist various a priori (upper and lower) estimates (see e.g., [18] and
references therein) on the magnitude of solutions of certain elliptic problems in the
PDE community, which can also be of interest both theoretically and practically. Also,
many real-life problems have function f which may easily change its sign in the so-
lution domain, and, in addition, most of MPs used (and imitated in numerics) e.g.,
for parabolic equations are formulated independently of signs of the source functions,
see [8] and references therein. The goal of this work is to combine several available the-
oretical estimates in order to get a priori two-sided bounds for the (classical) solutions
of elliptic problems (1.1) (with positive reactive terms) for arbitrary source functions
and show how to provide the validity of their natural discrete analogues if some pop-
ular numerical technique (e.g., the finite element method (FEM) or the finite difference
method (FDM)) is used for the discretization.

First, we shall present the following key result on continuous level.

Theorem 1.1. Let functions c and f in (1.1) be from C(Ω), and let, additionally,

c(x) ≥ c0 > 0, for all x ∈ Ω. (1.3)

Then the following (a priori) two-sided estimates for the classical solution of problem (1.1) are
valid:

min
{

0, min
s∈Ω

f (s)
c(s)

}
≤ u(x) ≤ max

{
0, max

s∈Ω

f (s)
c(s)

}
, for any x ∈ Ω. (1.4)

Proof. To prove the upper estimate for u in above, one notices first that it is clearly
valid if u≤0 everywhere in Ω, i.e., when u attains its maximum on the boundary ∂Ω.
Further, if u attains its positive maximum at some interior point x0∈Ω, then all the
first order partial derivatives

u′
xi
(x0) = 0,

and all the second order partial derivatives

u
′′
xixi

(x0) ≤ 0,
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therefore from (1.1) and (1.3), we observe that

u(x0) ≤
f (x0)

c(x0)
,

from which (1.4) follows immediately. The lower estimate in (1.4) can be proved simi-
larly. �

Remark 1.1. The cases of nonhomogeneous boundary conditions (which are dropped
in what follows for simplicity of presentation only) can be treated in the same manner
(cf. [18, Chapt. 3]). E.g., in the case of nonvanishing Dirichlet boundary condition, the
following estimates similar to (1.4) hold

min
{

0, min
s∈∂Ω

u(s), min
s∈Ω

f (s)
c(s)

}
≤ u(x) ≤ max

{
0, max

s∈∂Ω
u(s), max

s∈Ω

f (s)
c(s)

}
, x ∈ Ω.

It is also interesting to notice in this respect that the very first published paper ”purely
devoted” to DMPs, by R. Varga [24], is considering the case of arbitrary Dirichlet
boundary conditions, but it does not analyse another important case of nonzero source
functions.

Remark 1.2. From (1.4) one immediately derives the following implication:

f (x) ≥ 0, in Ω =⇒ 0 ≤ u(x) ≤ max
s∈Ω

f (s)
c(s)

, (1.5)

which forms a sharper (two-sided) estimation of the behaviour of u (provided (1.3)
is valid) than the standard (of one-sided nature) MP (1.2) guaranteeing only the sign
of u. Therefore, we shall call the estimates in (1.4) the modified maximum principle (or
MMP in short) in what follows as (1.4) makes both sharpening and also generalizing of
the standard maximum principle (1.2).

Remark 1.3. We mention that DMPs have been widely used for proving stability and
finding the rate of convergence of FD approximations (see e.g., [2, 3, 6]), and for prov-
ing the convergence of FE approximations in the maximum norm (see e.g., [2, 7]).

2 On algebraic analogues of estimates (1.2) and (1.4)

After discretization of (1.1) by most of popular numerical techniques (e.g., by FEM or
FDM), we arrive at the problem of solving n × n system of linear algebraic equations

Au = F, (2.1)

where the vector of unknowns u=[u1, · · · , un]T approximates the unknown solu-
tion u at certain selected points B1, · · · , Bn of the solution domain Ω, and the vector
F=[F1, · · · , Fn]T approximates (in the sense related to the nature of a concrete numeri-
cal method used, see Section 3 for more details on this) the values f (Bi), i=1, · · · , n.

In what follows, the entries of matrix A will be denoted by aij, and all matrix and
vector inequalities appearing in the text are always understood component-wise.
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Definition 2.1. The square n × n matrix M is called monotone if

Mz ≥ 0 =⇒ z ≥ 0. (2.2)

The following theorem is well-known, see e.g., [3, pp. 119] for its proof.

Theorem 2.1. The square n × n matrix M is monotone if and only if M is nonsingular and
M−1≥0.

Further, if one provides A in (2.1) be monotone, then

A−1 ≥ 0,

and using assumption that F ≥ 0, usually trivially guaranteed by f≥0 from MP (1.2),
e.g., for linear FEM and FDM, we immediately get that

u = A−1F ≥ 0.

These arguments describe in short a standard scheme for proving the following DMP

F ≥ 0 =⇒ u ≥ 0, (2.3)

which naturally imitates the MP (1.2) (cf. [4, 6, 7, 13, 16]).

Remark 2.1. If we provide with more information on entries of A−1 (besides A−1≥0),
we can estimate the vector u (e.g., not only signs of its entries, but also their mag-
nitudes, etc) more precisely. For example, in [23, pp. 85] it is shown that when A is
irreducibly diagonally dominant with positive diagonal entries and nonpositive off-
diagonal entries, or irreducible Stieltjes matrix, (which often happens after discretizing
problem (1.1) by various numerical techniques), then we have even a stronger result
A−1 > 0, which can be useful to get a better estimation of behaviour of numerical
approximations. However, the property of irreducibility is not so easy to guarantee
e.g., for FE approximations, see [10] for several examples on that. Even more sharp
estimates for the entries of u can be sometimes derived, if we use formulae for ex-
act computing A−1, which are available, e.g., for tridiagonal matrices appearing in
numerical solution of certain one-dimensional problems, see [20].

Definition 2.2. The infinity norm ∥ · ∥∞ of the square n × n matrix M (with entries mij) is
defined as

∥M∥∞ := max
i=1,··· ,n

n

∑
j=1

|mij|. (2.4)

Definition 2.3. The square n× n matrix M (with entries mij) is called strictly row diagonally
dominant (or SDD in short) if the values

αi(M) := |mii| − ri > 0, for all i = 1, · · · , n, (2.5)

where ri is the sum of absolute values of all off-diagonal entries in the i-th row of M, i.e.,

ri :=
n

∑
j=1, j ̸=i

|mij|.
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The following result, see [1, 22] for proofs, is useful for our purposes.

Theorem 2.2. Let the square n × n matrix M be SDD. Then

∥M−1∥∞ ≤ 1
min

i=1,··· ,n
αi(M)

. (2.6)

Remark 2.2. It is worth to mention that diffusion-reaction problems with nonzero
reaction terms often lead to SDD matrices in system (2.1) (see again Section 3), which
gives a hope that we can often prove suitable discrete analogues of the estimates in
(1.4) for such a type of problems.

Theorem 2.3. Let matrix A in system (2.1) be SDD and monotone. Then the following two-
sided estimates for the entries of the solution u are valid

min
{

0, min
j=1,··· ,n

Fj

αj(A)

}
≤ ui ≤ max

{
0, max

j=1,··· ,n

Fj

αj(A)

}
, i = 1, · · · , n. (2.7)

Proof. First of all, we notice that

αi(A) > 0, for all i = 1, · · · , n,

as A is SDD. Further, it is clear that the solution u of system (2.1) is equivalently a
solution of the following system:

Āu = F̄, (2.8)

where
Ā = DA and F̄ = DF.

Here D is a diagonal matrix with strictly positive numbers 1/αi(A), i=1, · · · , n, on its
diagonal. Obviously, Ā is also SDD with

αi(Ā) = 1, for all i = 1, · · · , n.

In addition, Ā is monotone as A is monotone.
Let G :=Ā−1 have nonnegative entries denoted by gij. As

u = Ā−1F̄,

we observe that

∥G∥∞ min
{

0, min
j=1,··· ,n

Fj

αj(A)

}
≤ ui =

n

∑
j=1

gij
Fj

αj(A)
≤ ∥G∥∞ max

{
0, max

j=1,··· ,n

Fj

αj(A)

}
.

Now, applying Theorem 2.2 to Ā, for which αi(Ā) = 1, we see that

∥G∥∞ = ∥Ā−1∥∞ ≤ 1.

From this and the above inequalities, we finally get the required estimates (2.7). �
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Remark 2.3. It is clear that estimates (2.7) immediately imply DMP (2.3) provided
F≥0. Also, estimation (2.7) is considerably sharper than the obvious, but very rough,
bounds

|ui| ≤ ∥A−1∥∞∥F∥∞.

Remark 2.4. We notice that estimates close to (2.7) were obtained earlier by Windisch
in [26] (however, in a more complicated way), but only for a more restrictive case of
strictly row diagonally dominant M-matrices (cf. Remark 3.1). We also notice that we
could easily get in the proof of the above theorem even sharper estimation, dropping
zeros in (2.7) (cf. [26, Theorem 1]). However, as we link our results to the continuous
case, i.e., to (1.4), containing zeros, it is not actually necessary to do so in what follows.

Remark 2.5. In the recent work by Smelov [21], a very general case of DMP with an
arbitrary SDD matrix A has been considered and two-sided estimation similar to (2.7)
has also been presented. However, adding a quite natural (and rather standard nowa-
days) requirement of monotonicity for matrices appearing in (2.1) (as we do in this
work) leads to a more sharp estimation (2.7), which moreover imitates its continuous
counterpart (1.4).

As (2.7) actually resembles the estimates (1.4), it is natural to give the following
definition.

Definition 2.4. We say that the solution u of system (2.1) with SDD matrix A satisfies the
modified discrete maximum principle (or MDMP, in short), corresponding to MMP (1.4), if
estimates (2.7) are valid and if, in addition,

max
j=1,··· ,n

Fj

αj(A)
≤ max

{
0, max

s∈Ω

f (s)
c(s)

}
, (2.9a)

min
j=1,··· ,n

Fj

αj(A)
≥ min

{
0, min

s∈Ω

f (s)
c(s)

}
. (2.9b)

Remark 2.6. The conditions (2.9) are really important in order to produce reliable (i.e.,
controllable) numerical approximations as, for example, linear FE and FD approxima-
tions do stay within the same (a priori known) limits then as the exact solutions they
do approximate.

Remark 2.7. While the SDD-property of A is almost automatically guaranteed after
discretization by the nature of the reaction-diffusion problems (namely, due to the
presence of nonvanishing reactive terms), its monotonicity, required in Theorem 2.3,
should be provided a priori (or proved separately in each concrete case). One common
approach for this in FEM is to impose certain a priori geometric requirements on the
FE meshes employed so that all the off-diagonal entries aij≤0 (see e.g., [4,5,7,11,13,15,
16, 25] for more details on this subject). As far it concerns FDM, this property for the
off-diagonal entries of A is often guaranteed a priori by many standard FD schemes
producing the so-called M-matrices [9].
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Remark 2.8. One of advantages for dealing namely with the property aij≤0 (i ̸=j) is an
easy calculation (or estimation) of values αi(A) and their relation to c in general (see
the next section for several examples in this respect).

3 Applications

In this section we demonstrate how theoretical results of the previous sections can be
used for proving MDMPs for several popular numerical schemes (of FEM and FDM
types), thus increasing the level of reliability of practical calculations by these tech-
niques. For definions of functional spaces employed in below (see e.g., [18]).

FE approximations: The standard FE scheme is based on the so-called variational
formulation of (1.1), which reads: find u∈H1

0(Ω), such that

a(u, v) = F (v), ∀v ∈ H1
0(Ω), (3.1)

where

a(u, v) =
∫

Ω
∇u · ∇vdx +

∫
Ω

cuvdx, (3.2a)

F (v) =
∫

Ω
f vdx. (3.2b)

The existence and uniqueness of the (weak) solution u is provided by the standard
Lax-Milgram lemma. Actually, for the well-posedeness in above, one can only require
that

c ∈ L∞(Ω) and f ∈ L2(Ω),

but we shall need more smoothness from these functions in what follows.
Let Th be a FE mesh of Ω with interior nodes B1, · · · , Bn lying in Ω and boundary

nodes Bn+1, · · · , Bn+n∂ lying on ∂Ω. Further, let the basis functions ϕ1, ϕ2, · · · , ϕn+n∂ ,
associated with these nodes, have the following properties (easily met if e.g., simpli-
cial, block or prismatic FE meshes are used):

ϕi(Bj) = δij, i, j = 1, · · · , n + n∂, (3.3a)

ϕi ≥ 0, in Ω, i = 1, · · · , n + n∂, (3.3b)
n+n∂

∑
i=1

ϕi ≡ 1, in Ω, (3.3c)

where δij is the Kronecker delta. We also assume that the basis functions ϕ1, ϕ2, · · · , ϕn
vanish on the boundary ∂Ω, thus spanning a finite-dimensional subspace V0

h of
H1

0(Ω).
The FE approximation of u is defined as a function uh∈V0

h , such that

a(uh, vh) = F (vh), ∀vh ∈ V0
h , (3.4)
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whose existence and uniqueness are also provided by the Lax-Milgram lemma.
Algorithmically,

uh =
n

∑
i=1

uiϕi,

where the coefficients ui are the entries of the solution u of system (2.1) with

aij = a(ϕi, ϕj) and Fi = F (ϕi).

It is clear that, if (3.3) hold, the FE approximation uh satisfies then the bounds from
(2.7) at each point of Ω if all values ui do satisfy them.

Further, all the diagonal entries

aii = a(ϕi, ϕi) > 0, i = 1, · · · , n.

Assume that all the FE meshes used are such that aij≤0 (i ̸=j), therefore

αi(A) =
n

∑
j=1

aij.

Moreover, for any i=1, · · · , n, we calculate that

αi(A) =
n

∑
j=1

aij = a
(

ϕi,
n

∑
j=1

ϕj

)
= a

(
ϕi,

n+n∂

∑
j=1

ϕj

)
− a

(
ϕi,

n+n∂

∑
j=n+1

ϕj

)

=a(ϕi, 1)− a
(

ϕi,
n+n∂

∑
j=n+1

ϕj

)
=

∫
Ω

cϕidx −
n+n∂

∑
j=n+1

aij

≥
∫

Ω
cϕidx > 0,

where the very last strict inequality holds due to condition (1.3). Therefore, the matrix
A is always SDD for our type of problems. Moreover A is the Minkowski matrix, and
therefore it is monotone (cf. [3, pp. 119]). Hence, estimate (2.7) is valid.

The proofs of estimates (2.9) strongly depend much on how we compute aij and
Fj in real FEM calculations. First, we consider the simplest case when c is constant
and f is e.g., piecewise polynomial so that all aij and Fj are computed exactly while
implemented. We see immediately that, if all Fi≤0 then the first inequality in (2.9)
holds. Let now some Fi>0, i.e., ∫

Ω
f ϕidx > 0.

Then
Fi

αi(A)
=

∫
Ω f ϕidx
αi(A)

≤
∫

Ω f ϕidx∫
Ω cϕidx

≤

∫
Ω max

{
0, max

s∈Ω
f (s)

}
ϕidx

c
∫

Ω ϕidx

=max
{

0, max
s∈Ω

f (s)
c

}
,
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and, similarly, if all Fi≥0 then the second inequality in (2.9) holds. Let now some Fi<0,
i.e., ∫

Ω
f ϕidx < 0.

Then

Fi
αi(A)

=

∫
Ω f ϕidx
αi(A)

≥
∫

Ω f ϕidx∫
Ω cϕidx

≥

∫
Ω min

{
0, min

s∈Ω
f (s)

}
ϕidx

c
∫

Ω ϕidx

=min
{

0, min
s∈Ω

f (s)
c

}
,

i.e., the estimates from (2.9) hold true in this case.
If c is not constant and f is not necessarily piecewise polynomial, then for compu-

tations of integrals
∫

Ω cϕiϕjdx and
∫

Ω f ϕjdx in practice, we should use ceratin quadra-
ture rules, and, thus, each such case requires a separate analysis. Here, we only
demonstrate how to prove the required estimates if the simplest quadrature rule∫

S
g(x)dx ≈ measdS

NS

NS

∑
i=1

g(ξi), (3.5)

is used, where S is a finite element (e.g., simplex, block or prisms) from the mesh Th
and ξ1, · · · , ξNS are its NS vertices. Then we observe that

aij =
∫

Ω
∇ϕi · ∇ϕjdx +

∫
Ω

cϕiϕjdx ≈
∫

Ω
∇ϕi · ∇ϕjdx,

for i ̸=j, and

aii ≈
∫

Ω
∇ϕi · ∇ϕidx +

c(Bi)measd(suppϕi)

NS
> 0,

where suppϕi denotes the support of the function ϕi. The sign ”≈” means that the
value on the left-hand side of it is replaced in actual calculations by the value on the
right-hand side of it, for computing of which we use quadrature (3.5) and (3.3).

Therefore, if FE meshes and basis functions are such that

∇ϕi · ∇ϕj ≤ 0,

which is less stringent than the condition

∇ϕi · ∇ϕj ≤ −ε < 0,

actually required in the previous case (cf. [4, 7, 13]), we calculate that, if quadrature
(3.5) is used for practical computing of entries of A, then the actual values of numbers
αi(A) are such that

αi(A) ≈ c(Bi)measd (supp ϕi)

NS
.
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Further, using (3.5) again, now for actual computing of the RHS of system (2.1), we
see that

Fi ≈
f (Bi)measd (supp ϕi)

NS
,

and it is now easy to show that the estimates in (2.9) do hold in this case, too.

FD approximations: If, for example, the standard (2d + 1)-nodes stencils [9] with the
same mesh size h (or different ones) in the available space directions are used, we
get system (2.1) with the matrix which has strictly positive diagonal and nonpositive
off-diagonal entries and which is always SDD matrix, i.e., monotone [3, pp. 119]. As
an illustration, such type of schemes for the one-dimensional case and uniform mesh
leads to the tridiagonal matrix of the following form

A = tridiag
[
− 1

h2 ,
2
h2 + c(Bi), −

1
h2

]
. (3.6)

For such FD schemes (also in any dimensions), we always have

αi(A) ≥ c(Bi) and Fi = f (Bi),

therefore, estimates (2.9) can be proved very easily again.

Remark 3.1. More complicated FEM and FDM schemes, e.g., those leading to some
positive off-diagonal entries but still to monotone matrices (see [2,3,6,14,19] for some
examples) can be analysed in the above manner. It is worth to mention here one in-
teresting case, not covered by Windisch’s results, but provable due to Theorem 2.3
and analysis of MDMP-validity as in the previous examples of this section. Imagine
that in some part of the solution domain Ω0⊂Ω the RHS function f is zero. Then
it is natural that all entries Fj associated with nodes Bj lying in Ω0 are zeros in any
meaningful (FEM or FDM) schemes. Therefore, in estimates (2.7) the corresponding
fractions Fj/αj(A) are zeros a priori, independently of values αj(A). It means that ap-
pearence of certain positive off-diagonal entries (with indices associate to Ω0) can be
easily allowed without any effect on the desired two-sided estimations provided the
resulting matrix A remains SDD and monotone.

4 Conclusions

In this paper, we have analysed some modifications, in the form of two-sided estima-
tion and for arbitrary source functions, of continuous and discrete maximum princi-
ples for the reaction-diffusion problems (with non-vanishing reactive terms) solved by
the finite element and finite difference methods.

The main results and subjects for the future research work can be generally sum-
marized as follows:
1. From the standard monotonicity requirements on the parameters (mesh shape,
mesh size, type of finite difference stencil used) of the FEM and FDM schemes we
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can get more precise information on the behaviour of numerical approximations than
just usual DMP-property of the sign-type (2.3), and also for the case of an arbitrary
source function.
2. A priori guaranteeing that the approximations fit some easily computable two-
sided bounds can be used, for example, for checking computer software for possible
bugs.
3. It would be interesting to see what is going around the case c≡0, or for the case
when c=0 in some parts of Ω. However, there is no much sense to analyse the case
c=0 for one-dimensional problems and FEM/FDM, as it is well-known (see e.g., [12])
that in this case most of popular finite element and finite difference schemes produce
solutions which coincide with the exact solution at all the nodal points, thus fitting a
priori any meaningful (upper and lower) estimates in our context.
4. The approach proposed seems to be easy to apply for close elliptic problems with
convective terms. Also the case of mixed boundary conditions can be analysed simi-
larly.
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