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Abstract. In this paper, an equivalence relation between the ω-limit set of ini-
tial values and the ω-limit set of solutions is established for the Cauchy prob-
lem of evolution p-Laplacian equation in the unbounded space Yσ(RN). To
overcome the difficulties caused by the nonlinearity of the equation and the
unbounded solutions, we establish the propagation estimate and the growth
estimate for the solutions. It will be demonstrated that the equivalence relation
can be used to study the asymptotic behavior of solutions.
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1 Introduction

In this paper, we consider the asymptotic behavior of solutions for the Cauchy
problem of the evolution p-Laplacian equation
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∂u

∂t
−div(|∇u|p−2∇u)=0 in R

N×(0,∞), (1.1)

u(x,0)=u0(x) in R
N, (1.2)

where p>2 and the nonnegative initial value

u0∈Yσ(R
N)≡

{

ϕ∈C(RN) : lim
|x|→∞

(1+|x|2)− σ
2 ϕ(x)=0

}

with 0≤σ<
p

p−2 .

Since the beginning of this century, there has been a great interest in the com-
plicate asymptotic behavior of solutions for some evolution equations [1–8]. To
do this, a successful method is to establish the relation between the initial values
and the solutions for the evolution equations in some Banach spaces. In 2002,
it was Vázquez and Zuazua [9] who first considered the relation between the
ω-limit set of initial values and the ω-limit set of solutions to the problem (1.1)-
(1.2) in the bounded space L∞(RN). They found that the set of accumulation

points of the rescaled solutions u(t
1
p x,t) to the problem (1.1)-(1.2) in L∞

loc(R
N)

as t → ∞ coincides with the set of {S(1)(ϕ)}, where ϕ ranges over the set of
the accumulation points as λ → ∞ of the family {u0(λx); λ > 0} in the weak-
star topology of L∞(RN). By using this relation, they proved that the compli-
cated asymptotic behavior can happen in the solutions. Later Cazenave, Dick-
stein and Weissler [10–13] investigated the relation between the rescaled solutions

t
µ
2 u(tβx,t) (µ,β>0) and the initial values for the heat equation in bounded space

C0(R
N). They also used these relation to investigate the complicated asymptotic

behavior of solutions. They also study the complicated asymptotic behavior of
solutions for the Navier-Stokes equations and the Schrödinger equation [14, 15].
In our recent papers [16,17], we revealed that there exists an equivalence relation
between the ω-limit set of initial values and the ω-limit set of rescaled solution-
s t

µ
2 u(tβx,t) (µ,β> 0) in bounded space C0(R

N), and use this relation to study
the complicate asymptotic behavior of solutions for the Cauchy problem of the
porous medium equation and the Cauchy problem of the evolution p-Laplacian
equation respectively. The studies of other asymptotic behavior of solutions for
the evolution equations can be found in [18–23].

Note that the relations in the above works are only considered in some bound-
ed spaces. It follows from the existence theory for the evolution p-Laplacian e-
quation that the solutions of the problem (1.1)-(1.2) are global even if the initial
data belong to some unbounded spaces [24–26]. Our interest here is to study
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the relation between initial values and solutions for the problem (1.1)-(1.2) in the
unbounded space Yσ(RN). The difficulties in our studies are mainly caused by
the unbounded solutions and the nonlinearity of Eq. (1.1). Fortunately, we can
establish the propagation estimate and the growth estimate for these unbounded
solutions to overcome these difficulties. By using the properties of solutions in
the unbounded space, we obtain that if

u0∈Y+
σ (RN)≡{ϕ∈Yσ(R

N); ϕ≥0} with 0≤σ<
p

p−2
,

then

ωσ(u0)=S(1)Ωσ(u0), (1.3)

where

ωσ(u0)≡
{

f ∈Yσ(R
N); ∃tn →∞ s.t. t

− σ
p−σ(p−2)

n u(t
1

p−σ(p−2)
n x,tn)→ f (x) in Yσ(R

N)
}

,

Ωσ(u0)≡
{

ϕ∈Yσ(R
N); ∃λn→∞ s.t. λ

− 2σ
p−σ(p−2)

n u0(λ
2

p−σ(p−2)
n x)→ ϕ(x) in Yσ(R

N)
}

.

The relation (1.3) can be used to prove complicated asymptotic behavior of so-
lutions to the problem (1.1)-(1.2). Since there exists an initial value u0∈Bσ,+

M ≡{φ∈
Y+

σ (RN); ‖φ‖Yσ(RN)≤M} such that Ωσ(u0)=Bσ,+
M , solutions of the problem (1.1)-

(1.2) can exhibit complicate asymptotic behavior by the relation (1.3), according
to Vázquez and Zuazua [9].

The rest of this paper is organized as follows. In the next section, we give some
definitions and properties. Section 3 is devoted to some estimates for the solution-
s of the problem (1.1)-(1.2) with the initial values u0 ∈Yσ(RN). The equivalence
relation is studied in Section 4. Using the equivalence relation to investigate the
asymptotic behavior is given in the last section.

2 Preliminaries

In this section we first introduce some concepts and give some propositions about
the solutions to the problem (1.1)-(1.2).

Definition 2.1. ([24, 25]) For r>0, f ∈L1
loc(R

N), let

‖|ϕ|‖r =sup
R≥r

R
− N(p−2)+p

p−2

∫

{|x|≤R}

|ϕ(x)|dx and ℓ(ϕ)= lim
r→∞

‖|ϕ‖|r.
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The space X0 is defined to be

X0≡{ϕ∈X; ℓ(ϕ)=0}

with the norm ‖|·|‖1. Hence it is a Banach space.

If the initial value u0 ∈ X0, the existence and uniqueness of global weak so-
lution of the problem (1.1)-(1.2) had been proved in [24–26], and this solution
satisfies the following proposition.

Proposition 2.1. ([25, 26]) The Cauchy problem of the evolution p-Laplacian equation

(1.1)-(1.2) generates a continuous bounded semigroup in X0 given by

S(t) : u0→u(x,t). (2.1)

In other words, u(x,t)=S(t)u0∈C([0,∞); X0). Moreover, if u0∈Lq(RN) with 1≤q≤∞,

then S(t) is a contraction bounded semigroup in Lq(RN).

The unbounded spaces L∞(ρσ) and Yσ(RN) is defined as follows.

Definition 2.2. Let 0≤ σ < ∞, ρσ(x) = (1+|x|2)− σ
2 . The weighted space L∞(ρσ) is

defined to be

Lp(ρσ)≡{ϕ∈L1
loc(R

N): ϕρσ ∈L∞(RN)}
with ‖ϕ‖L∞(ρσ)=‖ϕρσ‖L∞(RN). The space Yσ(RN) is defined by

Yσ(R
N)≡

{

ϕ(x)∈C(RN): lim
|x|→∞

ϕ(x)ρσ(x)=0
}

with the norm ‖ϕ‖Yσ(RN)=‖ϕρσ‖L∞(RN).

It is easy to prove that Yσ(RN) and L∞(ρσ) are Banach spaces.

Definition 2.3. Suppose that u0∈Yσ(RN) with 0≤σ<
p

p−2 . For ϕ(x)∈L1
loc(R

N) and

λ>0, let

Dσ
λϕ(x)≡λ

− 2σ
p−σ(p−2) ϕ(λ

2
p−σ(p−2)x).

Then we define the limit set Ωσ(u0) by

Ωσ(u0)≡
{

ϕ∈Yσ(R
N); ∃λn →∞ s.t. Dσ

λn
[u0]

w∗−→ f in Yσ(R
N) as n→∞

}

.

The ω-limit set ωσ(u0) is defined to be

ωσ(u0)≡
{

f ∈Yσ(R
N); ∃tn→∞ s.t. Dσ√

tn
[S(tn)u0]

n→∞−−−→ f in Yσ(R
N)

}

,

where S(t) is the semigroup given in (2.1).
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For λ>0, the commutative relation between the semigroup operator S(t) and

the dilation operator D
µ,β
λ ϕ(x)≡λµ ϕ(λ2βx)

D
µ,β
λ [S(λ2t)u0]=S(λ2−2pβ−µ(p−2)t)[D

µ,β
λ u0] (2.2)

had been proven in [7, 17].

Definition 2.4. Let d(x)≡ sup{R; u0(y)=0 a.e. in BR(x)}. The positive set of u(x,t)
at time t is defined to be

Ω(t)≡{x∈R
N ; u(x,t)>0}.

The ρ-neighborhood of Ω(t) is given by

Ωρ(t)≡{x∈R
N ; d(x,Ω(t))<ρ},

where d(x,Ω(t))≡sup{R;BR(x)∩Ω(t)=∅}.

3 Some estimates

To study the relation between initial values and solutions for the problem (1.1)-
(1.2) in unbounded space Yσ(R

N), we need to give some estimates about the so-
lutions first. The following lemma had been proven in [24, 25].

Lemma 3.1. ([24,25]) Let u(x,t) be the nonnegative weak solutions of the problem (1.1)-

(1.2). For given x0∈R
N , if

B(x0)=sup
R>0

R
− N(p−2)+p

p−2

∫

BR(x0)
u0(y)dy<∞,

where BR(x0)={y;|x0−y|<R}, then

u(x0,t)=0 for all 0< t≤CB(x0)
−(p−2).

The following theorem concerns the propagation estimate for the solutions of
the problem (1.1)-(1.2) with u0∈L∞(ρσ).

Theorem 3.1 (Propagation Estimate). Suppose u0 ∈ L∞(ρσ) with 0≤ σ<
p

p−2 , then

for 0≤ t1≤ t2<∞, one can get

Ω(t2)⊂Ωρ(t2−t1)
(t1),

where

ρ(t)=Cmax
(

‖u0‖
p−2

p

L∞(ρσ)
t

1
p , ‖u0‖

p−2
p−σ(p−2)

L∞(ρσ)
t

1
p−σ(p−2)

)

.
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Proof. We only need to consider the case t1=0. Suppose that x0∈R
N with d(x0)>

0. If R<d(x0), then the following equality holds

∫

BR(x0)
u0(y)dy=0; (3.1)

and if R≥d(x0), we deduce from Definition (2.1) and 0≤σ<
p

p−2 that

R
− N(p−2)+p

p−2

∫

BR(x0)
u0(y)dy

=R
− N(p−2)+p

p−2

∫

BR(x0)
u0(y)ρσ(x)(1+|x|2) σ

2 dy

≤‖u0‖L∞(ρσ)R
− N(p−2)+p

p−2 (1+R2)
σ
2

∫

BR(x0)
dy

≤2
σ
2 ‖u0‖L∞(ρσ)max(R

− p
p−2 ,R

− p
p−2+σ

)

≤2
σ
2 ‖u0‖L∞(ρσ)max(d(x0)

− p
p−2 ,d(x0)

− p
p−2+σ

).

Consequently,

B(x0)= sup
R≥d(x0)

R
− N(p−2)+p

p−2

∫

BR(x0)
u0(y)dy

≤C‖u0‖L∞(ρσ)max
(

d(x0)
− p

p−2 , d(x0)
− p

p−2+σ
)

holds by (3.1). Then it follows from Lemma 3.1 that

u(x0,t)=0 for all 0≤ t≤C‖u0‖−(p−2)
L∞(ρσ)

min(d(x0)
p,d(x0)

p−σ(p−2)),

and therefore

Ω(t)⊂Ωρ(t)(0),

where

ρ(t)=Cmax
(

‖u0‖
p−2

p

L∞(ρσ)
t

1
p , ‖u0‖

p−2
p−σ(p−2)

L∞(ρσ)
t

1
p−σ(p−2)

)

,

and the proof is complete.

In the following theorem, we estimate the growth estimate of solutions u(x,t)
to the problem (1.1)-(1.2) with the initial value u0∈L∞(ρσ).
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Theorem 3.2 (Growth Estimate). Let 0≤σ<
p

p−2 . If 0≤u0∈L∞(ρσ), then there exists

a constant C such that

0≤S(t)u0(x)≤C
(

(1+t)
2

p−σ(p−2)+|x|2
)

σ
2

for t>0.

That is,

‖S(t)u0‖L∞(ρσ)≤C(1+t)
σ

p−σ(p−2) .

Moreover, if 0≤u0∈Yσ(RN), then

S(t)u0 ∈Yσ(R
N) for t≥0.

Proof. Consider the following problem

∂u

∂t
−∆um =0 in R

N×(0,∞), (3.2)

u(x,0)=v0(x)=M|x|σ in R
N. (3.3)

For λ>0, let

λ1=λ
p−σ(p−2)

2p , µ=− 2σ

p−σ(p−2)
, β=

1

p−σ(p−2)
,

then

2−µ(p−2)−2pβ=0.

It follows from the commutative relation (2.2) that

λ
− σ

p [S(λ
1− σ(p−2)

p t)v0](λ
1
p x)=λ

µ
1 [S(λ

2
1t)v0](λ

2β
1 x)

=S(t)[λ
µ
1 v0(λ

2β
1 ·)](x)=S(t)v0(x). (3.4)

Letting t=1, s=λ
p−σ(p−2)

p and g(x)=S(1)v0(x) in (3.4), one can get

S(s)v0(x)= s
σ

p−σ(p−2)g(s
− 1

p−σ(p−2)x). (3.5)

Since v0 ∈C(RN), we obtain from the regularity theory of the solutions that for

t>0,

0≤S(t)v0 ∈C([0,∞)×R
N),
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see [24, 26]. Therefore (3.5) implies that that for |x|=1, the following limit holds:

s
σ

p−σ(p−2)g(s
− 1

p−σ(p−2)x)=S(s)v0(x)→v0(x)=M|x|σ =M (3.6)

as s→0. Put

y= s
− 1

p−σ(p−2)x.

Observe that |y|→∞ as s→0. It follows from (3.6) that

|y|−σg(y)−M→0 as |y|→∞. (3.7)

Hence, there exists a nonnegative constant C such that

g(x)≤C(1+|x|2) σ
2 ,

then we deduce from (3.5) that

0≤S(s)v0(x)≤C
(

s
2

p−σ(p−2)+|x|2
)

σ
2
,

therefore

S(t)g(x)=S(t)[S(1)v0 ](x)=S(t+1)v0(x)≤C
(

(1+t)
2

p−σ(p−2)+|x|2
)

σ
2
.

Taking ϕ(x)=M(1+|x|2) σ
2 , we thus obtain

S(t)ϕ(x)≤C
(

(1+t)
2

p−σ(p−2)+|x|2
)

σ
2
.

Using Comparison Principle [24–26], we can get

S(t)u0(x)≤C
(

(1+t)
2

p−σ(p−2)+|x|2
)

σ
2

if we take M=‖u0‖L∞(ρσ) in (3.3).

We verify the second part of this theorem below. Note first that

0≤u0∈Yσ(R
N)⊂L∞(ρσ).

For given t>0, R>0, letting

R(t)=R+1+Cmax
(

‖u0‖
p−2

p

L∞(ρσ)
t

1
p , ‖u0‖

p−2
p−σ(p−2)

L∞(ρσ)
t

1
p−σ(p−2)

)
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and then taking χR+1(x) be the cut-off function defined on BR+1 relative to BR,

we deduce from Theorem 3.1 that

supp[S(t)(χR+1u0)]⊂{x∈R
N ; |x|≤R(t)}.

This means that for t, R>0, the value of S(t)u0 in R
N\BR(t) is only depended on

the initial value u0 in R
N\BR+1, that is, if |x|>R(t), then

S(t)[(1−χR+1)u0](x)=S(t)u0(x). (3.8)

For every ε>0, it follows from the hypothesis 0≤u0 ∈Yσ(RN) that there exists a

constant R1>1>0 such that for |x|≥R1,

(1+|x|2)− σ
2 u0(x)<

ǫ

2
.

Letting R=R1, we get

(1−χR1+1)u0(x)<ǫ|x|σ .

Putting M=ǫ in (3.3), one can get from (3.7) and Comparison Principle that there

exists a constant R2 such that if |x|>R2, then

S(t)[(1−χR1+1)u0](x)≤ g(x)≤2ǫ|x|σ . (3.9)

So (3.5) and (3.9) imply that if |x|t−
1

p−σ(p−2) >R2, then

S(t)[(1−χR1+1)u0](x)≤ t
σ

p−σ(p−2)g(t
− 1

p−σ(p−2)x)≤2ǫ|x|σ . (3.10)

Combing (3.8) and (3.10), we get that if

|x|>max(R1(t),t
1

p−σ(p−2)R2),

then

S(t)u0(x)=S(t)[(1−χR1+1)u0](x)≤2ǫ|x|σ . (3.11)

Observe that for t>0,

S(t)u0(x)∈L∞(ρσ) and S(t)u0(x)∈C(RN),

then it follows from (3.11) that for t>0,

S(t)u0 ∈Yσ(R
N),

and the proof is complete.
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4 Equivalence relation

In this section, we study the relation between solutions and initial values of the
problem (1.1)-(1.2) with initial value u0∈Y+

σ (RN)≡{ϕ∈Yσ(RN); ϕ≥0}.

Theorem 4.1. Suppose 0≤σ<
p

p−2 . If u0∈Y+
σ (RN), then

ωσ(u0)=S(1)Ωσ(u0)≡{ f : f =S(1)ϕ, ϕ∈Ωσ(u0)}. (4.1)

Proof. If f ∈ ωσ(u0), it follows from the definition of ωσ(u0) that there exists a

sequence tn
n→∞−−−→∞ such that

Γσ√
tn
[S(1)u0 ]=Dσ√

tn
[S(tn)u0]=S(1)[Dσ√

tn
u0]→ f in Yσ(R

N). (4.2)

Note that if λ>1 and φ∈Yσ(RN), then

‖Dσ
λφ‖L∞(ρσ)= sup

x∈RN

(1+|x|2)− σ
2 λ

− 2σ
σ(p−2)+p φ(λ

2
σ(p−2)+p x)

= sup
x∈RN

(1+|λ
2

σ(p−2)+p x|2)− σ
2 φ(λ

2
σ(p−2)+p x)

(

1+|λ
2

σ(p−2)+p x|2

λ
2

σ(p−2)+p(1+|x|2)

)

σ
2

≤ sup
x∈RN

(1+|λ
2

σ(p−2)+p x|2)− σ
2 φ(λ

2
σ(p−2)+p x)=‖φ‖Yσ(RN). (4.3)

This means that

‖Dσ√
tn

u0‖Yσ(RN)≤‖u0‖Yσ(RN)≤M (4.4)

for all n≥1. Hence there exists a subsequence {tnk
}, which we still write as {tn},

and a function ϕ∈Yσ(RN) such that

Dσ√
tn

u0
w∗−→ ϕ in Yσ(R

N). (4.5)

Consequently,

ϕ∈Ωσ(u0) and ‖ϕ‖Yσ(RN)≤‖u0‖Yσ(RN). (4.6)

For every ǫ>0, applying Theorem 3.2 to u0 and ϕ, we see that there exists a R>0

such that if |x|≥R, then

|S(1)u0(x)|<
ǫ

3
and |S(1)ϕ(x)|< ǫ

3
. (4.7)
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Comparison Principle, (4.4) and (4.7) imply that if x≥R, then

|S(1)[Dσ√
tn

u0](x)|<
ǫ

3
(4.8)

for all n≥1. Taking

R(u0)=R+1+Cmax
(

‖u0‖
p−2

p

Yσ(RN)
, ‖u0‖

p−2
p−σ(p−2)

Yσ(RN)

)

and letting χR(u0)(x) be the cut-off function defined on BR(u0)+1 relative to BR(u0),

we see that

supp[(1−χR(u0))u0]

⊂
{

x∈R
N; |x|≥R+1+Cmax

(

‖u0‖
p−2

p

Yσ(RN)
,‖u0‖

p−2
p−σ(p−2)

Yσ(RN)

)

}

.

Then applying Theorem 3.1 to (1−χR(u0))u0, we get

supp[S(1)(1−χR(u0))u0]⊂{x∈R
N ; |x|≥R+1},

hence

suppS(1)[(1−χR(u0)
)u0]∩BR=∅.

So apply Comparison Principle to get

suppS(1)[(1−χR(u0))D
σ√

tn
u0]∩BR=∅.

That is, for x∈BR,

S(1)(Dσ√
tn

u0)(x)=S(1)[χR(u0 )(D
σ√

tn
u0)](x). (4.9)

The same result holds for S(1)ϕ. That is, for x∈BR,

S(1)ϕ(x)=S(1)[χR(u0 )
ϕ](x). (4.10)

Since Yσ(RN) →֒S ′(RN) →֒D ′(RN), (4.5) and (4.6) show that

Dσ√
tn

u0→ ϕ in D
′(RN) (4.11)

as tn→∞. Observe that

χR(u0)D
σ√

tn
u0, χR(u0)ϕ∈L1(RN).
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It now follows from (4.11) that

χR(u0)D
σ√

tn
u0⇀χR(u0)ϕ in L1(RN)

as tn→∞. So for 0<τ<1, Proposition 2.1 implies that

S(τ)[χR(u0)D
σ√

tn
u0]⇀S(τ)[χR(u0)ϕ] in L1(RN)

as tn→∞. This means that

S(τ)[χR(t)Dσ√
tn

u0]⇀S(τ)[χR(t)ϕ] in D
′(R)

as tn→∞. By Theorem 3.2, (4.4) and (4.6) show that there exists a constant C such

that for all n≥1,

‖S(τ)[χR(t)Dσ√
tn

u0]‖Yσ(RN)≤C,

hence

S(τ)[χR(t)Dσ√
tn

u0]
w∗−→S(τ)[χR(t)ϕ] in Yσ(R

N)

as tn →∞. By the regularity of the semigroup operators S(t) and 0< τ < 1, we

obtain

‖S(1)[χR(t)Dσ√
tn

u0]−S(1)[χR(t)ϕ]‖Yσ(RN)→0

as tn→∞. So (4.9) and (4.10) imply that for all x∈BR,

(1+|x|2)− σ
2 (S(1)[Dσ√

tn
u0]−S(1)[ϕ])

=(1+|x|2)− σ
2 (S(1)[χR(t)Dσ√

tn
u0]−S(1)[χR(t)ϕ])→0

as tn→∞. Then it follows from (4.7) and (4.8) that

‖S(1)[Dσ√
tn

u0]− f‖Yσ(RN)=‖S(1)[Dσ√
tn

u0]−S(1)[ϕ]‖Yσ(RN)→0. (4.12)

So we deduce from (4.2), (4.5) and (4.12) that

f =S(1)ϕ∈S(1)Ωσ(u0).

This means that

ωσ(u0)⊂S(1)Ωσ(u0). (4.13)

On the other hand, suppose

f ∈S(1)Ωσ(u0). (4.14)
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Then by the definition of S(1)Ωσ(u0), there exists a function ϕ∈Ωσ(u0) such that

f =S(1)ϕ.

Hence there exists a sequence λn→∞ such that

Dσ
λn

u0→ ϕ in Yσ(R
N)

as λn→∞. Using a same proof of (4.12), we can get

‖S(1)[Dσ
λn

u0]− f‖Yσ(RN)=‖S(1)[Dσ
λn

u0]−S(1)[ϕ]‖Yσ(RN)→0 (4.15)

as λn→∞. Applying commutative relation (2.2) to S(1)[Dσ
λn

u0], we have

Dσ
λn
[S(1)U0]=S(1)[Dσ

λn
u0]. (4.16)

Then taking tn=λ2
n in (4.15), and using (4.16), we have

Dσ
λn
[S(1)u0 ]

tn→∞−−−→ f in Yσ(R
N).

This means

f ∈ωσ(u0),

so (4.14) shows that

S(1)Ωσ(u0)⊂ωσ(u0), (4.17)

therefore

ωσ(u0)=S(1)Ωσ(u0)

by (4.13), and the proof is complete.

5 Complicated asymptotic behavior

As an application of the relation (4.1), we follow the argument in [17] to prove that
ωσ(u0) contain infinite functions. This result means that these solutions possess
complicated asymptotic behavior, according to Vázquez and Zuazua [9].

Theorem 5.1. For M>0, let

Bσ,+
M ≡{ϕ∈Yσ(R

N); ‖ϕ‖Yσ(RN)≤M and ϕ≥0}.

Then there exists u0(x)∈Yσ(RN) such that

ωσ(u0)=S(1)Bσ,+
M ≡{ f : f =S(1)ϕ, ϕ∈Bσ,+

M }. (5.1)
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Proof. Note that Bσ,+
M with the weak-star topology is compact and separable. Let

{φi}∞
i=1 be a dense subset of Bσ,+

M . Given {ψi}⊂Bσ,+
M such that for every φi, there

exists a subsequence {ψin
} of {ψi} satisfying that

ψin
=φi, ∀ in≥1.

Suppose

λi =

{

a, if i=1,

ai(p−σ(p−2))λi−1, if i>1,
(5.2)

where a>2. Let χi(x) be the cut-off function defined on Ei≡{x∈R
N; a−i<|x|<ai}

relative to Ei−1≡{x∈R
N ; a−i+1< |x|< ai−1} and assume that

u0(x)=
∞

∑
i=1

D−σ
λi

(χi(x)ψi(x)). (5.3)

For i>1, it follows from (5.2) that

λ
2

p−σ(p−2)

i a−i = aiλ
2

p−σ(p−2)

i−1 > ai−1λ
2

p−σ(p−2)

i−1 .

Since

supp(D−σ
λi

(χi(x)ψi(x))⊂
{

x∈R
N ; λ

2
p−σ(p−2)

i a−i
< |x|<λ

2
p−σ(p−2)

i ai
}

,

we get that for i 6= j,

suppD−σ
λi

[χi(x)ψi(x)]∩suppD−σ
λj

[χj(x)ψj(x)]=∅, (5.4)

hence the definition of u0 implies that

u0∈Bσ,+
M .

For every φ∈Bσ,+
M , there exists a subsequence {φin

} of {φi}, which we also write

as {φi}, such that

φi
w∗−→φ in Yσ(R

N) (5.5)

as i→∞. For every φi, i≥1, it follows from (5.3) that there exists a subsequence

{λin
} of {λi} such that

Dσ
λin

u0=φi in Ain−1
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for all in≥1. Since Ain−1→R
N\{0} as in→∞, one can get that

Dσ
λin

u0
w∗−→φi in Yσ(R

N)

in→∞. By diagonal method, it follows from (5.5) that

Dσ
λii

u0
w∗−→φ in Yσ(R

N)

as λii
→∞. This means that φ∈Ωσ(u0), so

Bσ,+
M ⊂Ωσ(u0). (5.6)

On the other hand, if φ ∈ Ωσ(u0), it follows from the definition of Ωσ(u0) that

there is a sequence λi →∞ such that

Dσ
λi

u0
w∗−→φ in Yσ(R

N). (5.7)

Since ‖Dσ
λi

u0‖Yσ(RN)≤‖u0‖Yσ(RN)≤ M, ∀ i≥ 1 by (4.3), it follows from (5.7) that

φ≥0 and ‖φ‖Yσ(RN)≤M. So φ∈Bσ,+
M , this means that

Ωσ(u0)⊂Bσ,+
M ,

hence

Ωσ(u0)=Bσ,+
M (5.8)

holds by (5.6). It follows from Theorem 4.1 and (5.8) that

ωσ(u0)=S(1)Bσ,+
M ,

and the proof is complete.
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