
Journal of Computational Mathematics

Vol.38, No.2, 2020, 337–354.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1809-m2018-0106

ROBUST INEXACT ALTERNATING OPTIMIZATION FOR
MATRIX COMPLETION WITH OUTLIERS*

Ji Li

Beijing Computational Science Research Center, Beijing 100193, China

Email: keelee@csrc.ac.cn

Jian-Feng Cai

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon, Hong Kong

Email: jfcai@ust.hk

Hongkai Zhao

Department of Mathematics, University of California, Irvine, CA, USA

Email: zhao@uci.edu

Abstract

We investigate the problem of robust matrix completion with a fraction of observation

corrupted by sparsity outlier noise. We propose an algorithmic framework based on the

ADMM algorithm for a non-convex optimization, whose objective function consists of

an ℓ1 norm data fidelity and a rank constraint. To reduce the computational cost per

iteration, two inexact schemes are developed to replace the most time-consuming step

in the generic ADMM algorithm. The resulting algorithms remarkably outperform the

existing solvers for robust matrix completion with outlier noise. When the noise is severe

and the underlying matrix is ill-conditioned, the proposed algorithms are faster and give

more accurate solutions than state-of-the-art robust matrix completion approaches.

Mathematics subject classification: 65K05, 90C06, 93C41.

Key words: Matrix completion, ADMM, Outlier noise, Inexact projection.

1. Introduction

The problem of matrix completion refers to completing a matrix with many missing entries,

and it arises from various applications in statistics, machine learning, and computer vision. This

problem is possible to solve only if the underlying matrix is “simple”, because otherwise the

matrix contains too much information to infer from the limited observed entries. A commonly

used notion of simplicity for matrices is low rank [11,13,17,32,33], which provides redundancy

of matrix entries. The low rank matrix model is remarkably successful in many applications in

machine learning, such as collaborative filtering [38] and the Netflix prize problem [4].

Let M ∈ R
m×n be the underlying low-rank matrix we would like to estimate. Let Ω ⊆

[m] × [n] be a set of indices with |Ω| ≪ mn, where [m] = {1, 2, . . . ,m} and the same for [n].

In the problem of matrix completion, only the entries {Mij : (i, j) ∈ Ω} are observed and the

other entries are missing. One would like to reconstruct the underlying low-rank matrix M

from {Mij : (i, j) ∈ Ω}. The approaches of low-rank matrix completion can be divided into two

categories, namely, convex and non-convex optimization based approaches.

* Received May 31, 2018 / Revised version received August 2, 2018 / Accepted September 25, 2018 /

Published online February 13, 2019 /

338 J. LI, J.F. CAI AND H.K. ZHAO

Convex optimization based approaches are formulated from the rank minimization. With

sufficiently many observed entries and some mild assumptions, M is the only low-rank matrix

in the set {X ∈ R
m×n | Xij = Mij , (i, j) ∈ Ω} of matrices that are consistent with observed

entries. In this case, the low-rank matrix completion can be reconstructed by solving the

following constrained rank minimization:

min
X∈Rm×n

rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω.
(1.1)

However, (1.1) is non-convex and, more critically, NP-hard. Therefore, it is computationally

intractable. To overcome these, a popular strategy is to replace the rank function in (1.1) by

its convex relaxation, the nuclear norm [11–13], to solve the following convex optimization

min
X∈Rm×n

‖X‖∗

s.t. Xij = Mij , (i, j) ∈ Ω.
(1.2)

Problem (1.2) can be reformulated as a special case of semi-definite programming (SDP) [37],

for which polynomial time solvers exist. It was proved in [11,13,22,36] that the unique solution

of (1.2) is M under suitable assumptions. Thus, one can complete a low-rank matrix in

polynomial time with theoretical guarantee. In real applications, the observed entries are

usually corrupted by noise. Under this circumstance, it is natural to consider the nuclear norm

regularized optimization

min
X∈Rm×n

1

2

∑

(i,j)∈Ω

(Xij − M̃ij)
2 + λ‖X‖∗, (1.3)

where M̃ij , (i, j) ∈ Ω, are noisy observations. When there is only a small amount of noise in the

observed entries, the model (1.3) is provably accurate with the reconstruction error proportional

to the noise level [11]. Though off-the-shelf SDP solvers can be applied to solve (1.2) and (1.3),

numerically, they are not the most efficient, especially when the matrix size is moderately large.

Customized first-order algorithms (e.g., [8,29,31,41]) are developed for solving (1.2) and (1.3).

Most of them invoke the singular value thresholding (SVT) operator [8] at each iteration. The

most expensive part of these algorithms is the computation of SVT in each iteration. The usual

strategy is to compute the singular value decomposition (SVD) followed by the soft-thresholding

on the singular values.

To improve the performance of nuclear norm optimization based matrix completion, we may

consider non-convex optimization based approaches. Assume that rank(M) = r is known, then

the matrix completion problem can be reformulated as the following constrained least-squares

problem

min
X∈Rm×n

∑

(i,j)∈Ω

(Xij − M̃ij)
2

s.t. rank(X) = r.

(1.4)

Since (1.4) is a non-convex optimization, the challenge here is how to find the global minimum

with a provable guarantee. In the past a few years, there is a burst of research works on the

design and analysis of provable non-convex matrix completion algorithms by solving (1.4) and

its variants. There are two types of such numerical algorithms. One type of algorithms treat the

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 339

unknown matrix X as an element in the set of all rank-r matrices. Projected gradient descent

algorithms are presented, termed as singular value projection (SVP) [25] or normalized iterative

hard thresholding (NIHT) [40]. Furthermore, it is well known that the set of fixed rank matrices

is a smooth Riemannian manifold [1]. By utilizing the geometry of smooth manifolds, more

efficient algorithms are obtained, see, e.g., [5, 33, 34, 42–44]. Guarantees of finding M of these

algorithms are provided in [25,43,44]. The other type of numerical algorithms for solving (1.4)

parametrize the unknown low-rank matrix in factorization forms. This leads to non-convex

unconstrained optimization problems, and various standard optimization algorithms can be

applied, see, e.g., [21,26,30,38,39,45]. Theoretical guarantees are provided based on either the

local property around the underlying solution [26, 30, 39] or the global geometric landscape of

the objective functions [21].

The aforementioned matrix completion algorithms work well only when there is no noise or

the noise is not severe, as they are based on the formulation of least-squares data fidelity. It is

well known that the least-squares formulation is not well suited for tasks where the observation

is corrupted by noise with some outliers. Therefore, it is necessary to study robust matrix

completion in the presence of outliers. This is the main theme of this paper. We propose a family

of efficient non-convex optimization based algorithms for matrix completion from observed

entries corrupted by noise with outliers. Our algorithms are derived from the acceleration

of alternating direction method of multipliers (ADMM) for a rank constrained optimization,

where the projection onto the set of rank-r matrices (i.e., truncated SVD) is approximated by

several efficient and effective schemes. Numerical experiments demonstrate that our proposed

algorithms are robust not only to the outliers in the noisy observation, but also to the fast

decay of the non-zero singular values of the underlying low-rank matrix.

In the rest of this section, we give a brief review on robust low-rank matrix completion

algorithms that can deal with observations corrupted by noise with outliers.

1.1. Priori Arts

The simplest model for noise with outliers might be the impulsive noise model. In this

model, only a portion of the observed entries are contaminated by noise, for which the observed

values are very different from the truth, and the others are clean. Therefore, the noise can be

modelled by a sparse vector. Following this model, it was proposed in [10, 14, 28] to solve the

optimization problems in below

min
X,e

γ ‖X‖∗ + ‖e‖ℓ1

s.t. PΩX = PΩM̃ + e.
(1.5)

Here PΩ : Rm×n → R
m×n is a projector defined as follows: for all X ∈ R

m×n,

[PΩ(X)]ij =

{

Xij , if (i, j) ∈ Ω,

0, otherwise.

The nuclear norm ‖X‖∗ and the ℓ1-norm ‖e‖ℓ1 promote the low rank of the reconstructed

matrix X and the sparsity of the noise vector e ∈ R
|Ω| respectively. It is proven that the

low rank matrix can be recovered by a solution of (1.5) with high probability from only a

small fraction of the entries without any assumptions on the location or the amplitude of the

corrupted entries in [16]. When Ω = [m] × [n] (i.e. all the entries are observed with possible

340 J. LI, J.F. CAI AND H.K. ZHAO

impulsive noise), we only need to separate the low-rank matrix and the sparse error, which

is known as robust principal component analysis (RPCA) [7, 10, 20, 35]. Eq. (1.5) gives the

exact RPCA [10]. The impulsive model is sometimes too simple. We may assume, besides

the impulsive noise, the observed entries are also polluted by a small amount of additive noise

affecting all the observed entries. That is, PΩX = PΩM̃ + e1 + e2, where e1 is a sparse

vector modelling the impulsive noise and e2 represents the small additive noise. This gives the

following optimization

min
X,e1,e2

λ ‖X‖∗ + γ ‖e1‖ℓ1 +
1

2
‖e2‖

2
ℓ2

s.t. PΩX = PΩM̃ + e1 + e2.

(1.6)

To solve convex optimizations (1.5) and (1.6), SVT based algorithms such as ADMM [10] can

be used. They generally require the SVD of an m× n matrix per iteration. When the rank of

iteration matrices is not small compared to the matrix size, the computation could be prohibited

for large scale problems.

Similar to the standard matrix completion, non-convex optimization methods generally give

more efficient algorithms than convex ones. The unknown low-rank matrix is represented by

either its factorization or an element in the set of all low-rank matrices. There are two different

ways to deal with noise with outliers. Some of non-convex robust matrix completion still use

the ℓ1 norm or its variants [2, 3, 9, 19, 24, 47]. For example, [3, 24] aim to solving the following

non-convex optimization

min
U ,V ,S

‖PΩ(S)‖ℓ1

s.t. PΩ(UV + S) = PΩ(M̃)

U ∈ Gr(m, r), V ∈ R
r×n,

where Gr(m, r) is the Grassmannian manifold, i.e., the set of linear r-dimensional subspaces

of Rm. These non-convex optimization methods generally give more efficient algorithms than

convex ones. Some other non-convex matrix completion directly uses the sparse constraint

[7, 15, 35, 48]. For example, [48] proposed to solve

min
U ,V ,S

1

2
‖PΩ(UV + S)− PΩ(M̃)‖2F + λ‖UTU − V TV ‖2F

s.t. U ∈ R
m×r ∩ C,V ∈ R

n×r ∩ C, ‖S‖0 ≤ pmn,

where C is the set of matrices satisfying the so-called incoherence condition, and λ > 0 is a

regularization parameter. Similar to the standard matrix completion case, these non-convex

approaches usually give more efficient algorithms for robust matrix completion than convex

ones.

1.2. Our contribution

In this paper, we aim at devising a computationally efficient and noise-robust algorithm for

matrix completion. We first formulate the robust matrix completion problem to an optimization

problem with rank constraint. Then, we propose an algorithmic framework to solve the resulting

optimization, based on the alternating direction method of multipliers (ADMM). To minimize

the computational cost, a critical ingredient in our proposed framework is to approximate the

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 341

truncated SVD by inexact projections. Two inexact projections are studied to get two efficient

robust matrix completion algorithms. One of them is deduced by projecting onto tangent space

of the low rank matrix manifold, and the other is based on power iteration. Our approach only

needs an initial rank estimation, we also apply the rank adaption to reach a better recovery

especially for matrix with exponentially decaying singular values. We demonstrate that two

inexact projections lead to efficient robust matrix completion algorithms that are faster than

the original algorithm with the exact projection. Numerical experiments are presented to

demonstrate the efficiency of the proposed algorithms.

2. Algorithmic Framework

In this section, we propose our algorithmic framework for robust low-rank matrix completion.

The proposed framework is based on alternating direction method of multipliers (ADMM) for

some non-convex optimization problems, and another key ingredient is to approximate the

projection onto the set of low-rank matrices. With different approximations of the projection,

our framework will lead to several efficient robust matrix completion algorithms. In this section,

we first briefly review the robust matrix completion as set feasibility problem and the deduced

alternating projection method, and then the inexact projection introduced latter can be used

to accelerate the computation of ADMM.

2.1. Matrix Completion as Set Feasibility

In order to present our algorithmic framework, we first reformulate the matrix completion

problem as a set feasibility problem in this section. For this purpose, we introduce some

additional notations. We assume that rank(M) = r is known. LetM be the set of all matrices

with rank at most r

M = {X ∈ R
m×n : rank(X) ≤ r}.

Let N be the set of all matrices whose entries related to the observations are bounded by the

noise level ǫ on Ω, i.e.,

N =
{

X ∈ R
m×n :

∥

∥

∥
PΩ(X − M̃)

∥

∥

∥

ℓ1
≤ ǫ

}

.

Therefore, the matrix completion is equivalent to the set feasibility problem

find X ∈ M∩N . (2.1)

We introduce the projection operation, for a given set S, the projection of a point Z /∈ S

onto it, is defined as

PS(Z) := argmin
X∈S

‖X −Z‖2ℓ2 .

Projection onto the setM is straightforward, by Eckart-Young theorem, the projection PM(Z)

is given by the partial SVD of Z. Projection onto the set N is involved with the projection

onto simplex ℓ1 ball [18]. The alternating projection is just projection onto the two sets until

convergence. Given Z0, the iteration scheme is

Xk = PM(Zk), Zk+1 = PN (Xk).

342 J. LI, J.F. CAI AND H.K. ZHAO

Indeed, the projection PN can be expressed in the form

Zk+1 = Xk + PΩ(M̃) + PΩ(Nk)− PΩ(Xk), (2.2)

where PΩ(Nk) is the projection of PΩ(Xk) − PΩ(M̃) onto set {S ∈ R
m×n : ‖PΩ(S)‖ℓ1 ≤ ǫ}.

Given initial X0, the overall iteration is

Xk+1 = PM

(

Xk + PΩ(M̃) + PΩ(Nk)− PΩ(Xk)
)

. (2.3)

For the noiseless matrix completion, i.e., the entries over the sample set Ω are completely

consistent with the available observations. In this case, PΩ(Nk) ≡ 0 in (2.3), and it is identical

to the SVP algorithm [25] with a special choice of step size. When PΩ is replaced by a linear

operator satisfying the restricted isometric condition (RIP) [37], the convergence of (2.3) to M

is theoretically guaranteed [25]. However, since PΩ does not satisfy RIP, there is no theoretical

guarantee of (2.3) for matrix completion. In [42–44], (2.3) is accelerated by projecting onto

the tangent space of the Riemannian manifold formed byM before PΩ, obtaining the gradient

descent algorithm on Riemannian manifold. More importantly, it was shown in [43] that the

Riemannian optimization algorithm converges to M for matrix completion. For the harder

robust principle component analysis (RPCA), (2.3) can be viewed as adaptions of the alternating

projection algorithm [35] to the case where the support of the sparse matrix is fixed in RPCA.

Guarantees of such algorithms for RPCA are provided in [35]. Again, (2.3) is accelerated

by Riemannian manifold tangent space projection in [7] and the theoretical guarantee is also

provided there.

2.2. Non-Convex Alternating Direction Methods of Multipliers

In this section, we present our algorithmic framework for robust matrix completion based

on ADMM of a non-convex objective function. Similar to existing approaches, we use ℓ1 norm

term to deal with the possible outliers in the noise. More precisely, we consider the following

ℓ1 norm based optimization with rank constraint

min
X∈M

∥

∥

∥
PΩ(M̃ −X)

∥

∥

∥

ℓ1
. (2.4)

Define the indicator function ιM of the setM by

ιM(X) =

{

+∞ if X /∈M,

0 otherwise.

By introducing the auxiliary variable Z and using ιM, (2.4) is transformed into an optimization

with an equality constraint

min
X,Z

∥

∥

∥
PΩ(M̃)− PΩ(Z)

∥

∥

∥

ℓ1
+ ιM(X)

s.t. X = Z.
(2.5)

We can solve (2.5) by ADMM [6], though it is developed for convex optimization problems.

The augmented Lagrangian function associated with (2.5) is

Lβ(X,Z,Λ) =
∥

∥

∥
PΩ(M̃)− PΩ(Z)

∥

∥

∥

ℓ1
+ ιM(X) + 〈Λ,X −Z〉+

β

2
‖X −Z‖2ℓ2 ,

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 343

where Λ is the dual variable and β > 0 is a parameter. Then applying ADMM leads to the

following iteration














Xk+1 = argmin
X
Lβ(X,Zk,Λk),

Zk+1 = argminZ Lβ(Xk+1,Z,Λk),

Λk+1 = Λk + νβ(Xk+1 −Zk+1),

(2.6)

where ν > 0 is a stepsize.

All three subproblems in (2.6) have closed form solutions. Given Z0 and Λ0 = 0, by simple

calculation, the solution of the first subproblem is given by Xk+1 = PM(Zk −
1
β
Λk). The

solution of the second subproblem is







PΩ(Zk+1) = PΩ(M̃)− proxβ−1‖·‖
1

(

PΩ(M̃)− PΩ(Xk+1)−
1
β
PΩ(Λk)

)

PΩc(Zk+1) = PΩc(Xk+1 +
1
β
Λk),

where proxβ−1‖·‖
1

(u) = sgn(u)max(|u| − β−1, 0) is the soft-thresholding operator. It can be

verified that the entries over Ωc of Λ is always zero at the iteration, if Λ0 = 0. This sparsity

pattern can be integrated into the iteration scheme to get an equivalent iteration of (2.6) as

follows


























Xk+1 = PM

(

Zk −
1
β
PΩ(Λk)

)

PΩ(Zk+1) = PΩ(M̃)− proxβ−1‖·‖
1

(

PΩ(M̃)− PΩ(Xk+1)−
1
β
PΩ(Λk)

)

PΩc(Zk+1) = PΩc(Xk+1 +
1
β
Λk)

PΩ(Λk+1) = PΩ(Λk) + β (PΩ(Xk+1)− PΩ(Zk+1)) .

(2.7)

Let us further simplify the iteration. We denote

Rk+1 := prox
β−1‖·‖

1

(

PΩ(M̃)− PΩ(Xk+1)−
1

β
PΩ(Λk)

)

.

Then Zk+1 is expressed by

Zk+1 = Xk+1 + PΩ(M̃)− PΩ(Xk+1)−Rk+1, (2.8)

which implies

PΩ(Λk+1) = PΩ(Λk) + β
(

Rk+1 − PΩ(M̃) + PΩ(Xk+1)
)

. (2.9)

Plugging (2.8) and (2.9) into the updating formula for Xk+2 gives

Xk+2 = PM

(

Zk+1 −
1

β
PΩ(Λk+1)

)

=PM

(

Xk+1 + PΩ(M̃)− PΩ(Xk+1)−Rk+1 −
1

β
PΩ(Λk)− PΩ(Xk+1) + PΩ(M̃)−Rk+1

)

=PM

(

Xk+1 + 2

(

PΩ(M̃)− PΩ(Xk+1)−
1

β
PΩ(Λk)

)

− 2Rk+1 +
1

β
PΩ(Λk)

)

.

We define

Yk+1 := PΩ(M̃)− PΩ(Xk+1)−
1

β
PΩ(Λk). (2.10)

344 J. LI, J.F. CAI AND H.K. ZHAO

We also shift the index of Xk+1 back by 1, i.e., use Xk to denote Xk+1 in (2.7) with little

notation abuse. Thus, given X0 and Λ0 = 0, the ADMM iteration (2.6), (2.7) is equivalent to



























Yk+1 = PΩ(M̃)− PΩ(Xk)−
1
β
PΩ(Λk),

Rk+1 = proxβ−1‖·‖
ℓ1

(Yk+1),

Xk+1 = PM

(

Xk + 2Yk+1 − 2Rk+1 +
1
β
PΩ(Λk)

)

,

PΩ(Λk+1) = PΩ(Λk) + β
(

Rk+1 − PΩ(M̃) + PΩ(Xk+1)
)

.

(2.11)

From (2.11), we see that the Xk+1 is expressed by the projection of the matrix Xk with a

sparsity matrix onto the setM. The matrices in (2.11) are either of rank-r (cf. X) or sparse

supported on Ω (cf. Y ,R,Λ). Obviously, both type of matrices can be stored with a small

memory. For example, the low rank matrices are stored in their low rank factorization form.

Therefore, the spatial complexity of the algorithm is very low. This structure is favorable for

large-scale problems.

Let us examine the computational complexity of (2.11). We see that all operations in (2.11)

except for PM are entry-wise and hence very cheap to implement. Therefore, the computational

bottleneck of (2.11) is the evaluation of PM(Wk+1), where

Wk+1 = Xk + 2Yk+1 − 2Rk+1 +
1

β
PΩ(Λk).

We need to compute the leading r singular values and the corresponding singular vectors of the

m × n matrix Wk+1, which is a combination of a low rank matrix and a sparse matrix. This

structure of the matrix Wk+1 will facilitate the truncated SVD calculation.

Compared to the alternating projection method in literature [27], except the two parameters

γ and β, which can be adapted as typically in ADMM, our non-convex ADMM framework is

parameter free. Actually, our algorithmic framework is not sensitive to the two parameters. To

cope with sparsity outlier noise, [27] considers the data fidelity set

N =

{

X ∈ R
m×n|

∥

∥

∥
PΩ(X)− PΩ(M̃)

∥

∥

∥

ℓ1
≤ ǫ

}

.

The algorithmic performance of alternating projection obviously depends on the a priori noise

level estimation ǫ, which is not known in advance in practice. Besides, the projection onto N is

involved the projection onto simplex ℓ1 ball [18], it may be an extra computational cost. Every

projection step onto N needs doing a quick sort.

Our ADMM framework for robust matrix completion can be easily applied to the matrix

completion with Gaussian additive noise, the little modification of (2.11) is the update of matrix

Rk+1. In the case, it should beRk+1 = β
1+β

Yk+1 if we consider the ℓ2 norm data fidelity in (2.5).

It can also be extended to the robust matrix completion for the mixed Gaussian additive noise

and impulsive noise. We only apply the same method for the following problem

min
X,Z,S

∥

∥

∥
PΩ(M̃)− PΩ(Z)

∥

∥

∥

ℓ1
+

γ

2
‖PΩ(S)‖

2
ℓ2
+ ιM(X)

s.t. X = Z + PΩ(S).

The parameter γ is to trade-off the two types of noise.

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 345

3. Two Inexact Projections

The most time-consuming step in our ADMM algorithm (2.11) is the evaluation of PM, the

projection ontoM, which is the exact global minimizer of the following problem

PM(W) = argmin
X

‖X −W ‖2F , s.t. rank(X) ≤ r. (3.1)

By Eckart-Young theorem, the best rank-r approximation of matrix W can be obtained by

the truncated SVD. Let W =
∑min(m,n)

i=1 σiuiv
T
i (σ1 ≥ σ2 ≥ ...) be its SVD, then PM(W) =

∑r

i=1 σiuiv
T
i . To get the exact projection, we need to compute the top r singular values and

their associated singular vectors of W . Though there are fast SVD packages available for only

the leading singular values and singular vectors, the computation of PM might be quite slow,

especially for large scaled problems.

In order to accelerate the computation of the ADMM iteration (2.11), we propose to use

inexact projections to approximate PM. These inexact projections should be cheap to compute

and able to keep the fast convergence of (2.11). We present two such inexact projections in

Sections 3.1 and 3.2 respectively. The first inexact projection is motivated by the Riemannian

manifold structure of the set of all low-rank matrix matrices, and the second inexact projection

is obtained by a few of iterations of an SVD solver with a random initialization.

3.1. Algorithm I: Tangent Space Projection

It is well known that, when M is embedded into R
m×n, it forms a smooth Riemannian

manifold [1]. At iteration k, the tangent space Lk of M at Xk is a good approximation to

M. Therefore, instead of projecting the iteration matrix directly ontoM, we propose to first

project it onto the tangent space Lk and then M. In other words, we approximate PM is

approximated by PMPLk
. This strategy has been also used in [7, 43, 44].

At a first glance, the successive projection strategy PMPLk
takes more computational cost

than the direct projection PM. But it is not the truth. Indeed, for the given iteration matrix

Wk+1, the computation of PMPLk
(Wk+1) can be done without SVD of size m× n, so that it

can be significantly faster than PM(Wk+1). To see this, we break down the computation of

PMPLk
(Wk+1) into the following two substeps.

• Project Wk+1 onto the tangent space to get Lk+1 := PLk
(Wk+1). Let Xk = UkΣkV

T
k

be the compact SVD of Xk. Then, the tangent space Lk has an explicit form as in the

following

Lk =
{

UkA
T +BV T

k | A ∈ R
n×r, B ∈ R

m×r
}

.

That is, Lk is the direct sum of the two subspaces of matrices whose column and row

spaces are the same as those ofXk respectively. Therefore, the projection onto the tangent

space has a closed form

Lk+1 = PLk
(Wk+1) = UkΣkV

T
k +UkU

T
k Wk+1 +Wk+1VkV

T
k −UkU

T
k Wk+1VkV

T
k

=
[

Uk (I −UkU
T
k)Wk+1Vk

]

[

Σk +UT
k Wk+1Vk I

I 0

] [

V T
k

UT
k Wk+1(I − VkV

T
k)

]

:=
[

Uk Ûk

]

[

Σk + M̂k I

I 0

]

[

Vk V̂k

]T

,

346 J. LI, J.F. CAI AND H.K. ZHAO

where

Ûk = (I −UkU
T
k)Wk+1Vk, (3.2a)

M̂k = UT
k Wk+1Vk, (3.2b)

V̂k = (I − VkV
T
k)W T

k+1Uk. (3.2c)

Thus, to get Lk+1, we only need to compute Ûk, M̂k, and V̂k respectively. This can be

done efficiently by O(r) matrix-vector products.

• Project Lk+1 onto the low-rank manifold to get PM(Lk+1). We do not need to call an

SVD subroutine straightforwardly for the m × n matrix Lk+1. Notice that Lk+1 is of

rank 2r and it is given in a factorization form. Therefore, its SVD can be reduced into

two QR decompositions and one SVD of size 2r × 2r. See the details in Algorithm 3.1.

Algorithm 3.1 Inexact projection onto fixed rank matrix manifoldM

Input: Given matrices Wk+1, and Xk = UkΣkV
T
k in its compact SVD.

Output: PMPLk
(Wk+1) = Uk+1Σk+1V

T
k+1 in its compact SVD.

1: Compute Ûk, M̂k, and V̂k according to (3.2).

2: Compute QR decomposition: (Qu,Ru) = qr(Ûk, 0) and (Qv,Rv) = qr(V̂k , 0)

3: Form matrix Ŝ =

[

Σk + M̂k RT
v

Ru 0

]

4: Compute (Us,Σs,Vs) = svd(Ŝ), where the singular values are sorted non-increasingly.

5: Σk+1 = Σs(1 : r, 1 : r), Uk+1 = [Uk Qu]Us(:, 1 : r), and Vk+1 = [Vk Qv]Vs(:, 1 : r)

In summary, the computation of PMPLk
(Wk+1) is reduced into O(r) matrix-vector prod-

ucts, two QR decompositions of size n× r and m× r respectively, and one SVD of size 2r× 2r.

The total computational cost is 18mr2+16nr2+8|Ω|r+Cr3, where C is a constant depending

on the SVD routine. Compared to PM(Wk+1) for which an SVD of size m × n is needed,

the approximation PMPLk
(Wk+1) is much more computationally efficient. Furthermore, since

tangent spaces are good approximations to the manifold, this approximation strategy will not

increase the number of iterations needed, as we will see in the numerical experiments.

3.2. Algorithm II: Inexact Projection via One Step of Power Iteration

We can also approximate PM(Wk+1) by applying a few iterations of some SVD solvers.

One of the simplest yet effective algorithms for singular value problems might be the power

iteration. Let U ∈ R
m×r be an approximation of the top r left singular vectors of Wk+1. Since

the left singular vectors are also eigenvectors of Wk+1W
T
k+1, we can refine U by the following

power iteration

U ← orth(Wk+1W
T
k+1U),

where orth(·) orthogonalize the matrix, i.e., taking the orthogonal factor in the QR decomposi-

tion. Under very mild assumptions on Wk+1 and the initial U , the power iteration will converge

to the top r singular vectors of Wk+1. By introducing a new matrix V = W T
k+1U ∈ R

n×r, we

get an equivalent formulation of the power iteration

U ← orth(Wk+1V), V ←W T
k+1U (3.3)

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 347

Since U converges to the singular vectors, it is easy to see that UV T converges to PM(Wk+1).

Thus, to approximate PM(Wk+1), we propose to use only one step of (3.3) with warm

start or random initial guess. This one-step power iteration approximation is done in one

compact QR decomposition and one matrix-vector multiplication. The computational cost

is 14mr2 + 4nr2 + 8|Ω|r, which again is significantly smaller than the exact truncated SVD.

Furthermore, this approximation is effective and it will not increase the number of iteration

needed in ADMM.

4. Simulation Tests

We validate the performance of our approaches for synthetic low rank matrix completion.

We focus on the square matrices, since the performance for nonsquare matrix completion shows

the similar behavior. In our all experiments, synthetic data are created with exact rank. We do

the experiments in MATLAB R2012a on a desktop computer with a 3.30 GHz CPU and 4GB

of memory.

The testing problems are synthesized as follows. We first generate the underlying low-rank

matrix M , discussed in detail in the successive sections. Then, entries of M are sampled

according to the Bernoulli model. For each index (i, j) ∈ [n] × [m], it is included in Ω with

probability |Ω|
mn

. To simulate the outliers in the noise, we assume an observed entry is con-

taminated by outlier noise independently randomly with probability p. If an observed entry is

corrupted by outlier noise, then the observed value is

M̃ij = Mij + S±1 · N (µ, σ2),

where S±1 are independent random variables taking values +1 or −1 with equal probability,

and N (µ, σ2) are independent Gaussian random variable with mean µ and variance σ2. The

parameters p, µ, and σ control how severe the noise is. Larger p, µ, σ means more severe noise.

By incorporating the two inexact projections in Sections 3.1 and 3.2 into the ADMM frame-

work (2.11), we can get two proposed algorithms, called ADMM3 and ADMM2 respectively.

We can also use them to replace the truncated SVD in the alternating projection algorithm

(2.3), and the resulting algorithms are called AP3 and AP2 respectively. We will compare

these algorithms with RMC [9], AOPMC [46], GRASTA [3, 24] and the AP method [27]. The

algorithmic parameters of these methods are set as the default. For the RMC, the maximum

number of CG iterations is set to 40 with a gradient tolerance of 10−8 and δ0 = 1, θ = 0.05.

For AOPMC, since we known the number of outliers, we directly provide it to the algorithm.

For AP, since we know the noise level ǫ, we also provide it to the algorithm. For AOPMC

and AP, the algorithmic performance depends on the number of outliers and noise level. For

practical problem, AOPMC needs to run the algorithm several times to guess the number of

outliers, which increases the time cost. For AP, we also need to estimate the noise level. Our

ADMM algorithms are completely parameter-free. For GRASTA, it aims to perform online

matrix completion, there would be some trouble running the algorithm on large-scale problem.

Its cost time is proportional to the matrix size, since it operates one column at a time. For

RMC and AOPMC, the quality of the solution to the inner problem is very crucial for the

convergence of the algorithms toward the exact underlying low rank matrix. For this reason,

the default gradient tolerance is set to 10−8.

Though the proposed ADMM algorithmic framework scales well for large-scale problem,

we consider the medium-scale matrix completion with size 500 × 500 for comparison, as the

348 J. LI, J.F. CAI AND H.K. ZHAO

same performance is obtained for large-scale case. We fix the penalty β = 1 in our ADMM

methods. The initialization X0 for all tested algorithms is set to the sparsity matrix PΩ(M̃),

and respectively we generate U0,Σ0,V0 from the top r left and right singular vectors and

singular values of PΩ(M̃). Note that the effect of the initialization does not have a significant

influence on the convergence of the algorithms. To inspect the algorithmic progress, we will

monitor how the RMSE (root mean square error) deceases, where the RMSE is defined as

RMSE(X,M) =

√

∑

i,j(Xij −Mij)2

mn
.

4.1. Gaussian matrices

We first illustrate the performance of the proposed algorithms for problems where the un-

derlying low-rank matrix is generated by the product of two Gaussian matrices. Let r be the

rank. We form U ∈ R
m×r and V ∈ R

n×r with their entries drawn from i.i.d. Gaussian, and

define M = UV T . Obviously, M is of rank r. Furthermore, from random matrix theory, M

is well-conditioned, i.e., the ratio of the first and r-th singular values of M is small. These

Gaussian low-rank matrices are widely used in the literature [12,13,23,26] for testing numerical

performances of different algorithms. The tested matrix size is 500× 500 with known rank 10.

The oversampling (OS) ratio is set to 4.

We test the performance of the algorithms under different noise settings, namely, p = 5%

or p = 20%, and µ = σ = 0.1 or µ = σ = 1. Recall that p is the ratio of the outlier noise,

and µ and σ relate to the severeness of the noise. Larger p, µ, σ mean more severe noise hence

harder problems. We report in Fig. 4.1 the RMSE against the run time all the algorithms.

We see that, in all cases, both the inexact projections can accelerate the algorithms with the

exact projection, and there is no significant difference between the two inexact projections. For

the hard problems where p = 20% and µ = σ = 1, our proposed algorithms ADMM2 and

ADMM3 are the fastest among all tested algorithms. Most importantly, the convergence curve

of the proposed algorithms ADMM2 and ADMM3 do not change too much with respect to the

severeness of the noise. As a comparison, the performance of other algorithms (e.g. AOPMC)

decay drastically when the noise becomes more severe. This indicates the proposed algorithms

ADMM2 and ADMM3 are more robust to the noise and more suitable for matrix completion

under severe noise with outliers. They outperform other algorithms for harder problems.

To further demonstrate this, we consider two more challenging problems: p = 5%, µ = σ = 5,

and oversampling ratio 4; and p = 5%, µ = σ = 1, the oversampling ratio is 2. The results are

displayed in Fig. 4.2. The conclusion is still the same: our proposed algorithms ADMM2 and

ADMM3 converges faster than other algorithms.

We also compare all algorithms for difference p and µ = σ. The noise ratio p is chosen from

0 to 20% with step size 2.5%. The µ and σ are chosen from {0.1, 1, 2, 5, 10}. For each parameter

setting, we generate ten random test problems, and report the average RMSE after 20 seconds

run of a particular algorithm. The results are summaized in Table 4.1, where we only list the

results for µ = σ = 1 and µ = σ = 5. For other parameters, the performance is similar. Since

the two inexact projection perform similar, we report only results of AP3 and ADMM3. We

can see that, for larger probability p ≥ 17.5%, the proposed ADMM3 algorithm outperforms

all other methods. Again, contrary to other algorithms (e.g. AOPMC), the performance of

the ADMM3 algorithm is insensitive to the severeness of the noise. Therefore, our ADMM3

algorithm has the advantage of no tune parameter and stability. To further verify the scalability

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 349

0 1 2 3 4 5 6 7 8 9 10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(a) noise ratio p=5%

0 2 4 6 8 10

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(b) noise ratio p=20%

0 2 4 6 8 10 12

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

0 1 2 3 4 5 6 7 8 9 10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

Fig. 4.1. Convergence curves for Gaussian matrix completion, outliers of top is created with µ = σ =

0.1, The bottom is created with µ = σ = 1.

Table 4.1: Comparison of tested methods for 500× 500 matrices.

µ = σ = 1 µ = σ = 5

p AP3 ADMM3 RMC AOPMC GRASTA AP3 ADMM3 RMC AOPMC GRASTA

0.000 3.09e-15 1.44e-15 9.32e-07 5.98e-11 8.30e-05 3.09e-15 1.44e-15 9.32e-07 5.98e-11 6.28e-07

0.025 8.32e-04 1.88e-15 8.42e-07 2.75e-08 3.90e-05 1.45e-04 1.52e-15 8.42e-07 8.04e-01 2.45e-03

0.050 4.45e-03 3.17e-14 1.27e-06 2.47e-08 2.99e-04 5.81e-03 1.68e-07 3.22e-03 1.22e+00 4.97e-03

0.075 6.31e-03 8.29e-08 1.78e-06 2.58e-08 1.86e-03 1.50e-02 8.57e-08 2.95e-02 1.42e+00 5.55e-03

0.100 9.44e-03 5.98e-07 2.08e-06 2.55e-08 1.40e-03 1.87e-02 4.70e-07 3.01e-01 1.61e+00 8.75e-03

0.125 7.78e-03 6.93e-07 3.26e-04 2.87e-08 3.64e-03 3.63e-02 3.52e-07 8.82e-01 1.76e+00 1.52e-02

0.150 9.97e-03 1.35e-06 3.11e-04 3.92e-08 4.32e-03 3.48e-02 4.51e-07 9.89e-01 1.84e+00 2.34e-02

0.175 1.05e-02 9.16e-07 6.92e-04 8.67e-05 7.75e-03 9.67e-02 2.54e-07 1.03e+00 1.97e+00 4.49e-02

0.200 1.90e-02 1.39e-06 3.58e-03 1.62e-03 1.53e-02 1.60e-01 5.63e-07 1.03e+00 2.04e+00 4.75e-02

of our proposed methods, we also test matrix with size of 1000× 1000 and with known rank of

10, 20, 30 and 50. The parameters are set to as before. As for median dimension 500×500 case,

our proposed method ADMM3 performs much better than other methods when the corrupted

noise is large, such as µ = σ = 5 and corruption fraction p is large. We list the comparisons

with other methods for cases µ = σ = 5 in Tables 4.2 and 4.3. These tests demonstrate the

efficiency of our method ADMM3.

350 J. LI, J.F. CAI AND H.K. ZHAO

0 1 2 3 4 5 6 7 8 9 10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(a) probability p = 5%, µ = σ = 5

0 1 2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(b) probability p = 5%, oversampling OS=2

Fig. 4.2. Convergence curves for Gaussian matrix completion.

Table 4.2: Comparison of tested methods for 1000 × 1000 matrices with µ = σ = 5.

rank r = 10 rank r = 20

p AP3 ADMM3 RMC AOPMC GRASTA AP3 ADMM3 RMC AOPMC GRASTA

0.000 7.98e-08 3.68e-08 2.29e-06 1.12e-12 9.64e-07 3.04e-07 2.12e-07 6.26e-08 1.12e-11 1.00e-05

0.025 2.07e-01 6.05e-08 8.68e-07 9.30e-01 7.90e-05 1.84e-01 1.91e-06 8.08e-07 4.07e-01 1.79e-05

0.050 3.69e-01 3.36e-07 1.28e-06 1.37e+00 5.85e-04 3.35e-01 8.65e-06 1.21e-06 8.06e-01 2.13e-05

0.075 5.24e-01 2.39e-06 2.74e-01 1.58e+00 2.56e-03 4.96e-01 1.22e-05 1.58e-06 1.34e+00 1.99e-04

0.100 6.81e-01 1.86e-06 1.46e-01 1.72e+00 3.74e-03 6.60e-01 1.34e-05 1.96e-06 1.45e+00 3.21e-04

0.125 8.33e-01 5.86e-06 3.92e-01 1.83e+00 7.94e-03 8.12e-01 1.62e-05 6.34e-02 1.65e+00 3.09e-04

0.150 9.35e-01 9.08e-06 9.84e-01 1.90e+00 1.41e-02 9.30e-01 2.54e-05 3.18e-01 1.78e+00 5.93e-04

0.175 9.96e-01 2.05e-05 1.01e+00 2.07e+00 4.43e-02 1.01e+00 2.74e-05 1.01e+00 1.91e+00 4.02e-03

0.200 1.01e+00 4.96e-05 1.01e+00 2.09e+00 5.78e-02 1.03e+00 4.69e-05 1.02e+00 1.99e+00 1.24e-02

Table 4.3: Comparison of tested methods for 1000 × 1000 matrices with µ = σ = 5.

rank r = 30 rank r = 50

p AP3 ADMM3 RMC AOPMC GRASTA AP3 ADMM3 RMC AOPMC GRASTA

0.000 5.22e-07 2.89e-07 6.70e-08 8.43e-08 6.62e-05 1.85e-07 7.43e-08 1.06e-06 9.34e-10 4.03e-04

0.025 1.69e-01 1.58e-05 7.94e-07 3.78e-01 1.17e-04 1.61e-01 2.28e-05 3.10e-04 7.07e-01 7.08e-04

0.050 3.24e-01 2.71e-05 1.19e-06 6.70e-01 2.70e-04 3.13e-01 4.44e-05 4.58e-04 1.01e+00 1.47e-03

0.075 4.90e-01 3.26e-05 1.55e-06 1.29e+00 4.25e-04 4.86e-01 5.91e-05 5.99e-04 1.24e+00 1.59e-02

0.100 6.70e-01 3.91e-05 3.87e-05 1.47e+00 8.57e-04 6.75e-01 8.39e-05 7.34e-04 1.43e+00 4.18e-03

0.125 8.35e-01 4.69e-05 1.31e-01 1.62e+00 1.97e-03 8.75e-01 1.00e-04 1.76e-02 1.60e+00 6.78e-03

0.150 9.66e-01 6.23e-05 3.93e-01 1.77e+00 2.76e-03 1.03e+00 1.36e-04 6.90e-02 1.74e+00 1.05e-02

0.175 1.04e+00 6.59e-05 1.02e+00 1.89e+00 7.08e-03 1.16e+00 1.61e-04 6.11e-01 1.88e+00 1.74e-02

0.200 1.07e+00 1.25e-04 1.06e+00 2.00e+00 2.77e-02 1.20e+00 2.54e-04 1.14e+00 1.99e+00 3.26e-02

4.2. Matrices with exponentially decaying singular values

We test also matrix completion problems where the underlying low-rank matrix has expo-

nentially decaying singular values. We create two random matrices U ∈ R
m×r and V ∈ R

n×r

with i.i.d. Gaussian entries. Let orth(U) and orth(V) be their orthogonalization respectively.

A non-negative diagonal matrix Σ with exponentially decaying diagonals is generated by the

Matlab command logspace(-10*log10(CN),0,r), where CN is a parameter controlling the

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 351

0 2 4 6 8 10 12

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(a) probability p = 1%, µ = σ = 1

0 2 4 6 8 10 12

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
M

S
E

AP

AP3

AP2

ADMM

ADMM3

ADMM2

RMC

AOPMC

GRASTA

(b) probability p = 1%, µ = σ = 5

Fig. 4.3. Convergence curves for matrix completion with decaying singular value.

rate of decay. Then, the testing low-rank matrix is defined by M = orth(U) · Σ · orth(V)T .

Obviously, these M have large condition numbers. Thus, they are more challenging testing

examples than those in the previous section. The tested algorithms are the same as before.

The underlying low-rank matrix is of size 500 with rank 10. The oversampling ratio is 4.

The noise ratio is set to 1% and the magnitude of the noise are µ = σ = 1 and µ = σ = 5

respectively. The noise can not be set large for this hard completing problem. We plot the

convergence curves in terms of computational time in Fig. 4.3. We see again both the two

inexact projections discussed in Section 3 brings significant acceleration in ADMM and AP.

Different to the case of well-conditioned underlying low-rank matrices, the inexact projection

via tangent space projection gains more acceleration than the inexact projection via one-step

of power iteration. That is, ADMM3 and AP3 are faster than their counterparts ADMM2 and

AP3 respectively. Furthermore, the proposed algorithm ADMM3 is the fastest among all tested

algorithms.

For this harder case, the rank adaption is utilized in our ADMM algorithmic framework.

If the rank adaption is not applied. The recovery RMSE of ADMM method will stagnate at

the level of the RMC. From Fig. 4.3, the ADMM3 generally outperforms ADMM2. The rank

increasing is very straightforward for the exact projection ADMM and ADMM3. For exact

projection, we just locate SVD with additional rank. For ADMM3 inexact projection, we get

the rank r approximation is by truncating a 2r × 2r matrix. The ADMM2 inexact projection

generally appends a random column, which will result in the increasing of the RMSE temporally.

Overall, the ADMM3 outperforms other methods for the hard matrix completion.

5. Conclusion

We consider the algorithm for robust matrix completion with a fraction of observed entries

corrupted by outlier noise. We first formulate the robust matrix completion as a set feasibili-

ty problem and solve it by the alternating projection algorithm. We then devise the ADMM

framework with rank constraint and ℓ1-norm data fidelity. The ADMM algorithm uses only

a small amount of memory, and it involves only sparse matrices and low-rank matrices. Con-

sequently, our ADMM framework scales well for large-scale problem. Though there exist the

penalty strength and stepsize to tune in our ADMM algorithmic framework, the performance

is not sensitive to the parameter. Once we fix the penalty and stepsize parameters, unlike the

352 J. LI, J.F. CAI AND H.K. ZHAO

related works for robust matrix completion, our framework is almost parameter free.

To save computational cost, we propose two inexact projections to accelerate the truncated

SVD, the most time-consuming step in the ADMM algorithm. By embedding the inexact

projections into ADMM, we form obtain our proposed algorithms ADMM2 and ADMM3. The

numerical simulation validates the robustness and efficiency of the proposed algorithm. Both

inexact projections are effective in accelerating the original ADMM algorithm. Furthermore,

the proposed algorithms ADMM2 and ADMM3 outperforms state-of-the-art robust matrix

completion algorithms, especially for those challenging test problems with severe noise, small

oversampling ratio, and/or ill-conditioned underlying matrix.

Acknowledgments. JL was supported by China Postdoctoral Science Foundation grant No.

2017M620589. JFC was supported in part by Hong Kong Research Grant Council (HKRGC)

grants 16300616 and 16306317. HK Zhao was supported in part by NSF grants DMS-1418422

and DMS-1622490.

References

[1] P.A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Prince-

ton University Press, 2009.

[2] L. Balzano, R. Nowak, and B. Recht, Online identification and tracking of subspaces from highly

incomplete information, 26 (2010), 704–711.

[3] L. Balzano, A. Szlam, and J. He, Incremental gradient on the grassmannian for online foreground

and background separation in subsampled video, In Computer Vision and Pattern Recognition,

(2012), 1568–1575.

[4] J. Bennett, S. Lanning, et al, The netflix prize, In Proceedings of KDD Cup and Workshop,

volume 2007, p 35. New York, NY, USA, 2007.

[5] N. Boumal and P.a. Absil, Rtrmc: A riemannian trust-region method for low-rank matrix com-

pletion, In Advances in Neural Information Processing Systems, (2011), 406–414.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al, Distributed optimization and statistical

learning via the alternating direction method of multipliers, Foundations and Trends R© in Machine

learning, 3:1 (2011), 1–122.

[7] H. Cai, J.F. Cai, and K. Wei, Accelerated alternating projections for robust principal component

analysis, arXiv preprint arXiv:1711.05519, 2017.

[8] J.F. Cai, E.J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix completion.

SIAM J. Optim., 20:4 (2010), 1956–1982.

[9] L. Cambier and P.A. Absil, Robust low-rank matrix completion by riemannian optimization,

SIAM J. Sci. Comput., 38:5 (2016), S440–S460.

[10] E.J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis, J. ACM, 58:3

(2011), 11.

[11] E.J. Candes and Y. Plan, Matrix completion with noise, Proc. IEEE, 98:6 (2010), 925–936.

[12] E.J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of

Computational mathematics, 9:6 (2009), 717.

[13] E.J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE

Trans. Inf. Theory, 56:5 (2010), 2053–2080.

[14] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, Low-rank matrix recovery from errors and

erasures, In IEEE International Symposium on Information Theory Proceedings, 2011, 2313–2317.

[15] Y. Chen and M.J. Wainwright, Fast low-rank estimation by projected gradient descent: General

statistical and algorithmic guarantees, arXiv preprint arXiv:1509.03025, 2015.

Robust Inexact Alternating Optimization for Matrix Completion with Outliers 353

[16] Y. Chen, H. Xu, C. Caramanis, and S. Sanghavi, Robust matrix completion with corrupted

columns, IEEE Trans. Inf. Theory, 62:1 (2011), 503–526.

[17] M.A. Davenport and J. Romberg, An overview of low-rank matrix recovery from incomplete

observations, IEEE J. Sel. Topics Signal Process., 10:4 (2016), 608–622.

[18] Duchi, John, ShalevShwartz, Shai, Singer, Yoram, Chandra, and Tushar, Efficient projections

onto the l1-ball for learning in high dimensions, In International Conference on Machine Learning,

2008, 272–279.

[19] A. Eriksson and A. Van Den Hengel, Efficient computation of robust low-rank matrix approxima-

tions in the presence of missing data using the l 1 norm, In 2010 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2010, 771–778. IEEE.

[20] H. Gao, J.F. Cai, Z. Shen, and H. Zhao, Robust principal component analysis-based four-

dimensional computed tomography, Phys. Med. Biol., 56:11 (2011), 3181.

[21] R. Ge, J.D. Lee, and T. Ma, Matrix completion has no spurious local minimum, In Advances in

Neural Information Processing Systems, (2016), 2973–2981.

[22] D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inf.

Theory, 57:3 (2011), 1548–1566.

[23] M. Hardt, Understanding alternating minimization for matrix completion, In 2014 IEEE 55th

Annual Symposium on Foundations of Computer Science (FOCS), (2014), 651–660. IEEE.

[24] J. He, L. Balzano, and J.C.S. Lui, Online robust subspace tracking from partial information,

Mathematics, 2011.

[25] P. Jain, R. Meka, and I.S. Dhillon, Guaranteed rank minimization via singular value projection,

In Advances in Neural Information Processing Systems, (2010), 937–945.

[26] P. Jain, P. Netrapalli, and S. Sanghavi, Low-rank matrix completion using alternating minimiza-

tion, In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, (2013),

665–674. ACM.

[27] X. Jiang, Z. Zhong, X. Liu, and H.C. So, Robust matrix completion via alternating projection,

IEEE Signal Process. Lett., 24:5 (2017), 579–583.

[28] X. Li, Compressed sensing and matrix completion with constant proportion of corruptions, Con-

structive Approximation, 37:1 (2011), 73–99.

[29] Y.J. Liu, D. Sun, and K.-C. Toh, An implementable proximal point algorithmic framework for

nuclear norm minimization, Math. Program., 133:1 (2012), 399–436.

[30] C. Ma, K. Wang, Y. Chi, and Y. Chen, Implicit regularization in nonconvex statistical estimation:

Gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution,

arXiv preprint arXiv:1711.10467, 2017.

[31] S. Ma, D. Goldfarb, and L. Chen, Fixed point and bregman iterative methods for matrix rank

minimization, Math. Program., 128:1 (2011), 321–353.

[32] M. Michenkov, Numerical algorithms for low-rank matrix completion problems, 2 (2011), 1–24.

[33] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, Fixed-rank matrix factorizations and

riemannian low-rank optimization, Computational Statistics, 29:3-4 (2014), 591–621, nov 2013.

[34] B. Mishra and R. Sepulchre, R3mc: A riemannian three-factor algorithm for low-rank matrix

completion, In 53rd IEEE Conference on Decision and Control, (2014), 1137–1142.

[35] P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, Non-convex robust pca, In

Advances in Neural Information Processing Systems, (2014), 1107–1115.

[36] B. Recht, A simpler approach to matrix completion, Journal of Machine Learning Research,

12:Dec (2011), 3413–3430.

[37] B. Recht, M. Fazel, and P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization, SIAM review, 52:3 (2010), 471–501.

[38] J.D. Rennie and N. Srebro, Fast maximum margin matrix factorization for collaborative predic-

tion, In Proceedings of the 22nd International Conference on Machine Learning, (2005), 713–719.

ACM.

354 J. LI, J.F. CAI AND H.K. ZHAO

[39] R. Sun and Z.Q. Luo, Guaranteed matrix completion via non-convex factorization, IEEE Trans.

Inf. Theory, 62:11 (2016), 6535–6579.

[40] J. Tanner and K. Wei, Normalized iterative hard thresholding for matrix completion, SIAM J.

Sci. Comput., 35:5 (2013), S104–S125.

[41] K.C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized

linear least squares problems, Pacific Journal of Optimization, 6:15 (2010), 615–640.

[42] B. Vandereycken, Low-rank matrix completion by riemannian optimization, SIAM J. Optim.,

23:2 (2013), 1214–1236.

[43] K. Wei, J.F. Cai, T.F. Chan, and S. Leung, Guarantees of riemannian optimization for low rank

matrix completion, arXiv preprint arXiv:1603.06610, 2016.

[44] K. Wei, J.F. Cai, T.F. Chan, and S. Leung, Guarantees of riemannian optimization for low rank

matrix recovery, SIAM J. Matrix Anal. Appl., 37:3 (2016), 1198–1222.

[45] Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix completion by a

nonlinear successive over-relaxation algorithm, Mathematical Programming Computation, (2012),

1–29.

[46] M. Yan, Y. Yang, and S. Osher, Exact low-rank matrix completion from sparsely corrupted entries

via adaptive outlier pursuit, J. Sci. Comput., 56:3 (2013), 433–449.

[47] Y. Yang, Y. Feng, and J. Suykens, A nonconvex relaxation approach to robust matrix completion,

Esat.kuleuven.ac.be.

[48] X. Yi, D. Park, Y. Chen, and C. Caramanis, Fast algorithms for robust pca via gradient descent,

In Advances in neural information processing systems, (2016), 4152–4160.

