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Abstract. A bounded high order upwind scheme is presented for the modified
Burgers’ equation by using the normalized-variable formulation in the finite vol-
ume framework. The characteristic line of the present scheme in the normalized-
variable diagram is designed on the Hermite polynomial interpolation. In order to
suppress unphysical oscillations, the present scheme respects both the TVD (total
variational diminishing) constraint and CBC (convection boundedness criterion)
condition. Numerical results demonstrate the present scheme possesses good ro-
bustness and high resolution for the modified Burgers’ equation.
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1 Introduction

The modified Burgers’ equation (MBE) has the form as follows

∂u
∂t

+ um ∂u
∂x

= ν
∂2u
∂x2 , a ≤ x ≤ b, t ≥ t0, (1.1)

where m is a positive integer with m ≥ 1. The case with m = 1 is the so-called vis-
cous Burgers’ equation which is the fundamental equation in fluid dynamics. The
MBE equation possesses the strongly nonlinear terms in the governing equation mod-
eling many practical transport problems such as ion reflection at quasi-perpendicular
shocks, nonlinear waves in a medium with low-frequency pumping or absorption,
wave processes in thermoelastic media, turbulence transport, transport and disper-
sion of pollutants in rivers and sediment transport, etc. Recent researches on the
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theoretical analysis of the MBE equation can be found in the references [1–4]. Mean-
while, numerical solutions of the MBE equations were performed by using the col-
lection method [5], the B-spline finite element methods [6, 7], the B-spline collocation
methods [8–11], the El-Gendi method [12], the Lattice Boltzmann method [13] and the
fourth-order compact scheme [14].

One of key issues in the numerical solution of the MBE equation is the discretiza-
tion of the strongly nonlinear convection term um∂u/∂x. Stable and bounded con-
vection schemes are usually used to guarantee the numerical solutions convergent to
the physical solutions. Despite the well-known lower-order schemes, such as the first-
order upwind (FOU) and Power-law scheme, are unconditionally bounded and stable,
they may often generate unsatisfactory numerical diffusion to smear the computed
solutions. To remedy this defect, second-order and higher-order schemes, such as
the central difference (CD), second-order upwind (SOU) [15], quadratic upstream in-
terpolation for convective kinematics (QUICK) [16], cubic upwind interpolation (CUI)
[17,18] and Lax-Wendroff [19], were proposed for the approximation of the convection
terms. However, none of these linear high-order (HO) schemes possess boundedness
according to the Godunov’s order barrier theorem [20]. They tend to cause unphysical
oscillations in the vicinity of steep gradients and discontinuities, which would destroy
numerical results and lead to numerical instability.

Combination of a boundedness property with the HO schemes produces the high-
resolution (HR) schemes [21, 22]. The HR schemes can provide good resolution of
steep gradients and discontinuities without introducing excessive numerical diffusion
and unphysical oscillations in the solution. One of the principal boundedness criteria
is the total variational diminishing (TVD) constraint proposed by Harten [21]. Based
on the TVD constraint, the limiter function presented by Sweby [22] and Roe [20]
are introduced to ensure the boundedness of the numerical schemes. Many limiter
functions were proposed since then, such as MINMOD by Sweby [22], SUPERBEE by
Roe [20] and MUSCL by van Leer [23, 24] and so on. Another significant technique
is the convection boundedness criterion (CBC) by Gaskell and Lau [25] by using the
normalized variable (NV) formulation of Leonard [26]. Numerical schemes satisfying
the CBC is to be of the convection boundedness. From then on, many schemes were
presented by using the CBC condition, such SMART [25], CLAM [27], STOIC [28],
HOAB [29], WACEB [30], CUBISTA [45] and so on. Further researches by Yu et al. [32],
Wei et al. [29] and Hou et al. [33] indicated that the CBC of Gaskell and Lau focused
only on the boundedness and paid no attention to any restriction of the accuracy. To
remedy this drawback, Wei et al. [29] and Hou et al. [33] proposed an improved edition
named the BAIR condition (Boundedness, Accuracy and Interpolative Reasonable-
ness) to guarantee both boundedness and high accuracy of the convection schemes
. The CBC and BAIR are basically used to design the bounded schemes for the in-
compressible flows and steady problems. In contrast to the TVD schemes, the CBC
schemes may be unbounded in simulating some specific problems like the shock tube
flows although they work well in the passive scalar problems [34, 35]. In spite of
this, the HR schemes can be easily constructed in the normalized variable formulation
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(NVF) by translating the CBC or BAIR condition into the CBC region in the normal-
ized variable diagram (NVD).

The aim of the present paper is to design a high-order bounded schemes satisfying
both the TVD constraint and BAIR condition for the solutions of the modified Burg-
ers’ equations. The smooth characteristic line of the present scheme is designed on
the Hermite polynomial interpolation in the NV diagram. Numerical results demon-
strates the present scheme possesses high resolution for the nonlinear modified Burg-
ers’ equations.

2 Two Boundedness criteria and the NV formulation

The letters U, C, D and f in Fig. 1 denote the upwind, central, downwind mesh point
and the cell face on the uniform mesh, respectively. The cell-face value of the con-
vected variable can be predicted by using the so-called κ-scheme. The generic formu-
lation of the κ-scheme can be written as

ϕ f = ϕC + [ 1+κ
4 (ϕD − ϕC) +

1−κ
4 (ϕC − ϕU)], (2.1)

where the parameter κ ∈ [−1, 1] is to be chosen. Several well-known linear high-order
convection schemes are listed in Table 1 by setting different values of κ. According to
Leonard [26], the original variable ϕ can be normalized on the uniform mesh by

ϕ̂ =
ϕ − ϕU

ϕD − ϕU
, (2.2)

Using this notation, the κ-schemes (2.1) can be reformed as

ϕ̂ f = (1 − 1
2

κ)ϕ̂C + 1
4 (1 + κ), (2.3)

which states that the normalized cell-face value ϕ̂ f depends only on the value ϕ̂C. The
NV formulations of the mentioned linear convection schemes are listed in Table 1.
It is noted that none of them is bounded. All of these linear schemes with at least
second-order accuracy have to suffer from unphysical oscillations in the vicinity of
discontinuities and steep gradients in the solution, as predicted by the Godunov’s
theorem [36]. Thus, some a boundednesss criterion is to be combined with the linear
high-order schemes to design the bounded high-resolution schemes.

Figure 1: The cell face and three neighboring points for the normalized variable formulation
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Table 1: The linear convection schemes and the NV formulations.

Schemes κ Non-Normalized Normalized
SOU -1 ϕ f =

3
2 ϕC − 1

2 ϕU ϕ̂ f =
3
2 ϕ̂C

CD 1 ϕ f =
1
2 ϕC + 1

2 ϕD ϕ̂ f =
1
2 ϕ̂C + 1

2
Fromm 0 ϕ f = ϕC + 1

4 (ϕD − ϕU) ϕ̂ f = ϕ̂C + 1
4

QUICK 1
2 ϕ f =

3
4 ϕC + 3

8 ϕD − 1
8 ϕU ϕ̂ f =

3
8 + 3

4 ϕ̂C
CUI 1

3 ϕ f =
5
6 ϕC + 1

3 ϕD − 1
6 ϕU ϕ̂ f =

5
6 ϕ̂C + 1

3

Gaskell and Lau [25] proposed the CBC for convection discretization to possess
the boundednesss. The CBC is defined mathematically in the NV formulation by the
following conditions 

ϕ̂C ≤ ϕ̂ f = f (ϕ̂C) ≤ 1, if 0 < ϕ̂C < 1 ,
ϕ̂ f = ϕ̂C, if ϕ̂C ≥ 1,
ϕ̂ f = ϕ̂C, if ϕ̂C ≤ 0.

(2.4)

As shown in Fig. 2, the shaded area and the line passing through the points (0, 1)
and (1, 1) consists in the CBC region. Afterwards, Wei et al. [29] and Hou et al. [33]
proposed the BAIR (Boundedness, Accuracy and Interpolative Reasonableness) as the
sufficient and necessary condition to assure both the boundedness and at least second-
order accuracy of the convection schemes. The BAIR condition can be mathematically
written as 

3
2 ϕ̂C ≤ f (ϕ̂C) ≤ 1

2(ϕ̂C + 1), if 0 < ϕ̂C < 1
2 ,

1
2 (ϕ̂C + 1) ≤ f (ϕ̂C) ≤ 3

2 ϕ̂C and f (ϕ̂C) ≤ 1, if 1
2 ≤ ϕ̂C < 1,

ϕ̂ f = ϕ̂C, if ϕ̂C ≥ 1,
ϕ̂ f = ϕ̂C, if ϕ̂C ≤ 0.

(2.5)

Fig. 2 illustrates the relationship of the CBC and BAIR, which shows that the convec-
tion scheme obeying the BAIR have to be the CBC scheme, but not vice versa.

Figure 2: The relationship of the CBC region and the characteristic lines of the linear HO schemes.
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Figure 3: The TVD (shaded) and CBC-BAIR (hatched) regions.

Another important boundedness criterion for the convection treatment is the to-
tal variational diminishing (TVD) constraint by Harten [21]. The TVD constraint can
guarantee that the numerical solution of the conservative scheme is free from the spu-
rious oscillations and convergent to the weak solution of the conservation law. In
summary, the total variation of a numerical solution {ϕi} is defined by

TV(ϕ) = ∑
i
|ϕi+1 − ϕi|, (2.6)

and a numerical scheme is said to be TVD if it satisfies

TV(ϕn+1) ≤ TV(ϕn). (2.7)

It is noted that the TVD constraint was converted by Sweby [22] to a set of restrictions
as follows

0 ≤ Ψ(r) ≤ min(2r, 2), for r > 0, (2.8a)
Ψ(r) = 0, for r ≤ 0, (2.8b)

where Ψ(r) is the limiter function and r expresses a local gradient ratio defined as

r = (
∂ϕ

∂x
)e/(

∂ϕ

∂x
) f , (2.9)

where r is simplified on the uniform mesh as

r =
ϕC − ϕU

ϕD − ϕC
, (2.10)

and the NV formulation reads as follows

r =
ϕ̂C

1 − ϕ̂C
. (2.11)
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From these equations, the set of the TVD constraints can be rewritten in the NV for-
mulation as

ϕ̂ f ≤ 1, and ϕ̂ f ∈ [ϕ̂C, 2ϕ̂C], 0 < ϕ̂C < 1,

ϕ̂ f = ϕ̂C, ϕ̂C ≥ 1,

ϕ̂ f = ϕ̂C, ϕ̂C ≤ 0.

(2.12)

The shaded area in Fig. 3 depicts the relationship between the TVD constraint and the
BAIR condition. After the convection scheme was presented in the NV formulation, its
corresponding limiter formulation can be also obtained by reforming its correspond-
ing NV formulation in the following equation

ϕ̂ f = ϕ̂C +
1
2

Ψ(r)(1 − ϕ̂C). (2.13)

It is observed in Figs. 2 and 3 that the characteristic lines of all the well-known linear
HO schemes go beyond the CBC (BAIR) and TVD regions in the NV diagram. It is
shown that neither the BAIR condition nor the TVD constraint holds for these linear
HO schemes.

3 Method

The generic form of the nonlinear HR scheme for the convection variable in the NV
formulation can be written as

ϕ̂ f = f (ϕ̂C). (3.1)

The following two properties hold for such schemes according to the Zijlema and
Wesseling’s conclusions [38].

• A characteristic line of a convection scheme in the NV diagram passing through
the point (1/2, 3/4) has second-order local truncation error.

• A characteristic line of a convection scheme in the NV diagram satisfying

f ( 1
2 ) =

3
4 , f ′( 1

2 ) = 1 − 1
2 κ,

possesses the same formal order of accuracy as the corresponding κ-scheme.
• A characteristic line of f (ϕ̂C) should be located into the TVD or CBC region for

ϕ̂C ∈ (0, 1).

Consequently, the smooth characteristic line of the proposed scheme needs to satisfy
the following condition

• It passes through three points (0, 0), (1/2, 3/4) and (1, 1) for ϕ̂C ∈ (0, 1).
• f ′(0) = θ1, f ′( 1

2 ) = 1 − 1
2 κ, f ′(1) = θ2.

Under this line, we employ the Hermite interpolation to design a five-degree polyno-
mial as the characteristic line of the proposed scheme.
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Figure 4: The illustration of the NV line of the HPUS scheme in the BAIR region.

κ is set to 1/2 so that the proposed scheme can mimic the performance of the QUICK
scheme which posses the third-order accuracy to approximating the cell face value
according to Leonard’s recommendations [26]. As shown in Fig. 3, the ranges of the
parameters θ1 and θ2 hold

3
2 ≤ θ1 ≤ 2, 0 ≤ θ2 ≤ 1

2 ,

so that the proposed scheme can respect both the TVD and BAIR. The present scheme
takes θ1 = 2 and θ2 = 0. In view of the above mentioned analysis, the proposed HPUS
scheme (high-order Hermite polynomial upwind scheme, HPUS) is given in the NV
formulation by

ϕ̂ f =

{
ϕ̂C(−4ϕ̂4

C + 10ϕ̂3
C − 8ϕ̂2

C + ϕ̂C + 2), 0 < ϕ̂C < 1,
ϕ̂C, elsewhere.

(3.2)

r
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Figure 5: The illustration of the flux limiter of the HPUS scheme in the Sweby second-order TVD region.
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Furthermore, the limiter function of the HPUS scheme is yielded according to Eqs.
(2.11) and (3.2) as follows

Ψ(r) = max{0,
(|r|+ r)(r3 + r2 + 5r + 1)

(1 + |r|)4 }. (3.3)

The characteristic line of the HPUS scheme in the NV diagram is plotted in Fig.
4, which shows that the HPUS scheme respects the TVD and BAIR. Additionally, the
profile of the HPUS’s limiter function depicted in Fig. 5 demonstrates that it falls into
the Sweby’s second-order TVD region, which indicates that the convection schemes
based on both the TVD constraint and BAIR condition can lead to the seond-order
TVD scheme. The detailed description of the present algorithm can be found in ’Ap-
pendix’.

4 Numerical results and discussions

4.1 Linear equations

The linear advection equation is one of the simplest hyperbolic conservation laws. It
describes the transport of the scalar quantity u with the constant characteristic speed
a. This equation can be written as

∂u
∂t

+ a
∂u
∂x

= 0, (4.1)

we solve the advection equation (4.1) with a smooth initial distribution described by

u(x, 0) = sin4(πx), (4.2)

on the computational domain [−1, 1].This test case is employed to the spatial accuracy
of the HPUS scheme. The periodic boundary condition is adopted for simple imple-
mentation of the numerical scheme. The computations are performed on the uniform
meshes with 20, 40, 80, 160 and 320 cells, respectively. Three norms are defined as
follows to measure the errors [44]

∥E∥Lp =
ΣN

i=1|ūi(computed)− ūi(exact)|p
N

, p = 1, 2,

∥E∥L∞ = max
1≤i≤N

|ūi(computed)− ūi(exact)|.
(4.3)

The order of accuracy can be calculated by the equation

order =
log EN/E2N

log 2
. (4.4)

The L1, L2 and L∞ errors are demonstrated in Table 2, as well as the correspond-
ing accuracy orders. It is seen from the table that the accuracy order of the HPUS
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Table 2: L1, L2 and L∞ errors and orders of HPUS for the advection equation with the smooth initial
distribution: u(x, 0) = sin4(πx).

Scheme Mesh L1 error L1 order L2 error L2 order L∞ error L∞ order
HPUS 20 1.712e-2 — 2.824e-2 — 7.746e-2 —

40 4.416e-3 1.94 7.620e-3 1.89 1.951e-2 1.99
80 9.161e-4 2.27 1.494e-3 2.35 4.397e-3 2.15
160 1.677e-4 2.45 2.678e-4 2.48 8.503e-4 2.37
320 2.469e-5 2.76 3.810e-5 2.81 1.300e-4 2.71

HOAB 20 1.710e-2 — 2.382e-2 — 5.915e-2 —
40 5.596e-3 1.62 7.480e-3 1.68 1.716e-2 1.79
80 1.764e-3 1.67 2.403e-3 1.66 7.403e-3 1.22
160 4.711e-4 1.91 7.568e-4 1.67 3.109e-3 1.26
320 1.203e-4 1.98 2.329e-4 1.71 1.355e-3 1.20

SMART 20 1.472e-2 — 2.444e-2 — 6.916e-2 —
40 3.347e-3 2.15 6.171e-3 1.99 2.480e-2 1.48
80 8.367e-4 2.01 1.667e-3 1.90 8.685e-3 1.52
160 2.162e-4 1.96 4.746e-4 1.82 3.044e-3 1.52
320 5.255e-5 2.05 1.348e-4 1.82 1.062e-3 1.53

scheme approximates 3 on three relevant norms, which mimics the performance of
the QUICK scheme as expected. We compare the HPUS scheme with another two
schemes, SMART [25],and HOAB [29]. It is seen that the accuaryc order of HPUS is
better than that of SMART and HOAB as the mesh is refined. It is noted that for the L∞
order, the HOAB scheme perform markedly worse than another three schemes. This
phenomenon may result from the fact that the HOAB scheme is the hybrid schemes
which have the slope change at the point (0.5, 0.75) in the NV formulation [45, 46].

4.2 The Burgers’ equation (m=1)

Owing to possessing the nonlinear convection and linear diffusion, the Burgers’ equa-
tion is always regarded as a significant case to the verification of the numerical scheme.
A typical initial distribution is specified by

u(x, 0) = u0(x) = sin(πx), (4.5)

and the periodic boundary condition reads as

u(0, t) = u(1, t) = 0. (4.6)

The exact Fourier solution is given by

u(x, t) = 2πν
∑∞

n=1 an exp(−n2π2νt)n sin(nπx)
a0 + ∑∞

n=1 an exp(−n2π2νt) cos(nπx)
, (4.7)

where the Fourier coefficients are

a0 =
∫ 1

0
exp(−(2πν)−1(1 − cos(πx)))dx,

an =
∫ 1

0
exp(−(2πν)−1(1 − cos(πx))) cos(nπx)dx.

(4.8)
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Table 3: Comparison of the numerical and exact solutions at ten points for the Burgers’ equation with
ν = 1.0 at t = 0.1.

numerical solutions on different meshes
x N = 20 N = 40 N = 80 N = 160 Exact

0.1 0.10969 0.10942 0.10955 0.10954 0.10954
0.2 0.21019 0.20956 0.20981 0.20980 0.20979
0.3 0.29236 0.29158 0.29193 0.29190 0.29190
0.4 0.34851 0.34755 0.34796 0.34793 0.34792
0.5 0.37223 0.37118 0.37162 0.37159 0.37158
0.6 0.35976 0.35867 0.35909 0.35906 0.35905
0.7 0.31059 0.30959 0.30995 0.30992 0.30991
0.8 0.22835 0.22759 0.22785 0.22783 0.22782
0.9 0.12098 0.12057 0.12071 0.12069 0.12069

Table 4: Comparison of the numerical solution at different times for the Burgers’ equation with ν = 0.01.

numerical solutions by different schemes
x t Hassanien [39] Kutluay [40] Xu [41] HPUS Exact

0.25 0.4 0.3419 0.3424 0.3419 0.3419 0.3419
0.6 0.2690 0.2691 0.2689 0.2690 0.2690
0.8 0.2215 0.2215 0.2215 0.2215 0.2215
1.0 0.1881 0.1881 0.1882 0.1882 0.1882
3.0 0.0751 0.0751 0.0751 0.0751 0.0751

0.50 0.4 0.6607 0.6715 0.6607 0.6608 0.6607
0.6 0.5294 0.5341 0.5294 0.5294 0.5294
0.8 0.4391 0.4414 0.4391 0.4391 0.4391
1.0 0.3744 0.3757 0.3744 0.3744 0.3744
3.0 0.1522 0.1502 0.1502 0.1502 0.1502

0.75 0.4 0.9103 0.9468 0.9103 0.9104 0.9103
0.6 0.7672 0.7847 0.7672 0.7673 0.7672
0.8 0.6474 0.6566 0.6474 0.6474 0.6474
1.0 0.5561 0.5614 0.5560 0.5561 0.5561
3.0 0.2248 0.2250 0.2248 0.2248 0.2248

Table 5 lists the numerical solutions at ten selected points for the viscosity ν = 1.0
at t = 0.1. Compared to the exact solutions, it can be seen that the considerately
accurate results are obtained on the mesh size h = 1/160. For the case with ν = 0.01 at
different five time instants, numerical results were obtained by using the forth-order
difference scheme by Hassanien et al. [39], the explicit difference scheme by Kutluay
et al. [40] and the B-spline scheme by Xu et al. [41]. Table 4 shows comparison between

Table 5: Comparisons of results by the different schemes for the modified Burgers’ equation with m = 2
and ν = 0.005 at four time instants.

t = 2 t = 4 t = 6 t = 10
ν = 0.005 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

HPUS 0.22672 0.58119 0.18776 0.42987 0.16412 0.33007 0.13917 0.22889
[5] 0.25786 0.72264 0.25277 0.55445 0.22569 0.43082 0.18735 0.30006
[10] 0.22651 0.57998 0.18816 0.42940 0.16460 0.32897 0.13959 0.22885
[14] 0.22653 0.58027 0.18819 0.42949 0.16461 0.32993 0.13524 0.22874
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Figure 6: Comparison of numerical (circled lines) and exact (solid lines) solutions for the Burgers’ equation
with different viscosity coefficients at selected time instants: (a) ν = 1.0 (b) ν = 0.1 (c) ν = 0.01. The
dashed line in (d) denotes the numerical solution for ν = 0.001 at several time instants.
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Figure 7: Computed relative errors: (a) ν = 0.1 (b) ν = 0.01.

the present results and referenced results on the mesh size h = 1/100. It is concluded
that the numerical solutions by the second-order HPUS scheme are as good as the
ones by the higher-order schemes [39, 41] on the same mesh size. The present scheme
possesses better efficiency than the compared schemes. Figs. 8(a)-6(c) demonstrate
the curves of both the numerical and exact solutions for ν = 1.0, 0.1, 0.01 at different
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Figure 8: The exact (solid) and numerical (dotted) solution profiles for the modified Burgers’ equation with
m = 2 at various time instants. The highest dashed curves show the exact initial solutions at t = 1.

time instants, respectively. These plots show that the numerical solutions are in good
agreement with the exact ones. For the case of ν = 0.001, the curves of the numerical
solutions are plotted in Fig. 6(d) since the Fourier series solution is not available for
ν < 0.01 due to its slow convergence. It can be seen that the numerical solution curves
show the correct physical behavior in this case. Fig. 7 plots the relative errors of the
test case with ν = 0.1 and ν = 0.01 at two selected time instants, respectively. The
smaller relative errors are obtained for the test case with the higher viscosity. The
higher values of the relative error appear near the boundary layer especially for the
smaller viscosity.

4.3 The MBE (m=2)

The modified Burgers’ equation with m = 2 has the exact solution as follows

u(x, t) =
x
t
[1 +

√
t

t0
exp(

x2

4νt
)]−1, 0 ≤ x ≤ 1, t ≥ t0, (4.9)

with the constant prescribed as 0.5 in this case. The computation interval is set to
[0, 1]. The initial distribution is obtained by setting the equation (4.9) at the time t=1.
The mesh size equals 1/1000. The absolute errors between the numerical and exact
solutions are computed for two different values of the viscosity, ν = 0.005, 0.01 and
measured by using the L2 norm and the L∞ norm, respectively. In Tables 5 and 6,
the computed errors by the HPUS scheme are compared to the ones published in the

Table 6: Comparisons of results by the different schemes for the modified Burgers’ equation with m = 2
and ν = 0.01 at four time instants.

t = 2 t = 4 t = 6 t = 10
ν = 0.01 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

HPUS 0.37892 0.81778 0.31645 0.60575 0.32533 0.52579 0.54627 1.28123
[5] 0.52308 1.21698 0.51625 0.93136 0.49023 0.72249 0.64007 1.28124
[10] 0.37932 0.81680 0.31724 0.60537 0.32602 0.52579 0.54701 1.28125
[14] 0.37920 0.81669 0.31548 0.60556 0.27314 0.46499 0.19337 0.30183
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references [5, 10, 14]. The comparisons demonstrate that under the same mesh, the
present results agree well with the ones by the higer-order schemes in [10, 14] and are
much better than the ones in [5]. Fig. 8 illustrates the exact and numerical solution
profiles for ν = 0.005, 0.01 at various time instants. It can be observed that the differ-
ence between the exact and numerical profiles gets to be indistinguishable as the time
increases.

4.4 The MBE (m=3)

The modified equation with m = 3 is solved by using the following initial condition

u(x, 0) = A sin(
πx
d
), (4.10)

where the parameters A = 1 and d = π. It has an asymptotic solution of the form

u(x, t) = e−kt f0(x, t) + e−4kt f1(x, t) + e−7kt f2(x, t) + · · · , (4.11)

where the old age constant A1 = 0.365366 and

f0(x, t) = A1 sin(
πx
d
), (4.12a)

f1(x, t) = −
A4

1π

4d
t sin(

2πx
d

) +
A4

1d
96νπ

sin(
4πx

d
) = B1t sin(

2πx
d

) + B2 sin(
4πx

d
), (4.12b)

f2(x, t) = g3(t) sin(
πx
d
) + g4(t) sin(

3πx
d

) + g5(t) sin(
5πx

d
) + g6(t) sin(

7πx
d

), (4.12c)

g3(t) = − d2

6νπ2 [D1t + E1 +
d2D1

6νπ2 ], g4(t) =
d2

2νπ2 [D2t + E2 −
d2D2

2νπ2 ] (4.12d)

g5(t) =
d2

18νπ2 [D3t + E3 −
d2D3

18νπ2 ], g6(t) =
d2E4

42νπ2 (4.12e)

D1 =
A3

1B1π

4d
, D2 = −

9A3
1B1π

8d
, D3 =

5A3
1B1π

8d
(4.12f)

E1 =
A3

1B2π

8d
, E2 =

9A3
1B2π

8d
, E3 = −

15A3
1B1π

8d
(4.12g)

E4 =
7A3

1B2π

8d
, k =

νπ2

d2 (4.12h)

In Table 7, the absolute errors of results by the HPUS scheme are compared to the ones
in [13,14] at seven selected time instants for ν = 0.005 and the mesh size h = 1/200. It

Table 7: Comparisons of results by the different schemes for the modified Burgers’ equation with m = 3
and ν = 0.005 at four time instants.

ν = 0.005 150 200 250 300 350 400 450
HPUS L2 0.3403e-02 0.1157e-02 0.4292e-03 0.1585e-03 0.5828e-04 0.2145e-04 0.8000e-05

L∞ 0.6697e-02 0.1836e-02 0.6340e-03 0.2294e-03 0.8289e-04 0.3180e-04 0.1269e-04
[13] L2 0.3227e-02 0.9912e-03 0.5031e-03 0.5939e-03 0.6940e-02 0.7567e-03 0.7990e-03

L∞ 0.5172e-02 0.1671e-02 0.1400e-02 0.1452e-02 0.1488e-02 0.1513e-02 0.1531e-02
[14] L2 0.6126e-02 0.2227e-02 0.9124e-03 0.4134e-03 0.2307e-03 0.1617e-03 0.1284e-03

L∞ 0.6840e-02 0.2042e-02 0.8335e-03 0.3956e-03 0.2186e-03 0.1416e-03 0.1036e-03
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Figure 9: The exact (solid) and numerical (dashed) solution profiles for the modified Burgers’ equation with
m = 3 at seven selected time instants.

can be seen that the present results are much better than the ones by the fourth-order
scheme in [14] and the LBM method in [13] despite that the HPUS scheme is of second-
order accuracy. In Fig. 9, no difference between the exact and numerical profiles can
be indistinguished for the time t ≥ 250.

5 Conclusion

A bounded high-order upwind scheme in the normalized-variable formulation is con-
structed for the numerical solution of the modified Burgers’ equations. The character-
istic line of the present scheme in the normalized-variable diagram is designed by
using the Hermite polynomial. The TVD constraint is combined with the CBC-BAIR
condition to keep the present HPUS scheme free from the unphysical oscillations. The
numerical results are performed for the modified Burgers’ equations with m = 1, 2, 3,
respectively. Comparisons with the published results demonstrate that the HPUS
scheme possesses satisfactory accuracy and good efficiency for the nonlinear modi-
fied Burgers’ equations.

Appendix

The model equation for the modified Burgers’ equations can be written in a generic
form as

∂u
∂t

+
∂ f (u)

∂x
= ν

∂2u
∂x2 . (5.1)

The flux f (u) = au presents the linear advection equation and f (u) = um+1/(m + 1)
presents modified Burgers’ equations. The HPUS scheme is associated with the cell-
centered mesh as plotted in Fig. 10. By integrating on the cell [xi−1/2, xi+1/2], the
model equation (5.1) can be reformed as

dū(xi, t)
dt

= − 1
△x

(
f (u(xi+ 1

2
, t))− f (u(xi− 1

2
, t))

)
+ ν

(
u′(xi+ 1

2
, t)− u′(xi− 1

2
, t)

)
, (5.2)
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L
i1/2u +

R
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Figure 10: The cell-centered mesh for the numerical computation.

where

ūi(t) = 1
△x

∫ x
i+ 1

2

x
i− 1

2

u(ξ, t)dξ,

is the cell average of the function u(x, t). We approximate (5.2) by the following con-
servation scheme

dūi(t)
dt

= − 1
△x

( f̂i+ 1
2
− f̂i− 1

2
) + ν(u′

i+ 1
2
− u′

i− 1
2
), (5.3)

where ūi(t) is the numerical approximation to the cell average ū(xi, t) and the numer-
ical flux f̂xi+1/2 is defined by

f̂i+ 1
2
= h(uL

i+ 1
2
, uR

i+ 1
2
). (5.4)

The values of uL,R
i+1/2 are reconstructed by using the HPUS scheme. The second-order

Roe flux [43] is adopted for the present computation

f̂ Roe
i+ 1

2
= 1

2

[
f (uL

i+ 1
2
) + f (uR

i+ 1
2
)− |ai+ 1

2
|(uR

i+ 1
2
− uL

i+ 1
2
)
]
, (5.5)

where

ai+ 1
2
=


f (uR

i+ 1
2
)− f (uL

i+ 1
2
)

uR
i+ 1

2
− uL

i+ 1
2

, (uR ̸= uL),

f ′(uL
i+ 1

2
), (uR = uL).

Algorithm 5.1 is presented below for the computational procedure of the scalar equa-
tion.

For the discretization of the diffusion term u′
i+1/2 with 3rd-order accuracy in the

finite volume formulation, a polynomial of degree 3, p(x), is to be reconstructed by
using the four cell-average values ūi−1, ūi, ūi+1, ūi+2. When the polynomial reconstruc-
tion is considered, p(x) should conform with the following relationship:

1
∆x

∫ j+ 1
2

j− 1
2

p(x)dx = ūj, j = i − 1, i, i + 1, i + 2. (5.6)
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Algorithm 5.1 HPUS scheme for the scalar equation (5.1)

while (0 < time < T) do
for i = 1 to N do

if the reconstruction of uL
i+1/2 then

uU ⇐ ūi−1
uC ⇐ ūi
uD ⇐ ūi+1

Calculating the normalized value at the cell center ûC =
uC − uU
uD − uU

The value of uL
i+1/2 can be reconstructed by using the non-normalized HPUS scheme

uL
i+ 1

2
= uU + (uC − uU)[−4( uC−uU

uD−uU
)4 + 10( uC−uU

uD−uU
)3 − 8( uC−uU

uD−uU
)2 + ( uC−uU

uD−uU
) + 2], 0 < ûC < 1

uL
i+ 1

2
= uC, elsewhere

end if
if the reconstruction of uR

i+1/2 then
uU ⇐ ūi
uC ⇐ ūi+1
uD ⇐ ūi+2

Calculating the normalized value at the cell center ûC =
uC − uU
uD − uU

The value of uR
i+1/2 can be reconstructed by using the non-normalized HPUS scheme

uR
i+ 1

2
= uU + (uC − uU)[−4( uC−uU

uD−uU
)4 + 10( uC−uU

uD−uU
)3 − 8( uC−uU

uD−uU
)2 + ( uC−uU

uD−uU
) + 2], 0 < ûC < 1

uR
i+ 1

2
= uC, elsewhere

end if
Using the Roe flux (5.5) for the computation of the numerical fluxes f̂i+1/2 and f̂i−1/2

end for
Using the third-order TVD Runge-Kutta method for the time marching
time = time + ∆t

end while

These relationships can uniquely lead to a polynomial of degree 3

p(x) =
1

12
(3ūi−1 + 13ūi − 5ūi+1 + ūi+2)

1
12∆x

(−11ūi−1 + 9ūi + 3ūi+1 − ūi+2)(x − xi− 1
2
)

1
4(∆x)2 (3ūi−1 − 7ūi + 5ūi+1 − ūi+2)(x − xi− 1

2
)2

1
6(∆x)3 (−ūi−1 + 3ūi − 3ūi+1 + ūi+2)(x − xi− 1

2
)3. (5.7)

The estimate of the cell-face slope u′
i+1/2 is give by

u′
i+ 1

2
= p′(xi+ 1

2
) =

1
∆x

(
1

12
ūi−1 −

5
4

ūi +
5
4

ūi+1 −
1
12

ūi+2). (5.8)
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