
Journal of Computational Mathematics

Vol.38, No.1, 2020, 223–238.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1911-m2018-0176

SUPERCONVERGENCE ANALYSIS OF THE POLYNOMIAL
PRESERVING RECOVERY FOR ELLIPTIC PROBLEMS WITH

ROBIN BOUNDARY CONDITIONS*

Yu Du and Haijun Wu

Department of Mathematics, Xiangtan University, Xiangtan 411105, China

Email: duyu@xtu.edu.cn, hjw@nju.edu.cn

Zhimin Zhang

Beijing Computational Science Research Center, Beijing 100193, China

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

Email: zmzhang@csrc.ac.cn, ag7761@wayne.edu

Abstract

We analyze the superconvergence property of the linear finite element method based

on the polynomial preserving recovery (PPR) for Robin boundary elliptic problems on

triangulartions. First, we improve the convergence rate between the finite element solution

and the linear interpolation under the H1-norm by introducing a class of meshes satisfying

the Condition (α, σ, µ). Then we prove the superconvergence of the recovered gradients

post-processed by PPR and define an asymptotically exact a posteriori error estimator.

Finally, numerical tests are provided to verify the theoretical findings.
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1. Introduction

Let Ω ⊂ R
2 be a bounded polygon with boundary Γ := ∂Ω. Let n be the unit normal

vector to the boundary exterior to Ω. We consider the supercenvergence analysis for the model

problem: Find u ∈ H1(Ω) such that

a(u, v) :=

∫

Ω

(∇u · ∇v + cuv) +

∫

∂Ω

quv = f(v) + g(v), ∀v ∈ H1(Ω), (1.1)

where c ∈ L∞, q ∈ L∞(Γ), f ∈ H−1(Ω) and g ∈ H− 1

2 (∂Ω). We note that most results hold for

a general class of elliptic equations and (1.1) is for presenting the main idea and techniques in

their simplest form.

For given a shape regular triangulation Mh of Ω̄ with mesh size h, we denote

Vh :=
{

vh ∈ H1(Ω) : vh|τ ∈ P1(τ) ∀τ ∈ Mh

}

the space of all continuous, piecewise linear finite element functions corresponding to Mh. Here

P1 denotes the set of polynomials with degree at most one. The finite element solution uh ∈ Vh

satisfies

a(uh, vh) = f(vh) + g(vh), ∀v ∈ H1(Ω). (1.2)
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It is well known that there are many superclose and superconvergent results for Dirichlet

boundary problems [13, 16, 18, 19, 22]. The convergence analysis is for uniform grids or patch

symmetric grids at first. However, since it is difficult to construct uniform grids on unstructured

domains and the grids produced by grid generation algorithms are a small perturbation of

uniform grids in the most region of the domain, one considered the so-called mildly structured

grids where an O(h1+α) approximate parallelogram property is satisfied for pairs of adjacent

triangles in most parts of Ω except for a region of size O(h2σ) [6, 7, 16, 18]. Two finite element

functions vanishing on ∂Ω, the continuous linear finite element solution u0
h and the continuous

linear nodal interpolation u0
I of u0, are superclose in the sense that

‖∇u0
h −∇u0

I‖H1(Ω) = O(h1+min(α,1−σ)).

Here we assume that u0 is the exact solution to the Dirichlet boundary problem. Based on the

supercloseness, various post-processing techniques, such as the global L2 projection [6, 8, 11],

the Zienkiewicz-Zhu (ZZ) method [24,25], and the Polynomial Preserving Recovery [13,14,23],

have been proposed to produce a new approximation Rh(u
0
h) of ∇u0, which is superconvergent

in the sense that

‖Rh(u
0
h)−∇u0‖H1(Ω) = O(h1+min(α,1−σ)).

Based on the superconvergence results, an asymptotically exact error estimator can be con-

structed [7, 16]. In the last decade the convergence proof for Dirichlet boundary problem has

been well established. By contrast, there are only a few superconvergent works on the Robin

boundary problem. [9] considered the Robin boundary condition and proved the superconver-

gent rate of O(h3/2). [3] considered the case of Neumann boundary and α = 1 (i.e. each

of the “good” pairs of triangles forms an O(h2) approximate parallelograms) and proved the

superconvergent rate of O(h2−σ | log h|
1

2 ).

In this work, we investigate the superconvergence property of the method (1.2) when being

post-processed by the polynomial preserving recovery (PPR) for the Robin boundary problem.

PPR was proposed by Zhang and Naga [23] in 2004 and has been successfully applied to finite

element methods. COMSOLMultiphysics adopted PPR as a post-processing tool since 2008, see

[1]. One important feature of PPR is its superconvergence property for the recovered gradient.

To learn more about PPR, readers are referred to [13,16,20,21]. Some theoretical results about

recovery techniques and recovery-type error estimators can be found in [4, 12, 18, 19, 22].

We first extend the definition of mildly structured grids to the boundary by assuming that

the two triangles associated to a “good” boundary node are O(h1+α) approximate congruent

triangles and the number of “bad” boundary nodes is of order O(h−2µ) for some 0 ≤ µ < 1
2 .

Secondly, we prove the following supercloseness result:

‖uh − uI‖H1(Ω) = O
(

h1+min(α,1−σ) +min
(

h2−2µ |log h|
1

2 , h
3

2

)

)

,

which improves the estimates of [3, 9]. Denote Gh : Vh → Vh × Vh as the gradient recovery

operator from PPR. Thirdly, we obtain the following estimate:

‖∇u−Ghuh‖L2(Ω) . h1+min{α,1−σ} +min(h2−2µ |log h|
1

2 , h3/2). (1.3)

Based on the superconvergent result, we define an asymptotically exact a posteriori error esti-

mator ‖Ghuh −∇uh‖L2(Ω). Readers are referred to [2, 5, 10, 15] for further theoretical results

about recovery techniques and recovery-type error estimators.
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The remainder of this paper is organized as follows: some notations and the mesh constraints

are introduced in Section 2. In Section 3, we prove the supercloseness between the interpolant

and the finite element solution to the Robin boundary problem (1.1). In Section 4, we prove

the superconvergence property of Gh in the Sobolev space H3(Ω) and define a posteriori error

estimator. Finally, in Section 5 we verify the sharpness of our estimates by simulating some

model problems on several specially designed meshes.

Throughout the paper, C is used to denote a generic positive constant which is independent

of h, f and g. We also use the shorthand notation A . B and A & B for the inequality A ≤ CB

and A ≥ CB, respectively. A h B is a shorthand notation for the statement A . B and B . A.

2. Preliminaries

The symbols (·, ·)Q and 〈·, ·〉Σ for Σ = ∂Q denote the L2-inner products on L2(Q) and L2(Σ)

spaces, respectively. For simplicity, denote by (·, ·) := (·, ·)Ω, 〈·, ·〉 := 〈·, ·〉∂Ω, ‖·‖j := ‖·‖Hj(Ω),

and |·|j := |·|Hj(Ω). Throughout this paper, the norm ‖·‖Hs(Γ) (seminorm |·|Hs(Γ)) on the

boundary of the polygon Ω are interpreted as the square root of the sum of squares of the

Hs-norms (seminorms) on each sides of the polygon.

Let Eh be the set of all edges of Mh and Nh be the set of all nodal points. For any τ ∈ Mh,

we denote by hτ its diameter and by |τ | its area. Similarly, for each edge e ∈ Eh, define

he := diam(e). Let h = maxτ∈Mh
hτ . Assume that hτ h h. We denote all the boundary edges

by EB
h := {e ∈ Eh : e ⊂ Γ} and the interior edges by EI

h := Eh\EB
h . Denote by NB

h the nodes on

the physical boundary Γ.

Following the discussion in [6], We introduce some definitions regarding meshes at first. For

an interior edge e ∈ EI
h , let τe and τ ′e be two elements sharing e and denote by Ωe = τe ∪ τ ′e,

see Figures 2.1–2.2. For an element τ ⊂ Ωe, denote by θe the angle opposite of the edge e in

τ , denote by te the unit tangent vector of e with counterclockwise orientation and ne, the unit

outward normal vector of e. Denote by he, he+1, he−1 denote the lengths of the three edges of

τe, respectively, where the subscript e + 1 or e − 1 is for orientation. We emphasize that all

triangles in Mh are orientated counterclockwise. An index ′ is added for the corresponding

quantities in τ ′e. Notice that ne = −n′
e and te = −t′e due to the orientation.

Let e ∈ EI
h be an interior edge. Recall that Ωe, the patch of e, consists of two adjacent

triangles sharing e. We say that Ωe is an ǫ approximate parallelogram if the lengths of any two

opposite edges differ by at most ǫ, that is

∣

∣he−1 − h′
e−1

∣

∣ +
∣

∣he+1 − h′
e+1

∣

∣ ≤ ǫ. (2.1)

In general, the patch Ωe is set to be an O(h1+α) approximate parallelogram in the supercenver-

gence analysis for Dirichlet boundary problems. However, for Robin boundary condition, an

additional restriction on elements pairs with common nodes in NB
h is necessary. For a node

z ∈ NB
h (cf. Fig. 2.2), let e, e′ ∈ EB

h be the the edges sharing z. We say that τe and τe′ are ε

approximate congruent triangles if

|he−1 − he′−1|+ |he+1 − he′+1|+ |he − he′ | ≤ ǫ. (2.2)

Clearly, for an interior edge e, if Ωe is an ǫ approximate parallelogram, the two triangles in Ωe

are ε approximate congruent triangles.

In order to deal with the Robin boundary condtion, we introduce the following mesh con-

dition (α, σ, µ) which is a modification of the usual condition (α, σ), see [6, 18].
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Fig. 2.1. Notation in the patch Ωe.
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Fig. 2.2. Notation in the boundary elements.

Definition 2.1. The triangulation Mh is said to satisfy condition (α, σ, µ) if EI
h can be divided

into two parts EI
1,h⊕EI

2,h, N
B
h can be divided into two parts NB

1,h⊕NB
2,h and there exists constants

α ≥ 0, 0 ≤ σ < 1 and 0 ≤ µ < 1
2 such that

(i) for e ∈ EI
1,h, the patch Ωe is an O(h1+α) approximate parallelogram;

(ii) for z ∈ NB
1,h shared by e, e′ ∈ EB

h , the triangles τe and τe′ are O(h1+α) approximate

congruent triangles;

(iii) the number of edges in EI
2,h satisfies #EI

2,h = O(h−2σ);

(iv) the number of nodes in NB
2,h satisfies #NB

2,h = O(h−2µ).

Remark 2.1. (a) Bank and Xu proposed some mesh conditions [3, Definition 2.4] for a su-

perconvergence analysis for the Neumann boundary condition. Our conditions (i) and (iii) are

similar to the corresponding conditions in [3] (or more precisely, the same as the mildly struc-

tured grids defined in the reference [18]), while the conditions (ii) and (iv) are new, which are

weaker than the corresponding condition 2 in [3, Definition 2.4]. In fact, [3] assumed that the

triangles associated with each node z ∈ NB
1,h form an O(h2) approximate parallelogram and

that #NB
2,h = O(1). Therefore, our conditions actually define “mildly structured grids” up to

the boundary and are more practical.

(b) Although one can still get results of superconvergence for some meshes not satisfying

the restriction (i), such as Chevron pattern uniform mesh, we construct in Section 5 a class of

special grids to show that the restriction “h1+α approximate parallelogram” is necessary.

(c) However, since unlike the case of homogenous Dirichlet boundary conditions, uh−uI 6= 0

on Γ, we need the assumption (ii) for elements with one edge on Γ. Here uI is the linear



PPR for Elliptic Problems with Robin BC 227

interpolant of u. Note that whether the additional restriction (ii) in 2.1 is just technique for

theoretical purpose or not is still an open problem. But if EI
2,h = ∅, we have NB

2,h and the

restriction (ii) can be removed, because, for any node z ∈ NB
h , all the triangles sharing the

node z are approximate congruent triangles. In others words, the condition (α, 0, 0) is equivalent

to classical condition (α, 0) and therefore, the results holds under the condition (α, 0) as well.

(d) The restrictions (iii) and (iv) in 2.1 means that (EI
h ,N

B
h ) can be grouped into “good ”

(EI
1,h,N

B
1,h) and “bad” (EI

2,h,N
B
2,h), respectively. The numbers of bad edges and bad boundary

nodes are much smaller than those of good ones, respectively, where the ratios are

#EI
2,h

#EI
1,h

.
h−2σ

h−2
= h2−2σ,

#NB
2,h

#NB
1,h

.
h−2µ

h−1
= h1−2µ.

3. Supercloseness Between the FE Solution and the Interpolant

We investigate the supercloseness between the FE solution uh and the linear interpolant uI

of u. Some special arguments are needed to establish the desired superclose result, because uh

is not equal to uI on the physical boundary, that is (uh − uI)|Γ 6= 0.

We introduce the quadratic interpolant φQ = ΠQφ of φ based on nodal values and moment

conditions on edges,

(ΠQφ)(z) = φ(z),

∫

e

ΠQφ =

∫

e

φ, ∀z ∈ Nh, e ∈ Eh. (3.1)

The following fundamental identity for vh ∈ P1(τ) has been proved in [6]:

∫

τ

∇(φ− φI) · ∇vh =
∑

e∈∂τ

(

βe

∫

e

∂2φQ

∂t2e

∂vh
∂te

+ γe

∫

e

∂2φQ

∂te∂ne

∂vh
∂te

)

, (3.2)

where

βe =
1

12
cot θe(h

2
e+1 − h2

e−1), γe =
1

3
cot θe |τ | , (3.3)

and φI ∈ P1(τ) is the linear interpolant of φ on τ .

Lemma 3.1. We denote me by te or ne. Assume that Mh satisfies the condition (α, σ, µ).

Then we have the following estimates:

|βe|+ |β′
e| . h2, |γe|+ |γ′

e| . h2, e ∈ EI
h, (3.4)

|βe − β′
e| . h2+α, |γe − γ′

e| . h2+α, e ∈ EI
1,h, (3.5)

|βe| . h2, |γe| . h2, e ∈ EB
h , (3.6)

|βe − β′
e| . h2+α, |γe − γ′

e| . h2+α, e ∩ e′ = z ∈ NB
1,h, e, e′ ∈ EB

h . (3.7)

Moreover, for any e ∈ Eh,
∫

e

∂2φ

∂te∂me

∂vh
∂te

.
(

|φ|H3(τe)
+ h−1 |φ|H2(τe)

)

‖∇vh‖L2(τe)
, (3.8)

∫

e

∂2φ

∂te∂me

∂vh
∂te

. |φ|W 2,∞(Ω) ‖∇vh‖L2(τe)
, (3.9)

∫

e

∂2(φ − φQ)

∂te∂me

∂vh
∂te

. |φ|H3(τe)
‖∇vh‖L2(τe)

. (3.10)
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See [6, 7] for the proof.

Throughout the paper, we assume that c ≥ c0 > 0, q ∈ W 2,∞(Γ)(q ≥ 0), f ∈ H1(Ω),

g ∈ H2(Γ), and the exact solution u ∈ H3(Ω) ∩W 2,∞(Ω).

Lemma 3.2. Assume that Mh satisfies the condition (α, σ, µ). Then for any vh ∈ Vh, we have
∣

∣

∣

∣

∫

Ω

∇(u− uI) · ∇vh

∣

∣

∣

∣

.
(

h1+min(α,1−σ) +min
(

h2−2µ |log h|
1

2 , h
3

2

)

)

‖vh‖1 Cu,g,q, (3.11)

where Cu,g,q = ‖u‖3 + |u|W 2,∞(Ω) + ‖g‖H2(Γ) + ‖q‖W 2,∞(Γ) ‖u‖H2(Γ) + ‖u‖H3(Γ).

Proof. From (3.2), we have
∫

Ω

∇(u− uI) · ∇vh =
∑

τ∈Mh

∑

e⊂∂τ

(

βe

∫

e

∂2uQ

∂t2e

∂vh
∂te

+ γe

∫

e

∂2uQ

∂te∂ne

∂vh
∂te

)

=: I1 + I2,

where

I1 =
∑

e∈EI
h

(

(βe − β′
e)

∫

e

∂2u

∂t2e

∂vh
∂te

+ (γe − γ′
e)

∫

e

∂2u

∂te∂ne

∂vh
∂te

+ βe

∫

e

∂2(uQ − u)

∂t2e

∂vh
∂te

+ γe

∫

e

∂2(uQ − u)

∂te∂ne

∂vh
∂te

+ β′
e

∫

e

∂2(u− uQ)

∂t2e

∂vh
∂te

+ γ′
e

∫

e

∂2(u− uQ)

∂te∂ne

∂vh
∂te

)

,

I2 =
∑

e∈EB
h

(

βe

∫

e

∂2u

∂t2e

∂vh
∂te

+ γe

∫

e

∂2u

∂te∂ne

∂vh
∂te

+ βe

∫

e

∂2(uQ − u)

∂t2e

∂vh
∂te

+ γe

∫

e

∂2(uQ − u)

∂te∂ne

∂vh
∂te

)

.

We first estimate I1 which is divided into I1,1 and I1,2, where

I1,j =
∑

e∈EI
j,h

(

(βe − β′
e)

∫

e

∂2u

∂t2e

∂vh
∂te

+ (γe − γ′
e)

∫

e

∂2u

∂te∂ne

∂vh
∂te

+ βe

∫

e

∂2(uQ − u)

∂t2e

∂vh
∂te

+ γe

∫

e

∂2(uQ − u)

∂te∂ne

∂vh
∂te

+ β′
e

∫

e

∂2(u− uQ)

∂t2e

∂vh
∂te

+ γ′
e

∫

e

∂2(u− uQ)

∂te∂ne

∂vh
∂te

)

.

By Lemma 3.1 and Hölder’s inequality, we have

|I1,1| .
∑

e∈EI
1,h

(

(h2+α + h2) |u|H3(τe)
+ h1+α |u|H2(τe)

)

‖∇vh‖L2(τe)

.
(

h2 |u|3 + h1+α |u|2
)

‖∇vh‖0 . (3.12)

From Lemma 3.1 and noting that #EI
2,h = h−2σ,

|I1,2| .
∑

e∈EI
2,h

h2 |u|W 2,∞(τe)
‖∇vh‖L2(τe)

. h2(#EI
2,h)

1

2 |u|W 2,∞(Ω) ‖∇vh‖0

. h2−σ |u|W 2,∞(Ω) ‖∇vh‖0 . (3.13)
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Combining (3.12) and (3.13) yields

|I1| .
(

h1+α |u|2 + h2−σ |u|W 2,∞(Ω) + h2 |u|H3(Ω)

)

‖∇vh‖0 . (3.14)

We divide I2 into two parts I2,j(j = 1, 2) to estimate, where

I2,1 :=
∑

e∈EB
h

(

βe

∫

e

∂2(uQ − u)

∂t2e

∂vh
∂te

+ γe

∫

e

∂2(uQ − u)

∂te∂ne

∂vh
∂te

)

, (3.15)

I2,2 :=
∑

e∈EB
h

(

βe

∫

e

∂2u

∂t2e

∂vh
∂te

+ γe

∫

e

∂2u

∂te∂ne

∂vh
∂te

)

. (3.16)

From Lemma 3.1, we can derive in analogy to (3.12),

|I2,1| .
∑

e∈EB
1,h

(

h1+α |u|H2(τe)
+ (h2+α + h2) |u|H3(τe)

)

‖∇vh‖L2(τe)

.
(

h1+α |u|2 + h2 |u|3
)

‖∇vh‖0 . (3.17)

Next we turn to the estimate I2,2. First we have

I2,2 . h2
∑

e∈EB
h

|u|W 2,∞(Ω) ‖∇vh‖L2(τe)
. h2(#EB

h )
1

2 |u|W 2,∞(Ω) ‖∇vh‖0

. h
3

2 |u|W 2,∞(Ω) ‖∇vh‖0 . (3.18)

In the following we give another estimate of I2,2 by using the assumption on the elements

with sides on the boundary Γ. For z ∈ NB
h , let e and e′ be two edges in EB

h sharing z with

counterclockwise orientation (cf. Figure 2.2). Denote by [βe]z = βe′ − βe and [γe]z = γe′ − γe.

Let N V
h be the set of vertices of the domain Ω. By integration by parts, we have

I2,2 =−
∑

e∈EB
h

(

βe

∫

e

∂3u

∂t3e
vh + γe

∫

e

∂3u

∂t2e∂ne
vh

)

+
∑

z∈NB
1,h

\NV
h

(

[βe]z
∂2u

∂t2e
(z) + [γe]z

∂2u

∂te∂ne
(z)

)

vh(z)

+
∑

z∈NB
2,h

\NV
h

(

[βe]z
∂2u

∂t2e
(z) + [γe]z

∂2u

∂te∂ne
(z)

)

vh(z)

+
∑

z∈NV
h

(

βe′
∂2u

∂t2e′
(z)− βe

∂2u

∂t2e
(z) + γe′

∂2u

∂te′∂ne′
(z)− γe

∂2u

∂te∂ne
(z)

)

vh(z)

=:I2,2,1 + I2,2,2 + I2,2,3 + I2,2,4. (3.19)

Since ∂u
∂n + qu = g on Γ, we obtain

I2,2,1 . h2

(

|u|H3(Γ) +

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

H2(Γ)

)

‖vh‖L2(Γ)

. h2
(

|u|H3(Γ) + |g|H2(Γ) + |qu|H2(Γ)

)

‖vh‖
1

2

0 ‖vh‖
1

2

1

. h2 ‖vh‖1
(

|g|H2(Γ) + ‖q‖W 2,∞(Γ) |u|H2(Γ) + |u|H3(Γ)

)

. (3.20)



230 Y. DU, H.J. WU AND Z.M. ZHANG

For any w ∈ H1([a, b]), we have

w2(b) =

∫ b

a

(

x− a

b− a
w2(x)

)′

dx .
1

b− a
‖w‖2L2([a,b]) + (b− a) ‖w‖2L2([a,b]) ,

which implies

I2,2,2 ≤
∑

z∈NB
1,h

\NV
h

(

|[βe]z|
(

h
− 1

2

e |u|H2(e) + h
1

2

e |u|H3(e)

)

+ |[γe]z|
(

h
− 1

2

e

∣

∣

∣

∣

∂u

∂ne

∣

∣

∣

∣

H1(e)

+ h
1

2

e

∣

∣

∣

∣

∂u

∂ne

∣

∣

∣

∣

H2(e)

)

)

·
(

h
− 1

2

e ‖vh‖L2(e) + h
1

2

e |vh|H1(e)

)

. max
z∈NB

1,h
\NV

h

(

|[βe]z|+ |[γe]z |
)

(

h− 1

2 |u|H2(Γ) + h
1

2 |u|H3(Γ)

+ h− 1

2

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

H1(Γ)

+ h
1

2

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

H2(Γ)

)

· h− 1

2 ‖vh‖L2(Γ)

. h1+α
(

|u|H2(Γ) + h |u|H3(Γ) + |g|H1(Γ) + h |g|H2(Γ)

+ ‖q‖W 1,∞(Γ) |u|H1(Γ) + h ‖q‖W 2,∞(Γ) |u|H2(Γ)

)

‖vh‖1 , (3.21)

where we have used the second inequality in (3.7).

The following inequality [17] is going to be used to estimate I2,2,3 + I2,2,4:

‖vh‖L∞(Ω) . |log h|
1

2 ‖vh‖1 ∀vh ∈ Vh.

Noting that #NB
2,h = h−2µ, we have

I2,2,3 + I2,2,4

.h2
∑

z∈NB
2,h

∪NV
h

(

∣

∣

∣

∂2u

∂t2e′
(z)
∣

∣

∣
+
∣

∣

∣

∂2u

∂t2e
(z)
∣

∣

∣
+
∣

∣

∣

∂2u

∂te′∂ne′
(z)
∣

∣

∣
+
∣

∣

∣

∂2u

∂te∂ne
(z)
∣

∣

∣

)

‖vh‖L∞(Ω)

.h2
(

#NB
2,h +#N V

h

)

(

‖u‖H3(Γ) + ‖g‖H2(Γ) + ‖q‖W 2,∞(Γ) ‖u‖H2(Γ)

)

· |log h|
1

2 ‖vh‖H1(Ω)

.h2−2µ |log h|
1

2 ‖vh‖1
(

‖u‖H3(Γ) + ‖g‖H2(Γ) + ‖q‖W 2,∞(Γ) ‖u‖H2(Γ)

)

. (3.22)

Using (3.14), (3.17), (3.18)–(3.22), we complete the proof of the lemma. �

We can also obtain the supercloseness between uh and uI from Lemma 3.2.

Theorem 3.1. Assume that Mh satisfies the condition (α, σ, µ). We have

‖uh − uI‖1 .
(

h1+min(α,1−σ) +min
(

h2−2µ |log h|
1

2 , h
3

2

)

)

Cu,g,q. (3.23)

Proof. Denote vh = uh − uI . By the Galerkin orthogonality, we have

‖uh − uI‖
2
1 . a(uh − uI , vh)

=(∇(u − uI),∇vh) + (c(u− uI), vh) + 〈q(u − uI), vh〉 . (3.24)



PPR for Elliptic Problems with Robin BC 231

By the trace inequality,

|〈q(u − uI), vh〉| ≤ ‖q‖L∞(Γ) ‖u− uI‖L2(Γ) ‖vh‖L2(Γ)

. h2 ‖q‖L∞(Γ) ‖u‖H2(Γ) · ‖vh‖L2(Γ) . (3.25)

By combining Lemma 3.2, (3.24), (3.25), and the fact that ‖u− uI‖0 . h2 ‖u‖2, we complete

the proof. �

Remark 3.1. Our estimate of supercloseness holds on mildly structured grids up to the

boundary. In particular, under the same conditions as [3, Theorem 3.1] (i.e. q = 0, g = 0, µ =

0, α = 1) our Theorem 3.1 implies that

‖uh − uI‖1 .
(

h2−σ + h2| log h|
1

2

)(

‖u‖3 + |u|W 2,∞(Ω) + |u|H3(Γ)

)

.

When σ > 0, our convergence order is O(h2−σ) since hσ| log h|
1

2 → 0 as h → 0+, while the

order given by [3] is O(h2−σ| log h|
1

2 ). On the other hand, our regularity requirement on u is

weaker than that of [3].

4. Superconvergence and the a Posteriori Error Estimator

In this section, we introduce and analyze the polynomial preserving recovery method (PPR),

which is applied to improve the gradient of the finite element solution.

We first recall the polynomial preserving method (PPR) [13]. Define Gh : C(Ω̄) 7→ Vh × Vh

as the gradient recovery operator on the finite element space in the following way: Given a

node z ∈ Nh, select an element patch ωz. We then denote all nodes on ωz (including z) as

zj , j = 1, 2, · · · , n(≥ 6) and use values of w ∈ C(Ω̄) at these sampling points to fit a quadratic

polynomial in the least squares sense

n
∑

j=1

(p2 − w)2(zj) = min
q∈P2

n
∑

j=1

(q − w)2(zj). (4.1)

Here P2(ωz) is the set of continuous, piecewise quadratic polynomial functions defined on ωz.

The value of the recovered gradient of w at z is then defined as

Ghw(z) = (∇p2)(z). (4.2)

The reader is referred to [13, Theorem 2.3] for a practical sufficient condition so that the above

least squares fitting procedure has a unique solution. We shall use the PPR method to improve

the numerical solutions.

Some properties of the PPR operator should be shown:

(i) ‖Ghvh‖0 . ‖∇vh‖0 ∀vh ∈ Vh.

(ii) For any nodal point z, (Ghp)(z) = ∇p(z) if p ∈ Pj(ωz), j = 1, 2.

(iii) Ghw = GhI
j
hw ∀w ∈ C(Ω̄), j = 1, 2.

Here I1hw and I2hw are the linear nodal value interpolant and quadratic nodal value interpolant

of w, respectively. The reader is referred to [13, 16, 21, 23] for more details of these properties.
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We decompose the error into

∇u−Ghuh = ∇u−Ghu+Gh(uI − uh). (4.3)

Note that Ghu = GhuI since uI = u at all vertices and the recovery operator Gh is completely

determined by nodal values of u. From (i), we have ‖Gh(uI − uh)‖0 . ‖∇(uI − uh)‖0. It

remains to estimate ‖∇u−Ghu‖0.

Lemma 4.1. For any element τ ∈ Mh and any function w ∈ H3(τ̃ ),

‖Ghw −∇w‖L2(τ) . h2 ‖w‖H3(τ̃) , (4.4)

where τ̃ =
⋃

{ωz : z ∈ Nh ∩ τ}.

Proof. The property (iii) implies

‖Ghw −∇w‖L2(τ) =
∥

∥GhI
2
hw −∇w

∥

∥

L2(τ)
. (4.5)

For any η ∈ P2(τ̃ ), it is clear that Ghη = ∇η in τ by the property (ii) and the fact that

Ghη ∈ Vh × Vh and ∇η ∈ P1(τ̃ )× P1(τ̃ ). Then we have

∥

∥GhI
2
hw −∇w

∥

∥

L2(τ)
=
∥

∥Gh(I
2
hw − η)−∇(w − η)

∥

∥

L2(τ)

≤
∥

∥Gh(I
2
hw − η)

∥

∥

L2(τ)
+ ‖∇(w − η)‖L2(τ) . (4.6)

By the definition and properties of Gh,

∥

∥Gh(I
2
hw − η)

∥

∥

L2(τ)

. h max
z∈Nh∩τ

∣

∣Gh(I
2
hw − η)(z)

∣

∣ . h
∥

∥∇(I2hw − η)
∥

∥

L∞(τ̃)

.
∥

∥∇(I2hw − η)
∥

∥

L2(τ̃)
.
∥

∥∇(I2hw − w)
∥

∥

L2(τ̃)
+ ‖∇(w − η)‖L2(τ̃) . (4.7)

By combining (4.5)–(4.7), we have

∥

∥GhI
2
hw −∇w

∥

∥

L2(τ)
. inf

η∈P2(τ̃)
‖∇(w − η)‖L2(τ̃) +

∥

∥∇(I2hw − w)
∥

∥

L2(τ̃)
. (4.8)

Using the Bramble–Hilbert lemma and the scaling argument, we have

inf
η∈P2(τ̃)

‖∇(w − η)‖L2(τ̃) . h2 ‖w‖H3(τ̃) , (4.9)

and from the approximation theory

∥

∥∇(I2hw − w)
∥

∥

L2(τ̃)
. h2 ‖w‖H3(τ̃) . (4.10)

The proof is completed by combining (4.5) with (4.8)–(4.10). �

We remark that similar results as the above lemma are proved in [16,18]. Using Lemma 4.1,

we obtain the following superconvergence property of Gh in H3(Ω) space for the linear element.

Theorem 4.1. We have the following estimate:

‖Ghu−∇u‖0 . h2 ‖u‖3 . (4.11)
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Proof. From Lemma 4.1, we have

‖Ghu−∇u‖0 =

(

∑

τ∈Mh

‖Ghu−∇u‖2L2(τ)

)
1

2

. h2

(

∑

τ∈Mh

‖u‖2H3(τ̃)

)
1

2

. h2 ‖u‖3 .

We obtain the superconvercengce property of the linear FE solution post-processed by the PPR

operator, which can be proved by combining (4.3), Theorems 3.1 and 4.1. �

Theorem 4.2. Assume that Mh satisfies condition (α, σ, µ). Let u and uh be the solutions to

(1.1) and (1.2), respectively. We have

‖Ghuh −∇u‖0 .
(

h1+min(α,1−σ) +min
(

h2−2µ |log h|
1

2 , h
3

2

)

)

Cu,g,q . (4.12)

With preparation from the previous work, it is now straightforward to prove the asymptotic

exactness of an error estimator based on the recovery operator Gh. The global error estimator

is naturally defined by

ηh = ‖Ghuh −∇uh‖0 . (4.13)

Theorem 4.3. Let uh be the linear finite element approximation of u. Assume that Mh sat-

isfies Condition (α, σ, µ). Furthermore, assume that h . ‖∇(u− uh)‖0. Then

∣

∣

∣

∣

ηh
‖∇(u − uh)‖0

− 1

∣

∣

∣

∣

. hρ +min
(

h1−2µ |log h|
1

2 , h
1

2

)

, ρ = min(α, 1 − σ). (4.14)

5. Numerical Examples

In this section we present experiments to study the supercloseness and superconvergence

rates on different meshes in H1-seminorms as well as the asymptotically exactness of the a

posteriori error estimator based on the recovery operator Gh.

we solve −∆u+ u = f with the Robin boundary condition ∂u
∂n + u = g, where f and g are

chosen such that the sulotion is u = sin(π(x+ y)).

We consider the supercloseness property on the domain Ω̄ = [0, 1]× [0, 1]. We first consider

discretizations performed on meshes consisting of O(h1+α) approximate parallelograms. We

divide Ω̄ into n
2 × n equivalent rectanges which containing four types of triangles (cf. Fig. 5.1)

, where h = 1/n and 2h̃ + h̃1+α = 2h, for even integer n. Clearly, 2
3h ≤ h̃ ≤ h. Fig. 5.2

e
2

e 1

h̃ h̃
1+α

h̃

h e 2e1

h̃ h̃
1+α

h̃

h

Fig. 5.1. The cells constituting the finite element grids.
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plots the meshes for n = 4, 32 and α = 0, 12 , respectively. For any e ∈ EI
h, denote by ǫe =

∣

∣he−1 − h′
e−1

∣

∣+
∣

∣he+1 − h′
e+1

∣

∣. For e1 in Fig. 5.1, we have

(2

3
h
)1+α

≤ ǫe1 = h̃1+α + (h2 + h̃2+2α)
1

2 − h = h̃1+α +
h̃2+2α

(h2 + h̃2+2α)
1

2 + h

≤ h̃1+α +
h̃2+2α

2h
≤

3

2
h̃1+α ≤

3

2
h1+α.

Moreover, it is clear that ǫe2 = 0 for e2 in Fig. 5.1. As a matter of fact, it can be shown that

for every e ∈ EI
h , Ωe is an O(h1+α) approximate parallelogram. Similarly, for any z ∈ NB

h \N V
h

shared by e, e′ ∈ EB
h , the triangles τe and τe′ are O(h1+α) approximate congruent triangles.

That is, the meshes satisfy Condition (α, 0, 0).
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Fig. 5.2. The meshes of Ω = [0, 1]× [0, 1] consisting of O(h) approximate parallelograms for n = 4 (left

graph) and n = 16 (right graph).

We plot the errors between uh and uI on H1-seminorms for α = 0, 1/4, 1/2 and α =

1/3, 2/3, 2 in Fig. 5.3. The convergence rates of ‖∇uh −∇uI‖0 behave much as expected.

The convergence rates are almost equal to the corresponding 1 + α. Such behavior shows the

necessity of the condition (i) in Definition 2.1 of Condition (α, σ, µ).

100 101 102 103

n=1/h

10-4

10-3

10-2

10-1

100

101

E
rr

or
s

100 101 102 103

n=1/h

10-5

10-4

10-3

10-2

10-1

100

101

102

E
rr

or
s

Fig. 5.3. The errors of ‖∇uh −∇uI‖0 for α = 0, 1/4, 1/2 (left graph) and α = 1/3, 2/3, 1 (right graph).

The dotted lines indicate reference slopes.

Next, we consider the meshes containing ‘bad’ edges, that is O(h1+α) approximate paral-

lelogram property is satisfied for pairs of adjacent triangles in most parts except for a region
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of size h2σ. For given 0 ≤ σ < 1 and non-negative integer n, we divide Ω̄ into two parts,

Ω1 = [0,mh] × [0,mh] and Ω2 = Ω \ Ω1, where h = 1/n and the integer m is chosen such

that the area of Ω1 is about h2σ. We discrete Ω1 as the Criss-cross pattern uniform mesh

and discrete Ω2 as the regular pattern uniform mesh. Fig. 5.4 plots the meshes by setting

σ = 1/2 for n = 8 and n = 16. Clearly α ≥ 1. It is well known that the Criss-cross pattern

uniform mesh is very bad for the supercloseness property. Therefore, the convergence order

h2−σ of ‖∇uh −∇uI‖0 can be expected. This is verified by Fig. 5.5 which plots the errors in

H1-seminorms for σ = 0, 1/2, 1 and σ = 1/3, 2/3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.4. The meshes of Ω = [0, 1] × [0, 1] construted by setting σ = 1/2 for n = 8 (left graph) and

n = 16 (right graph).
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Fig. 5.5. The errors of ‖∇uh −∇uI‖0 for σ = 0, 1/2, 1 (left graph) and σ = 1/3, 2/3 (right graph).

The dotted lines indicate reference slopes.

Then we construct meshes by perturbing the boundary elements of the regular uniform

meshes such that two boundary triangles τe and τe′ sharing a boundary node are O(h) approx-

imate congruent triangles (cf. (2.2)) and #NB
2,h = O(h−2µ). Clearly, σ = µ. Fig. 5.6 plots the

perturbed mesh for n = 15 and µ = 1/4 in the left graph and the errors of ‖∇uh −∇uI‖0 for

µ = 1/2, 1/3, 1/4, 0 in the right graph. The convergence order is about O(h2−µ) which is better

than our theoretical result in Theorem 3.1.

Then we consider the superconvergence of the numerical solution based on the Polynomial

Preserving Recoverry technique. Fig. 5.7 plots the errors of ‖∇u−∇uh‖0, ‖∇uh −∇uI‖0 and
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Fig. 5.6. The mesh by perturbing the regular uniform mesh for n = 15 and µ = 1/4 (left graph) and

the errors of ‖∇uh −∇uI‖0 for µ = 1/2, 1/3, 1/4, 0 (right graph). The dotted lines indicate reference

slopes.
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Fig. 5.7. The errors of ‖∇u−∇uh‖0, ‖∇uh −∇uI‖0 and ‖∇u−Ghuh‖0 for Criss-cross pattern uniform

mesh (a), regular pattern uniform mesh (b), Chevron pattern uniform mesh (c) and the Delaunay mesh

(d).



PPR for Elliptic Problems with Robin BC 237

‖∇u−Ghuh‖0 for Criss-cross pattern uniformmesh, regular pattern uniform mesh, Chevron pat-

tern uniform mesh and the Delaunay mesh. We see that the convergence order of ‖∇u −Ghuh‖0
is almost O(h2) although the convergence order of ‖∇uh −∇uI‖0 is smaller except for the regu-

lar pattern uniform mesh, which shows that the PPR is a powerful tool to improve the gradients

of the finite element solutions.

Finally, we verify the asymptotical exactness of the a posteriori error estimator ηh (cf.

(4.13)). Table 5.1 shows the errors of uh in H1-seminorms and the a posteriori error estimators

on three kinds of meshes for different mesh sizes. We watch the a posteriori error estimators

converge to the corresponding ‖∇u−∇uh‖0 very quickly.

Table 5.1: The errors of ‖∇u−∇uh‖0 and the a posteriori error estimators on Criss-cross pattern

uniform mesh, regular pattern uniform mesh, Chevron pattern uniform mesh for different mesh sizes.

regular pattern Chevron pattern Criss-cross pattern

1/h |u− uh|1 ηh |u− uh|1 ηh |u− uh|1 ηh
4 1.47E + 00 1.28E + 00 1.14E + 00 1.10E + 00 1.10E + 00 1.28E + 00

12 5.26E − 01 5.24E − 01 4.05E − 01 4.06E − 01 3.86E − 01 4.09E − 01

20 3.18E − 01 3.17E − 01 2.45E − 01 2.45E − 01 2.32E − 01 2.38E − 01

28 2.27E − 01 2.27E − 01 1.76E − 01 1.75E − 01 1.66E − 01 1.68E − 01

36 1.77E − 01 1.77E − 01 1.37E − 01 1.37E − 01 1.29E − 01 1.30E − 01

44 1.44E − 01 1.44E − 01 1.12E − 01 1.12E − 01 1.06E − 01 1.06E − 01

52 1.23E − 01 1.23E − 01 9.47E − 02 9.47E − 02 8.95E − 02 8.98E − 02

60 1.06E − 01 1.06E − 01 8.21E − 02 8.21E − 02 7.75E − 02 7.77E − 02

68 9.37E − 02 9.37E − 02 7.25E − 02 7.25E − 02 6.84E − 02 6.85E − 02

76 8.38E − 02 8.38E − 02 6.49E − 02 6.48E − 02 6.12E − 02 6.13E − 02

84 7.58E − 02 7.58E − 02 5.87E − 02 5.87E − 02 5.54E − 02 5.55E − 02

92 6.92E − 02 6.92E − 02 5.36E − 02 5.36E − 02 5.06E − 02 5.06E − 02
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