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Abstract

The goal of this paper is to present a numerical method for the Smoluchowski equation,

a drift-diffusion equation on the sphere, arising in the modelling of particle dynamics. The

numerical method uses radial basis functions (RBF). This is a relatively new approach,

which has recently mainly been used for geophysical applications. For a simplified model

problem we compare the RBF approach with a spectral method, i.e. the standard approach

used in related physical applications. This comparison as well as our other accuracy studies

show that RBF methods are an attractive alternative for these kind of models.

Mathematics subject classification: 65M20, 65M70.
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1. Introduction

In this paper we study a numerical method which can be used in order to simulate the

microstructure in a micro-macro model for suspensions of rod-like particles. Such mathematical

models are used to describe complex fluids such as polymeric fluids. The full model is a time

dependent, five dimensional system of partial differential equations. It consists of a three

dimensional fluid flow equation which is coupled with a transport diffusion equation on the

sphere describing the microscopic orientation of the suspended rod-like particles. Here we

restrict our considerations to the description of the microscopic orientation, i.e. the partial

differential equation on the sphere and provide a numerical method for this equation.

Numerical methods for such complex fluids are typically based on a fully macroscopic ap-

proach or on a stochastic approach using Monte-Carlo methods. We are instead interested

in numerical methods which resolve the full multiscale problem. In Helzel and Otto [8], a fi-

nite difference method for the macroscopic flow equations was combined with a finite volume

method for the microscopic equation. For a related model, Knezevic and Süli [10] combined

finite element and spectral methods. In this paper we show that the use of radial basis func-

tion methods provides an attractive alternative for the resolution of the microscopic transport

diffusion equation.

Radial basis functions provide a powerful tool for the grid-free approximation of multivariate

functions, see for example the review by Buhmann [2]. Flyer and Wright [4, 5] introduced

radial basis function methods for the approximation of transport dominated partial differential
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equations on the sphere. Since then such methods have successfully been used for several models,

mainly motivated by geophysical applications as documented in the recent book by Fornberg

and Flyer [6]. The method has also been extended to solve reaction-diffusion equations on

surfaces (other than the sphere), see Piret [13] and Shankar et al. [14].

In what follows, we start in Section 2 with a description of the mathematical model. In

Section 3 we restrict our considerations to a simplified one-dimensional model. For this model

we derive a spectral method as well as a radial basis function method and compare their

performance. In Section 4 we derive the radial basis function method for the full model and

discuss numerical results for this method.

2. The Mathematical Model

We consider a mathematical model, which describes dilute suspensions of rod-like particles.

With this model we can study the dynamics of a macroscopic flow which is influenced by

suspended microscopic particles with a rigid rod-like structure.

Following the classical work of Doi and Edwards [3] and more recent work of Otto and

Tzavaras [12], we consider a kinetic model which describes the orientation of microscopic rod-

like particles. In this model f(t, x, n)dn describes the time dependent probability that a rod

with center of mass at the macroscopic position x ∈ Rd has at time t ∈ R+ an axis in the area

element dn. Here n ∈ Sd−1 is a director on the unit sphere embedded in Rd. The physical

application we are interested in assumes d = 3. In order to verify our numerical methods we

will also consider the case d = 2.

We assume that the relations

f ≥ 0 and

∫
Sd−1

f dn = 1

hold for all time. The evolution of the distribution function f = f(t, x, n) is described by the

Smoluchowski equation

∂tf + u · ∇xf +∇n · (Pn⊥ ,∇xunf) = Dr∆nf +D∆xf, (2.1)

where u : Rd ×R+ → Rd is a macroscopic velocity field which depends on x and t. The second

term on the left hand side describes the transport of the rods by the macroscopic velocity field

u. The third term describes a rotation of the rod-like particles due to a macroscopic velocity

gradient ∇xu. Here Pn⊥ := ∇xun− (n · ∇xun)n denotes the projection of the vector ∇xun on

the tangent space in n. The terms on the right hand side model rotation and translation of the

rod-like particles due to Brownian motion. Here Dr ∈ R+ is the rotational diffusion constant

and D ∈ R+ is the translational diffusion constant.

A velocity gradient ∇xu 6= 0 distorts an isotropic distribution of f . This leads to an increase

in entropy, which needs to be balanced (see [3, 12]) by a stress tensor of the form

σ(x, t) :=

∫
Sd−1

(dn⊗ n− I) f dn. (2.2)

This stress tensor appears as additional term in the macroscopic flow equation. The macroscopic

flow is described by the Stokes or Navier-Stokes equation, i.e.

Re (∂tu+ (u · ∇x)u) = µ∆xu+∇xp+∇x · σ,
∇x · u = 0.

(2.3)
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Throughout this paper we denote with ∇x, ∇x· and ∆x gradient, divergence and Laplacian

in physical space. With ∇n, ∇n· and ∆n we denote gradient, divergence and Laplacian on

the sphere. Recently, Helzel and Tzavaras [9] have studied a modification of the above model

(2.1)–(2.3), which describes the sedimentation in dilute suspensions of rod-like particles.

A resolved numerical method for the system (2.1)–(2.3) (or the model from [9]) requires, as

a component, a solver for the Smoluchowski equation in the form

∂tf(t, n) +∇n · (Pn⊥∇xuextnf(t, n)) = Dr∆nf(t, n),

f(0, n) = f0(n),
(2.4)

with n ∈ Sd−1 and t ∈ R+. This is the subject of our paper. The matrix ∇xuext now describes

a constant externally imposed velocity gradient. (2.4) is a drift-diffusion equation on the sphere

Sd−1. In the full model, this subproblem needs to be solved on every physical point of interested

x ∈ Rd which is used in the discretization of the full model.

Most commonly, pdes on the sphere are solved by rewriting the problem in spherical coor-

dinates. In order to rewrite (2.4), we introduce the notation

n :=

 cos θ sinφ

sin θ sinφ

− cosφ

 , eθ :=
1

sinφ

∂n

∂θ
=

 − sin θ

cos θ

0

 , eφ :=
∂n

∂φ
=

 cos θ cosφ

sin θ sinφ

sinφ

 ,

with θ ∈ [0, 2π] and φ ∈ [0, π]. Note that {n, eθ, eφ} is an orthonormal basis of R3 and thus

{eθ, eφ} is an orthonormal basis of the tangent space of S2 at n. We decompose the drift

velocity Pn⊥∇xuextn using the basis of the tangent space and obtain

Pn⊥∇xuextn := bθeθ + bφeφ,

with bθ := Pn⊥∇xuextn · eθ and bφ := Pn⊥∇xuextn · eφ. Recall that for functions f on S2 the

gradient operator can be expressed in the form

∇nf =
1

sinφ
(∂θf)eθ + (∂φf)eφ,

and the Laplace Beltrami operator can be expressed in the form

∆nf = ∂θ

(
1

sinφ
∂θf

)
+ ∂φ (sinφ∂φf) .

Following Helzel and Otto [8], we can now rewrite (2.4) in the form

sinφ∂tf + ∂θ (bθf) + ∂φ (sinφbφf) = Dr

(
∂θ

(
1

sinφ
∂θf

)
+ ∂φ (sinφ∂φf)

)
. (2.5)

In [8], a finite volume method was used in order to approximate the Smoluchowski equation in

spherical coordinates. As can be seen from (2.5), singularities will arise at the poles φ = 0 and

φ = π, where sinφ = 0. This requires a special numerical treatment.

The main goal of this paper is to introduce a numerical method for (2.4) which is based on the

use of radial basis functions. This method does not suffer from a pole singularity. Furthermore,

we will see that the construction of such methods is simpler than the construction of spectral

methods, while we achieve a comparable accuracy.
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The RBF method should be of interest for a variety of applications. Note, for example, that

modified versions of the Smoluchowski equation arise if we include more physical effects. For

example, a modified rotational diffusion is used in the semi-dilute regime and a modified drift

term on the sphere is used to model excluded volume effects in the concentrated regime [3].

Related kinetic models arise in the modelling of active spherical particles, see for example [1].

An active particle is described by its position and a velocity vector. This is very similar to a

(passive) rod-like particle, which is described by its position and orientation.

3. Numerical Methods for a Simplified Model

In this section we consider the Smoluchowski equation on S1 (i.e. on a circle), where Equation

(2.4) simplifies to a one-dimensional transport-diffusion equation. We set n = (cos θ, sin θ)T ,

0 ≤ θ ≤ 2π, choose ∇xuext ∈ R2×2 and obtain

∇n · (Pn⊥∇xuextnf) = ∂θ

((
− sin θ

cos θ

)
· ∇xuext

(
cos θ

sin θ

)
f

)
. (3.1)

Now we can consider different externally imposed velocity gradients ∇xuext and the correspond-

ing drift terms (3.1). For shear flow we obtain

∇xuext =

(
0 0

1 0

)
, Pn⊥∇xuextn = cos2(θ),

for elongational flow we obtain

∇xuext =

(
1 0

0 −1

)
, Pn⊥∇xuextn = − sin(2θ)

and for rotational flow we obtain

∇xuext =

(
0 1

−1 0

)
, Pn⊥∇xuextn = −1.

Note that multiplying the different matrices ∇xuext with a constant leads to an additional

constant factor in the drift term. Later in this paper we will for example also consider shear

flow with vx 6= 1. Furthermore, we can consider shear flow with uy 6= 0 and ux = vx = vy = 0.

In the general case we have

∇xuext =

(
ux uy
vx vy

)
, Pn⊥∇xuextn = (vy − ux) cos θ sin θ − uy sin2 θ + vx cos2 θ. (3.2)

The Laplace-Beltrami operator on S1 reduces to the standard second derivative. Thus, we

obtain an advection-diffusion equations of the form

∂tf(t, θ) + ∂θ

((
(vy − ux)

1

2
sin 2θ − uy sin2 θ + vx cos2 θ

)
f(t, θ)

)
= Dr∂θθf(t, θ), (3.3a)

f(θ, 0) = f0(θ). (3.3b)

Note that (3.3) can also be obtained from (2.5) by setting φ = π/2 and ∂φf = 0. We impose

the periodicity condition f(t, 0) = f(t, 2π) for all t ≥ 0. The one-dimensional Equation (3.3)

does of course not suffer from a pole singularity.
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For smooth solutions (3.3) can equivalently be expressed in the form

∂tf(t, θ) =
(

(ux − vy) cos 2θ + (uy + vx) sin 2θ
)
f(t, θ)

+

(
(ux − vy)

1

2
sin 2θ + uy sin2 θ − vx cos2 θ

)
∂θf(t, θ)

+Dr∂θθf(t, θ),

f(θ, 0) = f0(θ).

(3.4)

3.1. Spectral method

A spectral method for the one-dimensional Smoluchowski equation (3.3) is based on the

ansatz

f(t, θ) = f0(t) +

N∑
i=1

ci(t) cos(2iθ) + si(t) sin(2iθ).

Inserting this ansatz into (3.3) and matching equal sine and cosine terms, leads to a linear

system of ordinary differential equations of the general form q′(t) = Dq(t) with the unknown

coefficient vector q(t) = (f0(t), c1(t), s1(t), . . . , cN (t), sN (t))T and a (2N + 1)× (2N + 1) matrix

D. We briefly illustrate this procedure for shear flow (i.e., we set vx 6= 0, ux = uy = vy = 0)

and N = 1. In this case we obtain

f(t, θ) ≈ f0(t) + c1(t) cos 2θ + s1(t) sin 2θ,

∂tf(t, θ) ≈ f ′0(t) + c′1(t) cos 2θ + s′1(t) sin 2θ,

∂θf(t, θ) ≈ −2c1(t) sin 2θ + 2s1(t) cos 2θ,

∂θθf(t, θ) ≈ −4c1(t) cos 2θ − 4s1(t) sin 2θ.

Now we insert these terms into the Smoluchowski equation for shear flow, i.e. into the pde

∂tf + ∂θ(vx cos2 θf) = Dr∂θθf.

After some straight forward calculations we obtain

f ′0(t) + c′1(t) cos 2θ + s′1(t) sin 2θ + vx
(
s1 cos 2θ − c1 sin 2θ

− f0(t) sin 2θ + s1 cos 4θ − c1 sin 4θ
)

=Dr (−4c1 cos 2θ − 4s1 sin 2θ) .

Now we group terms of different order in cos 2iθ and sin 2iθ. In our simple situation we obtain

1 : f ′0(t) = 0,

cos 2θ : c′1(t) + vxs1(t) = −4Drc1(t)

sin 2θ : s′1(t)− vxc1(t)− vxf0(t) = −4Drs1(t).

Terms of higher order will be ignored (for N = 1). This leads to the ordinary differential

equation  f0(t)

c1(t)

s1(t)

′ =

 0 0 0

0 −4Dr −vx
vx vx −4Dr

 f0(t)

c1(t)

s1(t)

 .
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In order to describe the ode for general N and the general velocity gradient described

in (3.2), let D1 denote the N × N diagonal matrix with entries dii := −4i2, i = 1, . . . , N .

Then the second order derivative term contributes to the matrix D with entries of the form

DrD1 ⊗
(

1 0

0 1

)
. As we can already see from our simple example, these 2N terms do not

contribute to the first row and the first column of D. To indicate this we write

D(2 : 2N + 1, 2 : 2N + 1) = DrD1 ⊗
(

1 0

0 1

)
.

In order to define the contributions of the first derivative terms to the matrix D, we define

D2 to be the N×N diagonal matrix with components dii := i, i = 1, . . . , N . Furthermore, D3 is

the N ×N matrix with components di,i+1 := i/2 for i = 1, . . . , N −1 and all other entries equal

to zero. Finally, D4 is the N×N matrix with entries di+1,i := (i+1)/2, i = 1, . . . , N−1 and all

other entries equal to zero. With these definitions the contributions of D(2 : 2N+1, 2 : 2N+1),

which are caused by the drift term, can be expressed in the form

D2⊗
(

0 −uy + vx
uy − vx 0

)
+D3⊗

(
−ux + vy −uy − vx
uy + vx −ux + vy

)
+D4⊗

(
ux − vy −uy − vx
uy + vx ux − vy

)
.

Furthermore, the first column of D contains non-zero entries in the second and third row. They

have the form D(2, 1) := ux − vy and D(3, 1) := vx + uy.

We used the ode45 routine from MATLAB in order to solve the ordinary differential equation

q′(t) = Dq(t). Note that the derivation needs to be performed for each partial differential

equation. Numerical results obtained with this method will be shown in Section 3.3.

3.2. RBF method

The approximation of (3.3) using radial basis functions is based on an interpolation of the

solution f which we denote by f̃ and which takes the form

f̃(t, θ) =

M∑
j=1

cj(t)Φ (‖n− nj‖2, ε) . (3.5)

Here, n ∈ S1 on the right hand side of (3.5) is related to θ via the relation n =

(
cos θ

sin θ

)
, ‖·‖2 is

the standard Euclidean vector norm. We assign points n1, . . . , nM on S1 using equally distribute

points θi := i∆θ, ∆θ = 2π/M , i = 1, . . . ,M . Distances between points on S1 in ‖ · ‖2 can now

easily be computed, which automatically imposes the periodicity condition. The function Φ is

a so-called radial basis function. It depends on a distance function r = r(n) = ‖n − nj‖2 as

well as on a shape parameter ε. Different choices of radial basis functions have been discussed

in Fornberg and Piret [7]. Below we will sometimes use the notation Φj(r), which for simplicity

omits the dependence on ε and which indicate that the radial basis function is centered at nj .

For our numerical computations we use the Inverse Multiquadric (IMQ) RBF, which has the

form

Φ(r, ε) = 1/
√

1 + ε2r2. (3.6)

The parameter ε controls the shape of the RBF and in turn the accuracy of the solution as

discussed in detail in [7].
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The initial values for f are used to calculate initial values for c1, . . . , cM using the interpo-

lation condition

f̃(0, θj) = f(0, θj), j = 1, . . . ,M. (3.7)

We can express this interpolation condition in the form of a linear system

Bc(0) = f̃(0),

with vector valued quantities c(0) = (c1(0), . . . , cM (0))T and f̃(0) = (f(0, θ1), . . . , f(0, θM ))T

and a matrix B ∈ RM×M with components bij := Φ(‖ni−nj‖2, ε), i, j = 1, . . . ,M . Micchelli [11]

showed that the matrix B is positiv definite for typically used radial basis functions and any

choice of pairwise distinct nodes.

Our goal is to compute f̃(t) := (f̃(t, θ1), . . . , f̃(t, θM ))T using a method of lines approach.

For a given vector f̃(t) we can recover the function f̃(t, θ) for all 0 ≤ θ ≤ 2π, by solving a linear

system of the form

Bc(t) = f̃(t) (3.8)

and subsequently using Equation (3.5). We also introduce the vector valued quantities

θ := (θ1, . . . , θM )T ,

ft(t) := (∂tf̃(t, θ1), . . . , ∂tf̃(t, θM ))T ,

f̃θ(t) := (∂θf̃(t, θ)|θ=θ1 , . . . , ∂θf̃(t, θ)|θ=θM )T ,

f̃θθ(t) := (∂θθf̃(t, θ)|θ=θ1 , . . . , ∂θθf̃(t, θ)|θ=θM )T .

We will now describe the derivation of the differentiation matrices, which is the crucial step

in the definition of the RBF method. Differentiation of (3.5) with respect to θ leads to

∂θf̃(t, θ) =

M∑
j=1

cj(t)
∂Φj(r)

∂r

∂r

∂θ
.

Thus, the computation of the vector f̃θ(t) can be expressed in the form

f̃θ(t) = H1c(t), (3.9)

with a matrix H1 ∈ RM×M with entries

hij :=
∂Φj(r)

∂r

∂r

∂θ

∣∣∣
θ=θi

, i, j = 1, . . . ,M.

For the IMQ-RBF (3.6), for example, we get

hij = − ε2 sin(θi − θj)
(1 + ε2(2− 2 cos(θi − θj)))3/2

, i, j = 1, . . . ,M.

Combining (3.9) and (3.8) we obtain

f̃θ(t) = H1B
−1f̃(t). (3.10)

The matrix D1 := H1B
−1 (in MATLAB H/B) is called the differentiation matrix for the first

derivative with respect to θ. In analogy we can express the discretization of the second derivative

with respect to θ in the form

f̃θθ(t) = H2c(t) (3.11)
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with a matrix H2 ∈ RM×M with entries

hij =
∂2Φj
∂θ2

∣∣∣
θ=θi

=

(
∂2Φj
∂r2

(
∂r

∂θ

)2

+
∂Φj
∂r

∂2r

∂θ2

)∣∣∣
θ=θi

.

For the IMQ-RBF we obtain

hij =
3ε4 sin2(θi − θj)

(1 + ε2 ((cos θi − cos θj)2 + (sin θi − sin θj)2))
5/2

− −ε2 cos(θi − θj)
(1 + ε2 ((cos θi − cos θj)2 + (sin θi − sin θj)2))

3/2
.

Using (3.8) and (3.11), we can express the second derivative in the form

f̃θθ(t) = H2B
−1f̃(t). (3.12)

The matrix D2 := H2B
−1 is called the differentiation matrix for the second derivative.

On the discrete level, the pde (3.3) with the drift term (3.2) can be expressed in the form

of an ordinary differential equation

f̃t(t) = ((ux − vy)diag(cos 2θθθ) + (uy + vx)diag(sin 2θθθ)) f̃ff(t)

+

(
uydiag(sin2 θθθ)− vxdiag(cos2 θθθ) +

1

2
(ux − vy)diag(sin 2θθθ)

)
D1f̃(t)

+DrD2f̃(t). (3.13)

Here diag(cos 2θθθ) is the diagonal matrix with (i, i) component cos(2θi) and analogously for

the other diagonal matrices. We use the MATLAB routine ode45 in order to solve (3.13)

numerically. Note that we solve an ode for f̃(t) and not for c(t). The vector c only needs to

be computed if we wish to evaluate f̃ at other points than the nodes, for example for plotting

reasons.

Note furthermore, that once the differentiation matrices D1 and D2 are defined, the deriva-

tion of the system of ordinary differential equations (which needs to be solved in order to obtain

the RBF method) is trivial. It is a straight forward approximation of (3.4). This is a main

advantage of the RBF method compared to the spectral method. In the next section we will see

that the accuracy of the RBF method is comparable with the accuracy of the spectral method.

3.3. Numerical results

We first consider steady state calculations of the Smoluchowski equation for elongational

flow.

Example 3.1. We consider on S1 the partial differential equation

∂tf + ∂θ

(
−3

2
sin(2θ)f

)
= Dr∂θθf

with initial values f(0, θ) = 1/(2π). This problem has a steady state solution of the form

feq(θ) = C exp

(
− 3

2Dr
sin2 θ

)
,

with the constant C such that
∫ 2π

0
feq(θ)dθ =

∫ 2π

0
f(0, θ)dθ = 1.
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In Fig. 3.1, we show the steady state solution of Example 3.1 plotted over S1 for two different

values of Dr. Note that we approximate this time dependent problem for a time which is large

enough so that the solution reaches the steady state. In the diffusion dominated regime, shown

in the left plot, there is only a slight preference of the horizontal direction. In the transport

dominated case, shown in the right plot, the rods orient strongly in horizontal direction. In Fig.

3.2, we show the max-norm error vs. N for steady state solutions. In the diffusion dominated

case, shown in the left plot, very accurate results can already be obtained with small values of

N . The number of N which is needed in order to obtain accurate approximations of the steady

state solution increases as we decrease Dr, as can be seen in the middle and right plot. Note

that for a fixed drift term, decreasing Dr leads to a more transport dominated problem.
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Elongational flow, D r = 1
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Elongational flow, D r = 0.1

Fig. 3.1. Solution structure of elongational flow problem for two different values of Dr.
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Fig. 3.2. Max-norm error vs. N for steady state computations of elongational flow using the spectral

method described in Section 3.1.

In Figs. 3.3–3.4 we show plots of the error vs. M for computations obtained with the RBF

method. In the diffusion dominated case, less points are needed to resolve the solution structure.

In the convection dominated regime, more points are required. Furthermore, the accuracy of

the solution depends on the choice of ε. Smaller values of ε are more accurate provided that the

resulting method is stable. For Dr = 0.1 and ε = 1, for example, the method became unstable
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Fig. 3.3. Max-norm error vs. M for steady state computations of elongational flow using the RBF

method described in Section 3.2 with Dr = 1 and (left plot) ε = 1, (middle) ε = 2 and (right) ε = 4.
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Fig. 3.4. Max-norm error vs. M for steady state computations of elongational flow using the RBF

method described in Section 3.2 with Dr = 0.1 and (left plot) ε = 1, (middle) ε = 2 and (right) ε = 4.

for larger values of M . Both, with the spectral method but also with the RBF method we can

reach an accuracy which is on the order of magnitude of the machine precision.

In our next example we consider steady state approximations of the Smoluchowski equation

for an externally imposed shear flow.

Example 3.2. We consider on S1 the initial value problem

∂tf + ∂θ
(
vx cos2 θf

)
= Dr∂θθf,

f(0, θ) = 1/2π.
(3.14)

In Fig. 3.5, we present steady state solutions of Example 3.2 for different values of vx/Dr. We

used the spectral method in order to calculate these solutions.

In Figs. 3.6 and 3.7 we compare the solution structure of Example 3.2 obtained by using

the RBF method (red circles) on different grids with a highly resolved spectral method (solid

line). We show results for vx/Dr = 100 and vx/Dr = 1000 and used different grid resolutions.

In most of the calculations we set ε = 4. However, in the case of strong shear rate, the coarse

grid computation using M = 50 produced oscillations for ε = 4. These are caused by the poor

resolution of the peaked solution structure. By using a larger value of ε, those oscillations where

attenuated. Here we show a plot for which we used ε = 8. Our numerical results show that the

RBF method produces very accurate results, provided that the solution structure is sufficiently

resolved. Compared to other methods, such as finite difference or finite volume methods, the
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Fig. 3.5. Solution structure of shear flow for different values of vx/Dr.
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Fig. 3.6. Computation of the shear flow problem with vx/Dr = 100 using a highly resolved spectral

method (solid line) as well as the RBF method (red circles). For the RBF computation we used 50, 100

and 200 node points.

resolution which was needed is relatively coarse. Thus, the RBF method is an efficient method

for these kind of problems.
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Fig. 3.7. Computation of the shear flow problem with vx/Dr = 1000 using a highly resolved spectral

method (solid line) as well as the RBF method (red circles). For the RBF computation we used 50, 100

and 200 node points.

4. The RBF Method on S2

In this section we describe an RBF method for the Smoluchowski equation on S2. This

method is again based on an interpolation of the solution using radial basis functions, which

can be expressed in the form

f̃(t, n) =

M∑
j=1

cj(t)Φ(‖n− nj‖2, ε), (4.1)

with n ∈ S2, i.e. n ∈ R3 and ‖n‖2 = 1. Now n1, . . . , nM are points on S2. Here we used the

so-called maximal determinant (MD) nodes as well as the minimal energy (ME) nodes, which

can be downloaded from [15]. In analogy to the one-dimensional case, the coefficient vector

c(t) = (c1(t), . . . , cM (t))T is related to the vector f̃(t) = (f̃(t, n1), . . . , f̃(t, nM ))T via a matrix

vector multiplication of the form

Bc(t) = f̃(t) (4.2)

with B ∈ RM×M and bij := Φ(‖ni − nj‖2, ε), i, j = 1, . . . ,M .

In order to discretize the spatial derivatives, the method makes use of the fact that the

gradient operator on the sphere ∇n is related to the gradient operator in Euclidian space ∇
through

∇n = (Id− n⊗ n) · ∇,

with n ∈ S2. Let Φk(r(n)) denote the RBF centered at nk, with r(n) := ‖n− nj‖2. Using the

chain rule, the gradient in Cartesian space of Φk(r(x)) is given by

∇Φk(r(n)) = (n− nk)
Φ′k(r(n))

r(n)
.

Consequently, the gradient on the sphere of the continuous function Φk(r(n)) can be expressed

by

∇nΦk(r(n)) = (Id− n⊗ n)(n− nk)
Φ′k(r(n))

r(n)
. (4.3)

In our numerical method we want to express the components of the gradient at all of the

discretization points ni, i = 1, . . . ,M at once. This can be done by three matrix vector

multiplications withM×M matrices, one for each component of the gradient in (4.3). We denote
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the differentiation matrices for the first, second and third component of (4.3) by Dx
N , D

y
N , D

z
N ,

respectively. In order to describe these matrices, we use the notation n = (x, y, z)T for the

components of the vector n. We obtain

Dx
N := DxB−1, Dy

N := DyB−1, Dz
N := DzB−1

with a matrix Dx that has the components

dxjk := (xjn
T
j nk − xk)

Φ′k(r(nj))

r(nj)
, j, k = 1, . . . ,M.

Note that nj and nk are vectors, while xj is the first component of nj . In analogy the matrix

Dy has the components

dyjk := (yjn
T
j nk − yk)

Φ′k(r(nj))

r(nj)

and the matrix Dz has the components

dzjk := (zjn
T
j nk − zk)

Φ′k(r(nj))

r(nj)
.

From the structure of the radial basis function (compare with (3.6)) it follows that the first

derivative Φ′(r) contains a factor r in the enumerator. This factor cancels with the r in the

denominator. Therefore, the division by r in the above formulas does not cause any stability

problems.

The RBF discretization of the Laplace Beltrami operator was introduced in [16]. In order

to describe this approach, let d(n) := ‖n − nref‖2 denote the Euclidian distance of the point

n ∈ S2 from a reference point nref , for example the north pole nref := (0, 0, 1). Following [16],

the Laplace Beltrami operator of a function f(d) can be expressed in the form

∆nf(d) =
1

4

(
(4− d2)

∂2f

∂d2
+

4− 3d2

d

∂f

∂d

)
. (4.4)

The discretization of ∆nf can again be described in the form of a matrix vector multiplication,

with an N ×N matrix of the form

DLB = D2B
−1, (4.5)

with B as described above and a matrix D2, which evaluates (4.4) at the discrete points

n1, . . . , nM . A crucial point to note is that (4.4) is independent of the choice of nref . In

particular, we can chose nref = ni for the discretization of the Laplace Beltrami operator at

the point ni. With this choice, the components of D2 are given by

dij :=

(
1− 3

4
‖ni − nj‖2

)
Φ′j(‖ni − nj‖)
‖ni − nj‖

+

(
1− 1

4
‖ni − nj‖2

)
Φ′′j (‖ni − nj‖)

for i, j = 1, . . . ,M . The term ‖ni − nj‖ in the denominator again cancels and therefore does

not lead to stability problems.

Finally, we are ready to describe the discretization of (2.4) on S2. Note that the drift term

Pn⊥∇xuextn is a vector valued quantity, which is defined on each point of S2. We will refer to the

three components of the drift in Cartesian coordinates separately. Therefore, we introduce the

notation Pn⊥∇xuextn := (u(n), v(n), w(n))T . Let U, V, W describe N × N diagonal matrices

with entries uii := u(ni), vii := v(ni) and wii := w(ni) for i = 1, . . . ,M . In semi-discrete
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form, the RBF method for the Smoluchowski equation can now be described by the system of

ordinary differential equations

f̃t(t) = −(UDx + V Dy +WDz)f̃(t)− (DxU +DyV +DzW )f̃(t) +DrDLB f̃(t). (4.6)

This system can now easily be solved by an explicit ode solver.

4.1. Numerical results

For our accuracy study, we again choose ∇xuext ∈ R3×3 in such a way that steady state

solutions of (2.4) are known. This allows us to compare the numerical solution with the exact

steady state solution. In our first example on S2 we consider the Smoluchowski equation for

elongational flow.

Example 4.1. We consider the initial value problem

∂tf(t, n) +∇n · (Pn⊥∇xuextnf(t, n)) = Dr∆nf(t, n),

f(0, n) = 1/4π,

with n ∈ S2 and an externally imposed velocity gradient which describes elongational flow, i.e.

∇xuext := `

 2 0 0

0 −1 0

0 0 −1

 ,

with ` = ±1. For ` > 0, we obtain uniaxial extensional motion, i.e., a full alignment of the

director in one direction. For ` < 0 we observe biaxial extensional motion, i.e. the axes align

strongly in a plane, but within that plane show no further tendency to align.

In spherical coordinates φ ∈ [0, π], θ ∈ [0, 2π], the exact steady state solution can be

expressed in the form

fex(φ, θ) = C1 exp

(
− 3

2Dr

(
1− cos2(φ) sin2(θ)

))
for ` = 1,

fex(φ, θ) = C2 exp

(
− 3

2Dr
cos2(φ) sin2(θ)

)
for ` = −1.

(4.7)

The constants C1 and C2 respectively are obtained by the condition
∫
S2 fdn = 1. If we set

the rotational diffusion constant to Dr = 0.1, then we obtain C1 = 2.30121392 and C2 =

0.34776898.

In Fig. 4.1 we show images of the exact steady state solution for Example 4.1. In order to

test the algorithm we start with constant initial values f(n, 0) = 1/(4π) and evolve Equation

(2.4) until a steady state solution is reached. In Figs. 4.2–4.3, we show the max norm error

versus M for steady state computations of uniaxial and biaxial extensional motion. For all

computations we used ε = 2.6 and computed the numerical solution at time T = 10. The

max-norm error is obtained by comparing the vector f̃(T ) with the exact steady state solution

evaluated at the same nodes. Our computations show that we can again reach a good accuracy

with relatively few degrees of freedom. The ME nodes (red circles) produced slightly more

accurate results than the MD nodes (blue crosses). The accuracy is limited, since the system

(4.2) has in general a high condition number. However, the observed accuracy should be very

appropriate for many applications.
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(a) (b)

Fig. 4.1. Exact steady state solution for (a) uniaxial extensional motion and (b) biaxial extensional

motion using Dr = 0.1.
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Fig. 4.2. Max-norm error vs. M for steady state computations of (left) uniaxial and (right) biaxial

extensional motion using Dr = 1 and ε = 2.6. The blue crosses indicate the error obtained by using

the MD nodes, the red circles indicate the error using the ME nodes.

To further investigate the accuracy of the RBF method, Table 4.1 shows more data of an

accuracy study for Example 4.1 using ` = 1, Dr = 1 and ME nodes. Now we consider different

values of ε and report the max norm error as well as the condition number of the matrix

(computed with the cond routine from MATLAB), which describes the ode in Equation (4.6),

for different numbers of nodes N . Smaller values of ε increase the accuracy but lead to a larger

condition number. This larger condition number causes instabilities. While larger values of ε

increase the stability, the accuracy obtained at nodes is in all considered cases limited by about

8.5 · 10−10. This accuracy is however considerably higher than the accuracy obtained with the

second order finite volume method on grids with a comparable resolution, see [8].

In our second test problem we consider shear flow.

Example 4.2. We consider the initial value problem

∂tf(t, n) +∇n · (Pn⊥∇xuextnf(t, n)) = Dr∆nf(t, n),

f(0, n) = 1/4π
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Fig. 4.3. Max-norm error vs. M for steady state computations of (left) uniaxial and (right) biaxial

extensional motion using Dr = 0.1 and ε = 2.6. The blue crosses indicate the error obtained by using

the MD nodes, the red circles indicate the error using the ME nodes.

Table 4.1: Accuracy study for the test problem specified in Example 4.1 with Dr = 1, ` = 1, T = 10

and MD nodes. We show the ‖ · ‖∞ norm error and the condition number for different values of ε.

error in ‖ · ‖∞ norm condition number

N ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

256 2.731 · 10−8 1.277 · 10−4 1.079 · 10−2 1.227 · 1011 6.757 · 106 7.067 · 104

400 9.855 · 10−10 3.620 · 10−6 1.153 · 10−3 6.267 · 1012 3.836 · 108 1.043 · 106

784 8.446 · 10−10 3.794 · 10−8 1.609 · 10−5 1.760 · 1016 6.776 · 1010 1.444 · 108

1296 8.461 · 10−10 1.042 · 10−9 1.773 · 10−7 2.814 · 1017 1.408 · 1013 2.537 · 1010

1600 unstable 7.717 · 10−10 7.631 · 10−8 3.475 · 1018 6.052 · 1013 6.280 · 1010

4096 8.456 · 10−10 8.553 · 10−10 2.490 · 1017 9.852 · 1014

4624 unstable 8.4157 · 10−10 8.800 · 1016 2.728 · 1015

with n ∈ S2 and an externally imposed velocity gradient which corresponds to shear flow, i.e.

∇xuext :=

 0 uy 0

0 0 0

0 0 0

 .

In Fig. 4.4, we show numerical results of Example 4.2 obtained with the RBF method for

different values of uy and different values of M . The numerical results obtained for M = 400

agree already very well with the more resolved computations that used M = 1600. The black

dots in these figures show the ME points, which were used in these simulations.

Recall from the full model (2.1)–(2.3), that the microscopic solution f influences the macro-

scopic flow u via the stress tensor σ. In order to obtain efficient approximations of the full

model it is desirable to compute accurate approximations of f using relatively few degrees of

freedom, i.e. M should be relatively small. For shear flow of the form u = (u(y), 0, 0)T , the

component σ12 = σ21 of the stress tensor (2.2) is relevant. This component has the form

σ12 = 3

∫
S2

xyfeq(n)dn, (4.8)

where x and y are the first and second components of n ∈ S2.
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Fig. 4.4. Shear flow solution for (top) uy = 1, (middle) uy = 10 and (bottom) uy = 100. For all of these

computations we used ε = 2.6 and Dr = 1. For the plots on the left hand side we used 400 ME nodes

and for the plots on the right hand side we used 1600 ME nodes. Note that the x-axis describes the

flow direction, the y-axis describes the shear direction and the z-axis describes the vorticity direction.

For a constant externally imposed velocity gradient ∇xuext and a constant rotational dif-

fusion coefficient Dr, the Smoluchowski equation reaches a steady state. For constant Dr and

constant initial values (here we used f(0, n) = 1/(4π)), this defines a mapping from ∇xuext to

σ, where σ is computed using the steady state solution of f . For shear flow, the mapping from

uy to σ12 is relevant. It is known, see [12], that this mapping is non-monotone, which leads to

a complex solution structure of the coupled problem (even for shear flow).

Starting with f(n, 0) = 1/(4π), we compute solutions of the Smoluchowski equation at time

T = 10 for Dr = 1 and different values of uy, with −100 ≤ uy ≤ 100. At time T = 10

the numerical solution has reached a steady state, which was used in (4.8) to compute the
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stress component σ12. In Fig. 4.5, we show results of this mapping from shear velocity to the

stress component. The Smoluchowski equation was solved using the RBF method with different

numbers of ME node points, i.e. we used M = 225, M = 400 and M = 900. The solid black

line in Fig. 4.5 is a reference solution, which we obtained by using M = 2500. For M = 400,

which is still a relatively coarse approximation, we already obtain very good results. The very

coarse approximation, using only M = 225 nodes on the sphere, was not sufficient. Note that

weights of a numerical quadrature formula are provided together with the RBF nodes, see [15].
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Fig. 4.5. The stress component σ12 as a function of uy for steady state shear flow computations of

the Smoluchowski equation. We used M = 225 (left), M = 400 (middle) and M = 900 (right) for

the solution of the Smoluchowski equation. The black line is a reference solution obtained by using

M = 2500.

We conclude that RBF methods are attractive numerical methods for these kind of appli-

cations. They reach an accuracy, using relatively few degrees of freedom, which is comparable

with the accuracy of spectral methods. Furthermore, the derivation of these methods for new

applications is simpler.
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