
Journal of Computational Mathematics

Vol.38, No.1, 2020, 125–141.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1906-m2018-0210

LOCAL PRESSURE CORRECTION FOR THE STOKES SYSTEM*

Malte Braack and Utku Kaya

Mathematical Seminar, University of Kiel, Germany

Email: braack@math.uni-kiel.de, kaya@math.uni-kiel.de

Abstract

Pressure correction methods constitute the most widely used solvers for the time-

dependent Navier-Stokes equations. There are several different pressure correction meth-

ods, where each time step usually consists in a predictor step for a non-divergence-free

velocity, followed by a Poisson problem for the pressure (or pressure update), and a final

velocity correction to obtain a divergence-free vector field. In some situations, the equa-

tions for the velocities are solved explicitly, so that the numerical most expensive step is

the elliptic pressure problem. We here propose to solve this Poisson problem by a domain

decomposition method which does not need any communication between the sub-regions.

Hence, this system is perfectly adapted for parallel computation. We show under certain

assumptions that this new scheme has the same order of convergence as the original pres-

sure correction scheme (with global projection). Numerical examples for the Stokes system

show the effectivity of this new pressure correction method. The convergence order O(k2)

for resulting velocity fields can be observed in the norm l2(0, T ;L2(Ω)).

Mathematics subject classification: 76D07, 65M55.
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1. Introduction

Pressure correction methods are the most widely used methods to solve the time-dependent

Navier-Stokes equations, because they open the possibility to decouple the momentum equa-

tion from the divergence equation and, hence, lead to the possibility to use different solution

techniques for obtaining the velocity and the pressure.

Since the pioneering work of Chorin and Temam [2, 8] many different pressure correction

methods have been proposed. An extensive overview was provided by Guermond et al [3]. These

methods commonly contain a prediction step for a not necessarily divergence-free velocity field,

followed by a Poisson problem for the pressure (or a pressure update), and finally a projection

of the previously computed velocity onto a divergence free one. In certain applications with the

need of small time steps due to accuracy reasons, the predictor step can be formulated in an

explicit way. Of course this requires an explicit treatment of the convective and diffusive term,

so that severe time step restrictions are needed for stability. However, this is acceptable for

typical applications as for instance in climate research. In this case, a numerically very expensive

part of the splitting scheme is the Poisson problem for the pressure (update). It is a global

problem with an associated matrix to be inverted with condition number dependent on the

mesh resolution. For finer meshes, the condition number becomes larger, so that many iterative

solvers (such as conjugate gradient methods, Jacobi iteration and Gauss-Seidel methods) suffer

in terms of convergence rates. Parallelization on multi-core computers or parallel computers
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may help to reduce the simulation time but always require suitable further iteration techniques

to account for the elliptic character of the Poisson problem.

Therefore, we propose in this work an alternative splitting method which replaces the glob-

al Poisson problem for the pressure update by a number of smaller non-overlapping Poisson

problems that are completely decoupled. This gives the possibility to solve the pressure cor-

rection step in parallel without any communication within the iterative linear solver. In terms

of accuracy, the resulting scheme is comparable to the original scheme. To a certain extent,

the new method presented and analyzed here can be considered as an extension of the coarse

grid projection method introduced by Lentine et al. [7] and recently studied by Kashefi and

Staples [6].

We present this modified scheme, demonstrate several properties, and show first numerical

results. The starting splitting scheme is not restricted to a special one. However, for ease of

presentation, we consider in this work the pressure correction scheme of Timmermans et al. [9],

which has been analyzed by Shen and Guermond [4] and is considered to be among the most

accurate ones.

We start with a standard and well-analyzed pressure correction method in Section 2. The

new local pressure correction scheme is introduced in Section 3, where we still give freedom of

a concrete projection. The a priori analysis is topic of Section 4. To this end we formulate a

necessary condition of the projection (Assumption 4.1). One possible realization of the local

projection is given in Section 5. We also verify the assumption needed previously to prove the

error estimate. First numerical results are subject of Section 6. We end with a short conclusion

and outlook.

2. Pressure Correction for the Stokes System

We consider the time-dependent Stokes equations in a Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3},
homogeneous Dirichlet conditions on ∂Ω and initial velocity field u0. With the velocity field

u : Ω→ Rd, the pressure p : Ω→ R, and a forcing term f : Ω→ Rd the Stokes system reads

∂tu− ν∆u+∇p = f in ΩT := Ω× (0, T ], (2.1)

divu = 0 in ΩT , (2.2)

u = 0 on ∂Ω× (0, T ], (2.3)

u(0) = u0 in Ω. (2.4)

Here, ν > 0 is a positive, constant viscosity. We takeM+1 discrete time points 0 = t0, t1, . . . , tM
with for simplicity a constant time step k = tm − tm−1 > 0 for all m, hence tm := mk for

0 ≤ m ≤ M = T/k. The outer normal on the boundary ∂Ω is denoted by n. The so-called

rotational incremental pressure-correction proposed by Timmermans et al. [9] starts with a

given u0 and p0 and reads for m ≥ 1:

Step 1: The velocity predictor ũm is obtained by solving the momentum equation with a

BDF(2)-scheme and a given pressure pm−1:

1

2k
(3ũm − 4um−1 + um−2)− ν∆ũm = f(tm)−∇pm−1 in Ω, (2.5)

ũm = 0 on ∂Ω. (2.6)
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Step 2: Poisson equation for the pressure correction:

−∆qm = − 3

2k
div ũm in Ω,

∇qm · n = 0 on ∂Ω,∫
Ω

qmdx = 0.

Step 3: Pressure update:

pm = pm−1 + qm − ν div ũm. (2.7)

Step 4: Velocity correction:

um = ũm −
2k

3
∇qm. (2.8)

Step 5: If m = M stop. Otherwise, increase m by one, increase t by k, and go to Step 1.

The basic features of the arising quantities are as follows: The velocity predictor ũm satisfies

the (homogeneous) Dirichlet conditions on the boundary but it is in general not divergence free.

In contrast to this, the velocity um is divergence free but it satisfies the boundary conditions

only partially: The normal component vanishes um · n = 0. However, the tangential part of

the velocity um · t becomes

um · t = ũm · t−
2k

3
∇qm · t.

Hence, it does in general not vanish. Because of ∆u = −∇×∇×u+∇divu and ∇×∇×um =

∇×∇ × ũm , the predictor can be eliminated out of the system. The resulting equation is a

coupled system for um and pm:

1

2k
(3um − 4um−1 + um−2) + ν∇×∇× um +∇pm = f(tm) in ΩT ,

divum = 0 in ΩT ,

um · n = 0 on ∂Ω× (0, T ].

The divergence-free velocity um can be eliminated out of the system as well, so that the system

can be expressed in terms of ũm:

1

2k
(3ũm − 4ũm−1 + ũm−2)− ν∆ũm = f(tm)−∇

(
pm−1 +

4

3
qm−1 −

1

3
qm−2

)
.

It was shown by Guermond and Shen that this splitting system has the following accuracy for

sufficiently smooth u and p: While the errors of predictor velocity and corrected velocity in

l2(0, T ;L2) norm at discrete time points are of order k2, in l2(0, T ;H1) norm they are of order

k3/2. The pressure error in l2(0, T ;L2) norm is of order k3/2 as well.

The pressure correction method stated above includes a projection of the velocity predictor

ũm to a divergence free velocity um := Π0ũm. The projection Π0 is given as L2-projection

Π0 : L2(Ω)d →H0(Ω)

on the subspace of divergence free functions (and vanishing normal traces on ∂Ω):

H0(Ω) :=
{
u ∈ L2(Ω)d : divu = 0 in Ω, u · n = 0 on ∂Ω

}
.
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3. Local Pressure Updates

3.1. Decomposition into subdomains

The aim of this paper is to replace this L2-projection by some local L2-projection with

respect to subdomains Ωi ⊂ Ω. The advantage will be that the elliptic problem for the pressure

update (2.7) is replaced by a number of local Poisson problems. To this end we consider a

non-overlapping decomposition of Ω:

Ω =

N⋃
i=1

Ωi with Ωi ∩ Ωj = ∅ for 1 ≤ i 6= j ≤ N ;

H̃0(Ωi) :=
{
u ∈ L2(Ωi)

d : divu = 0 in Ωi

}
.

Let

Pi : L2(Ω)d → H̃0(Ωi) (3.1)

be a projection of the form in (3.2). The idea of the local pressure correction is to define um
instead of Step 4 by the local definitions

um|Ωi
:= Piũm.

Note that the Pi have their arguments in L2(Ω)d and not in L2(Ωi)
d. Hence, we allow for

certain global contributions. However, we will see later that the global contribution will be

numerically much less costly than the original scheme. Moreover, (I−Pi)ũm will be a gradient,

(I − Pi)ũm =
2k

3
∇φim. (3.2)

Hence, on each subdomain Ωi the modified Step 2 becomes:

Step 2∗: Determine (I − Pi)ũm = 2k
3 ∇φ

i
m on each subdomain i ∈ {1, . . . , N}.

Step 3∗: Pressure update

qm :=

N∑
i=1

φim, (3.3)

pm := pm−1 + qm − νdiv ũm. (3.4)

The new velocity is obtained as before in Step 4 by

um = ũm − 2k
3 ∇qm

which corresponds to

um
∣∣
Ωi

= Piũm = ũm − (I − Pi)ũm = ũm − 2k
3 ∇φ

i
m.

The way to obtain φim is not yet specified. In the next section we identify certain properties

to ensure the correct error asymptotic in terms of the time step k. Moreover, we give one

particular example in Section 5 for a realization of φim and Pi.
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4. A Priori Error Estimate

4.1. Required assumption on the projection

By P we denote the global projector applied to the predictor velocity, i.e.,

P : V → H̃0, Pu|Ωi := Piu, (4.1)

with the space

H̃0 :=
{
v ∈ L2(Ω) : v|Ωi ∈ H̃0(Ωi), 1 ≤ i ≤ N

}
.

The functions u ∈ H̃0 may have non-vanishing jumps in normal directions across the subdo-

main boundaries

|[u · n(x)]| := lim
ε→0

((u · n)(x+ εn)− (u · n)(x− εn)) for x ∈ ∂Ωi ∩ Ω,

|[u · n(x)]| := (u · n)(x) for x ∈ ∂Ω.

Furthermore, let us use the notation Γ for the union of all inner and outer subdomain bound-

aries:

Γ :=

N⋃
i=1

∂Ωi.

We will need the following assumption in order to show that the modified scheme (Step 1, Step

2∗, Step 3∗ and Step 4) leads to the same order of accuracy with respect to the time step as

the original scheme (Step 1, Step 2, Step 3 and Step 4):

Assumption 4.1. The projections Pi in (4.1) are mappings Pi : H1(Ωi)→ H1(Ωi), and P in

(4.1) allows for a smallness property for the jumps of the gradients into normal direction across

subdomain boundaries, i.e. for all 1 ≤ i ≤ N hold

|||[Pu · n]|||L2(∂Ωi) ≤ ck
3/2 ∀u ∈ H1

0 (Ω)d,

with a constant c independent of the time step k (but dependent on u).

4.2. Inverse Stokes operator

In the following Lemma we address the inverse Stokes operator S : H−1(Ω)d → V :=

H1
0 (Ω)d given as the solution S(f) ∈ V of (∇S(f),∇φ)− (r, divφ) = 〈f,φ〉 for all φ ∈ V for a

suitable r ∈ Q := L2
0(Ω), and (divS(f), ξ) = 0 for all ξ ∈ Q. This lemma is an adaption of a

similar result proved in [5]:

Lemma 4.1. Let Ω ⊂ Rd be convex or C2-bounded. For all v ∈ V and all 0 < γ < 1 it holds

for v∗ := Pv ∈ H̃0:

(∇S(v),∇v) ≥ (1− γ)||v||2L2(Ω) − c(γ,v)
(
||v − v∗||2L2(Ω) + k3

)
. (4.2)

Proof. Firstly, we directly see that

(∇S(v),∇v) = (r, divv) + ||v||2L2(Ω).
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Secondly, the first term on the right hand side can be bounded as follows by integration by

parts on each subdomain and for still arbitrary v∗ ∈ H̃0:

(r, divv) =

N∑
i=1

(r, divv)Ωi
=

N∑
i=1

(r, div (v − v∗))Ωi

=

N∑
i=1

(
−(∇r,v − v∗)Ωi

−
∫
∂Ωi

rv∗ · n ds
)
.

Due to the regularity v ∈ V we know that r ∈ H2(Ω) is continuous in the interior of Ω. Now we

use a representation in terms of the jumps across interior subdomain boundaries Γ and apply

the trace theorem:

N∑
i=1

∫
∂Ωi

rv∗ · n ds =

∫
Γ

r|[v∗ · n]| ds

≤ ||r||L2(Γ)|||[v∗ · n]|||L2(Γ) ≤ c||∇r||L2(Ω)|||[v∗ · n]|||L2(Γ).

Now, we take the particular choice v∗ := Pv. By Assumption 4.1 we obtain∫
Γ

rv∗ · n ds ≤ ck3/2||∇r||L2(Ω),

with c = c(v). Using this in the equation above yields

(r, divv) ≤ ||∇r||L2(Ω)

(
||v − v∗||L2(Ω) + ck3/2

)
.

Because of ||∇r||L2(Ω) ≤ c||v||L2(Ω) we arrive at (4.2). �

4.3. A priori L2-estimate for the time series

The error estimate takes the focus on the errors with respect to the discrete time points tm
with tm = mk to end time T and time step size k. Therefore, we use capital letters for the

notation of the finite time series:

Uk := (u0,u1, . . . ,un)

with n = T/k. This notation is used for the predictor velocity, the projected velocity and the

pressure, i.e. Ũ
k
, Uk and P k. The following theorem makes a statement with respect to the

norm

||Uk||l2(L2) :=

k n∑
j=1

||uj ||2L2(Ω)

1/2

. (4.3)

Theorem 4.1. We assume that Assumption 4.1 holds and the solution of (2.1)-(2.4) is suffi-

ciently smooth in space and time. Then the time-discrete solution (uk, pk) of Step 1, 2∗, 3∗, 4

with time-step k > 0 satisfies the following estimates:

||U −Uk||l2(L2) + ||U − Ũk||l2(L2) ≤ ck2, (4.4)

with constant c independent of the time step k (but dependent on u).
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Proof. The proof follows the lines of Guermond and Shen [4]. The only modification is that

the computation of um and pm is different. Because the original proof is very technical and

involved, we only concentrate here on those steps which have to be adapted for the scheme Step

1,2∗,3∗,4. The rest follows exactly the lines of [4]. The parts of the proof where Step 2 and 3

enter are the following ones:

• A bound of the form ||Ũk−Uk||l2(L2) ≤ ck2 is required (cf. proof Lemma 4.1 in [4]). This

is still valid, because on each subdomain we have the equality

(um − ũm)|Ωi = −2k

3
∇φim

and due to Step 3∗:

||∇φim||l2(L2(Ωi)) ≤ ||∇(δkEp,m + νdiv ũm)||l2(L2),

with the series δkEp,m := (pm−1 − pm) for 1 ≤ m ≤ n. The divergence of the predictor

is bounded as in the original scheme by ||∇(div ũm)||l2(L2) ≤ ck. Hence, we still have

to check that ||∇δkEp,m||l2(L2) ≤ ck. However, proving this is identical to the original

scheme, because it is just a consequence of Step 1 and Step 4 (see Section 4.2 in [4]).

• The following property of the inverse Stokes operator S is used by Guermond and Shen

(Lemma 2.1 of [4]):

(∇S(v),∇v) ≥ (1− γ)||v||2L2(Ω) − c(γ)||v − v∗||2L2(Ω) ∀v∗ ∈H0. (4.5)

Since our um is in H̃0 rather than in H0, we have to use Lemma 4.1, leading to

||U − Ũk||l2(L2) ≤ c||Ũ
k −Uk||l2(L2) + ck2.

Together with ||Ũk −Uk||l2(L2) ≤ ck2 (see above) we arrive at

||U − Ũk||l2(L2) ≤ ck2.

Note that the u-dependence of the constant c does not harm the asymptotic dependency

O(k2). �

4.4. A priori H1-estimate for the time series

Now, we address the norm

||Uk||l2(H1) :=

k n∑
j=1

N∑
i=1

||uj ||2H1(Ωi)

1/2

. (4.6)

Assumption 4.2. The projections Pi in (3.1) are L2- and H1-stable, i.e. for all 1 ≤ i ≤ N

hold

||Piu||L2(Ωi)d ≤ ci||u||L2(Ω)d ∀u ∈ L2(Ω)d, (4.7)

||∇Piu||L2(Ωi)d×d ≤ ci||u||H1(Ω)d ∀u ∈ H1(Ω)d, (4.8)

with constants ci independent of the time step k (but dependent on Ωi).
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Theorem 4.2. We assume that Assumptions 4.1 and 4.2 hold, and that the solution of (2.1)-

(2.4) is sufficiently smooth in space and time. Then the time-discrete solution (uk, pk) of Step

1, 2∗, 3∗, 4 with time-step k > 0 satisfies the following estimates:

||U −Uk||l2(H1) + ||U − Ũk||l2(H1) ≤ ck3/2 (4.9)

with constant c independent of the time step k, but possibly dependent on the partition of Ω and

u.

Proof. The proof for the spatial H1-error for the original scheme requires that um is a L2-

and H1-stable projection of the predictor velocity ũm (cf. Lemma 4.4 in [4]). This is also

the case for the local correction scheme, um|Ωi
= Piũm, because of Assumption 4.2. This

assumption only ensures H1-stability with respect to the subdomains Ωi. That is why the

norm (4.6) only includes the gradients within these subdomains and not across the interior

boundaries ∂Ωi ∩ ∂Ωj (i 6= j). �

5. Realization of the projections Pi

In this section we discuss possibilities to realize the projections Pi in (3.1). One possibility

is to take Pi as the restriction of the L2-projection Π0 : L2(Ω)d → H0 to the subdomain

Ωi. This would lead to P = Π0 and, hence, to the original scheme. Here, we want to define

projections which are numerically less expensive and suitable to parallelization. However, we

are not completely free in the choice of the Pi, because Assumptions 4.1 and 4.2 should be

valid.

The computation of Pi consists of two steps for ũ := ũm:

First step: At first, we compute a coarse grid approximation qH of the pressure correction qm:

−∆qH ≈ −
3

2k
div ũ in Ω, (5.1)

∇qH · n = 0 on ∂Ω. (5.2)

Here we write ’≈’, because it is only an approximation, so that we don’t have point-wise equality

here. This ’equation’ has to be understood in weak formulations for test functions of a finite

dimensional space (finite elements) for a large spatial mesh size H > 0. The particular way to

solve (5.1)-(5.2) is very flexible, we only make the following assumption:

Assumption 5.1. The discretization of (5.1)-(5.2) is designed in such a way that qH is well-

defined and the following properties hold, if qm ∈ H2(Ω):

||∇(qm − qH)||L2(Ω) ≤ CH||qm||H2(Ω),

||∇qH ||L2(Ω) +
∑
T∈TH

|qH |2H2(T ) +
∑
e∈EH

|||[∇qH · n]|||L1(e) ≤ Ck−1||div ũ||L2(Ω),

where TH denotes the set of all elements, and EH the set of all inner edges.

Second step: In the second step we solve local Poisson problems:

−∆φim = − 3

2k
div ũ in Ωi, (5.3)

∇φim · n = ΠH(∇qH · n) + gi on Γi := ∂Ωi \ ∂Ω, (5.4)

∇φim · n = 0 on ∂Ωi ∩ ∂Ω, (5.5)
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with

gi := |Γi|−1

∫
Γi

(
3

2k
ũm · n−ΠH(∇qH · n)

)
ds

and a L2-projection to a finite dimensional space SH

ΠH : L2(Ω)→ SH ∈ C(Ω)

so that ΠH(∇qH · n) is continuous on interfaces Γi (see Section 6). We assume that ΠH is

H1-stable which is usually the case, see Bramble et al. [1]. The projection of the gradient

ΠH(∇qH · n) in the right hand side of the Neumann data can be considered as the principal

part, whereas the gi are corrections in order to ensure the compatibility property∫
Γi

(ΠH(∇qH · n) + gi) dS =
3

2k

∫
Ωi

div ũ dx, 1 ≤ i ≤ N. (5.6)

This ensures the solvability and uniqueness of the local Poisson problems (5.3)-(5.4). The

projection I − Pi is now given by

(I − Pi)ũm :=
2k

3
∇φim.

In order to validate that Pi really maps into H̃0(Ωi), we deduce

um|Ωi
= Piũm = ũm|Ωi

− (I − Pi)ũm = ũm|Ωi
− 2k

3
∇φim,

which shows that

divum|Ωi
= div ũm|Ωi

− 2k

3
∆φim = 0.

This modified scheme has some advantages compared to the original one:

1. The Poisson problems (5.3)–(5.4) can be solved in parallel without any sophisticated

parallel solver. These N individual problems are decoupled from each other so that the

communication costs are minimal.

2. If the partition consists of sufficiently small subdomain Ωi, the discretization of the local

problems (5.3)–(5.4) may lead to very small systems which can be efficiently and robustly

solved by a simple direct solver. Therefore, no sophisticated elliptic solver (e.g. multigrid)

is needed to handle the large condition numbers of Poisson problems.

3. Solving the local problems (5.3)–(5.4) are usually more memory efficient on modern CPUs

with fast cache memories, because all needed data can be stored in the cache, if N is large

enough.

4. In certain applications with (very) small time steps, the momentum equation (2.5) is often

solved in an explicit way without any need for an implicit solver. In this case, only an

elliptic coarse grid problem for qH and several small systems have to be solved in the

entire algorithm (Step 1, 2∗, 3 and 4).
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5.1. Check of Assumption 4.1

In order to show that Assumption 4.1 is valid, if Assumption 5.1 holds, we make use of the

following property shown in [4]:

||div ũm||L2(Ω) ≤ ck3/2. (5.7)

This property is also true for our algorithm, because Step 1 is the same, i.e. the procedure to

determine ũm is the same as the original scheme. Note that the constant c may depend on

∇ũm. However, the explicit dependency of the constant is not specified in [4], and is also not

addressed in this work.

Lemma 5.1. Assumption 5.1 in combination with a H1-stable L2-projection ΠH ensures the

property in Assumption 4.1.

Proof. Step A: We firstly show that Assumption 5.1 implies that for all 1 ≤ i ≤ N ,

|gi| ≤ ck1/2,

with c = c(∇um) and ũ := ũm. For the real numbers gi we derive

|gi| = |Γi|−1

∣∣∣∣∫
Γi

(
3

2k
ũ · n−ΠH(∇qH · n)

)
ds

∣∣∣∣
= |Γi|−1

∣∣∣∣∫
Γi

(∇qm · n−ΠH(∇qH · n)) ds

∣∣∣∣
= |Γi|−1 (j(qm)− jΠ(qH)),

with the functionals

j(q) :=

∫
Γi

∇q · n ds and jΠ(q) :=

∫
Γi

ΠH(∇q · n) ds.

By assumption, the projection ΠH is L2-stable and H1-stable:

||ΠHv||L2(Ω) ≤ C1||v||L2(Ω) ∀v ∈ L2(Ω),

||ΠHv||H1(Ω) ≤ C2||v||H1(Ω) ∀v ∈ H1(Ω).

This implies jΠ ∈ H−1(Ω) and ||jΠ||H−1(Ω) ≤ C2H
−1, because of the trace theorem and an

inverse estimate (q ∈ H1(Ω)):

|jΠ(q)| ≤ cΓi ||ΠH(∇q · n)||H1(Ω) ≤ cΓicinvH
−1||ΠH(∇q · n)||L2(Ω)

≤ cΓicinvH
−1||∇q · n||L2(Ω) ≤ cΓicinvC1H

−1|q|H1(Ω).

Moreover, j − jΠ ∈ H2(Ω)′, because of the trace theorem (q ∈ H2(Ω))

|(j − jΠ)(q)| ≤ cΓi ||(I −ΠH)(∇q · n)||H1(Ω) ≤ cΓi(1 + C2)||q||H2(Ω).

This allows to bound the real numbers |gi| accordingly:

|gi| ≤ c
(
|(j − jΠ)(qm)|+ |jΠ(qm − qH)|

)
≤ cΓi(1 + C2)||qm||H2(Ωi) + cΓicinvC1H

−1||∇(qm − qH)||L2(Ωi)

≤ c||qm||H2(Ωi) ≤ ck
−1||div ũ||L2(Ω) ≤ ck1/2,
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where we used (5.7) in the last inequality.

Step B: Let u ∈ H1
0 (Ω)d and Γ := ∂Ωi ∩ ∂Ωj be an internal interface of two subdomains Ωi

and Ωj with i 6= j. Since u has a well-defined L2-trace on Γ, and ΠH(∇qH · n) is continuous

across Γ, we have

|||[Pu · n]|||L2(Γ) =
2k

3
||∇φim · n−∇φjm · n||L2(Γ)

=
2k

3
||gi − gj ||L2(Γ) ≤

2k

3
(|gi|+ |gj |)|Γ|1/2.

Using now the result of Step A in this proof yields the assertion. �

5.2. Check of Assumption 4.2

In order to show the H1-stability of Pi, we first split the L2-norm in additive way as

||∇Piũ||L2(Ωi) ≤ ||∇ũ||L2(Ωi) + ||∇(I − Pi)ũ||L2(Ωi).

It remains to bound ||∇(I − P )ũ||L2(Ωi) properly. By standard stability results for elliptic

problems on convex or smooth domains we have:

||∇(I − Pi)ũ||L2(Ωi) ≤ ck||∇2φim||L2(Ωi)

≤ ck
(
k−1||div ũ||L2(Ωi) + ||ΠH(∇qH · n) + gi||L2(∂Ωi)

)
≤ c||∇ũ||L2(Ωi) + cik(||ΠH(∇qH · n)||L2(∂Ωi) + |gi|).

The constant ci may depend on Ωi. The trace inequality and stability of finite dimensional

elliptic problems yields

||ΠH(∇qH · n)||L2(∂Ωi) ≤ cΓi
||ΠH(∇qH · n)||H1(Ωi)

≤ cH−1||∇qH ||L2(Ωi) ≤ cH
−1k−1||div ũ||L2(Ω).

Moreover, we already showed in the previous subsection that |gi| ≤ ck1/2||∇ũ||L2(Ω). Hence, we

arrive at

||∇(I − Pi)ũ||L2(Ωi) ≤ ci||∇ũ||L2(Ω),

with ci = ci(Ωi, H). The L2-stability is obtained analogously using ||div ũ||H−1(Ωi) ≤ ||ũ||L2(Ωi).

Note that the factor H−1 appearing in the stability estimates of Pi is not critical, due to the

fact that, it is only a coarse spatial mesh width.

6. Numerical Results

In order to compare the accuracy of the proposed method numerically, we consider the

two-dimensional example presented in [4]:

u(x, y, t) =

(
sin(x+ t) sin(y + t)

cos(x+ t) cos(y + t)

)
, p(x, y) = sin(x− y + t).
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in the unit square domain (0, 1)2 and time intervall I := (0, T ], T = 1. The time step sizes

are chosen as k = 0.1 · 2−n, n ∈ {0, · · · , 5}. We use Taylor-Hood P2/P1 finite elements.

As spatial mesh size we choose h = 2−7. The elliptic coarse grid problem for qH is carried

out by P1-elements for the mesh size H = 8h. Hence, solving this problem is a factor 64

smaller (with respect to the number of unknowns) than the one for the pressure of the original

pressure correction scheme. Therefore, the computation of qH is basically for free. The used

L2-projection ΠH in Step 2∗ consists of projection onto quadratic finite elements on the mesh

with cell size 2H.

Now, let us check, if Assumption 5.1 is fulfilled. It is well known, that the P1-discretization

for the Poisson problem is well-defined and has accuracy of first order, i.e. for qH ∈ QH holds

(5.3). Moreover, we have |qH |H2(T ) = 0 for all T ∈ TH . The bound of ||∇qH ||L2(Ω) is easily

obtained by testing the discrete variational formulation diagonally. Hence, it remains to check
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Fig. 6.1. Numerical results for ν = 1.



Local Pressure Correction for the Stokes System 137

the upper bound for the jumps across element edges. The jump |[∇qH · n] on an edge e ∈ EH
is constant. We denote this value by |[∇qH · n]|e ∈ R. We have for all test functions ϕ ∈ QH

k−1(div ũm, ϕ) = (∇qH ,∇ϕ)

=
∑
T∈TH

(−∆qH , ϕ)T +

∫
∂T

∇qH · nϕds

=
1

2

∑
e∈EH

∫
e

|[∇qH · n]|ϕds =
1

2

∑
e∈EH

|[∇qH · n]|e
∫
e

ϕds

=
1

2

∑
e∈EH

|[∇qH · n]|e|e|ϕ(xe),

with the midpoint xe of edge e. We choose the particular discrete test function ϕ∗ ∈ QH
which has the values ±1 at xe, according to the sign of the jumps of qH in normal direction,

ϕ∗(xe) := sign(|[∇qH · n]|e):∑
e∈Eh

|||[∇qH · n]|||L1(e) = 2k−1(div ũm, ϕ
∗)

≤ 2k−1||div ũm||L2(Ω)||ϕ∗||L2(Ω) ≤ Ck−1||div ũm||L2(Ω).

This shows that Assumption 5.1 holds.
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Fig. 6.2. Numerical results for ν = 10−6.
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6.1. Results for ν = 1

In the first test we consider the Stokes problem with viscosity ν = 1 for an increasing

number of subdomains N ∈ {1, 2, 4, 16, 64, 256}, where N = 1 corresponds to the original

scheme without subdomains. In Fig. 6.1 we show the obtained convergence rates of ||U −
Ũ
k||l2(L2), ||U − Ũ

k||l2(H1), ||U − Uk||l2(L2), ||P − P k||l2(L2) and ||P − P k||l2(H1) in dependence

of the time step size k. We see that the errors ||U − Ũk||l2(L2) and ||U − Ũk||l2(H1) are nearly

independent of the number of subdomains. Only for very small time steps k = 3.125 · 10−3 we

observe a very small degeneration of convergence. However, this minor lack of accuracy becomes

smaller with increasing number N in such a way that for very high number of subdomains

(N = 256) no difference to the original scheme can be observed. The error in the projected

velocity ||U−Uk||l2(L2) also behaves very accurate, but slightly worse for the smallest time steps,

at least for a small number of subdomains. The biggest differences can be observed for the error

||P −P k||l2(L2): The error tends to stagnation for small time steps. This can be explained by the

fact that the pressure of the discrete scheme becomes discontinuous over subdomain boundaries

Fig. 6.3. Divergence of predictor velocity for ν = 1 at T = 1, dt = 1.25−2. Left: original scheme, right:

N = 16.

Fig. 6.4. Pressure error for ν = 1 at T = 1, dt = 1.25−2. Left: original scheme, right: N = 16.

Fig. 6.5. Divergence of predictor velocity for ν = 10−6 at T = 1, dt = 1.25−2. Left: original scheme,

right: N = 16.



Local Pressure Correction for the Stokes System 139

and its mean value on each subdomain is arbitrary. There is no way to really determine the

mean value which would correspond to the one of the global pressure. However, having a look

on the error ||P − P k||l2(H1), i.e. pressure error with respect to the spatial gradient, the local

Fig. 6.6. Pressure error for ν = 10−6 at T = 1, dt = 1.25−2. Left: original scheme, right: N = 16.
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Fig. 6.7. Numerical results for ν = 1, H = 4h.
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pressure correction leads to the same accuracy as the original scheme, nearly independent of the

number of subdomains. Employing a finer coarse grid (H = 4h) leads to slightly more accurate

results at small time steps, see Fig. 6.7. Moreover, in Figures 6.3 and 6.4 we present div ũ(T )

and (p− ph)(T ) for both original scheme and local projection scheme with N = 16.

6.2. Results for ν = 10−6

In the second type of tests, we modify the viscosity to ν = 10−6. The reason is that

a weighting of the diffusive term in the Stokes equation leads to a different scaling between

pressure and velocity. This is important to have a first check wether the method is suitable

for Navier-Stokes equations, where we usually have to treat small values of ν. The obtained

results are shown in Fig. 6.2. The norm ||U − Ũk||l2(L2) shows very similar accuracy for large

and moderate numbers of k. But for small time steps, large numbers of N leads to slightly

worse results. This effect is not visible for ||U − Ũk||l2(H1), which leads to stagnation for all

N , even for the original scheme N = 1. The reason is the limitation of accuracy due to spatial

discretization. Here, smaller spatial mesh sizes would be necessary to decrease the error much

below 5 · 10−3. The same effect can be observed for the error in the corrector ||U −Uk||l2(L2):

Here, a large number N leads to larger values of minimal errors. In contrast to this, the pressure

errors ||P − P k||l2(H1) are independent of N . Hence, the local projection scheme leads to the

same pressure errors in l2(H1). Note that the observed stagnation for k → 0 of all projection

schemes is once more due to limitation of spatial accuracy. In Figures 6.5 and 6.6 we present

div ũ(T ) and (p − ph)(T ) for both original scheme and local projection scheme with N = 16.

Moreover, further results with H = 4h are shown in Fig. 6.8 and no change regarding the

accuracy of the scheme was observed.
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Fig. 6.8. Numerical results for ν = 10−6, H = 4h.
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7. Conclusion and Outlook

We presented a new pressure correction scheme based on local projections of the velocity to

divergence-free velocities. The resulting Poisson problem can be solved completely in parallel.

We proved that for velocity the discretization error of the method has the same asymptotic be-

haviour as the original pressure correction scheme. Numerical results support this findings and

give qualitativ information of the error. One of the next steps will be to solve the subproblems

in parallel and to document on the speed up of the new scheme.
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