
Journal of Computational Mathematics

Vol.38, No.1, 2020, 58–83.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1902-m2018-0189

AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME
FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION*

Junming Duan

HEDPS, CAPT & LMAM, School of Mathematical Sciences, Peking University,

Beijing 100871, China

Email: duanjm@pku.edu.cn

Huazhong Tang

HEDPS, CAPT & LMAM, School of Mathematical Sciences, Peking University, Beijing 100871;

School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China

Email: hztang@pku.edu.cn

Abstract

This paper proposes an efficient ADER (Arbitrary DERivatives in space and time) dis-

continuous Galerkin (DG) scheme to directly solve the Hamilton-Jacobi equation. Unlike

multi-stage Runge-Kutta methods used in the Runge-Kutta DG (RKDG) schemes, the

ADER scheme is one-stage in time discretization, which is desirable in many applications.

The ADER scheme used here relies on a local continuous spacetime Galerkin predictor

instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in

space and time. In such predictor step, a local Cauchy problem in each cell is solved based

on a weak formulation of the original equations in spacetime. The resulting spacetime

representation of the numerical solution provides the temporal accuracy that matches the

spatial accuracy of the underlying DG solution. The scheme is formulated in the modal s-

pace and the volume integral and the numerical fluxes at the cell interfaces can be explicitly

written. The explicit formulae of the scheme at third order is provided on two-dimensional

structured meshes. The computational complexity of the ADER-DG scheme is compared

to that of the RKDG scheme. Numerical experiments are also provided to demonstrate

the accuracy and efficiency of our scheme.

Mathematics subject classification: 65M06, 35F21, 70H20.

Key words: Hamilton-Jacobi equation, ADER, Discontinuous Galerkin methods, Local

continuous spacetime Galerkin predictor, High order accuracy.

1. Introduction

Consider the Hamilton-Jacobi (HJ) equation

ϕt +H(∇xϕ,x) = 0, ϕ(x, 0) = ϕ0(x), x ∈ Ω ∈ R
d, (1.1)

with suitable boundary conditions, where H(·) denotes the Hamiltonian. The HJ equations

are used in many application areas, such as optimal control theory, geometrical optics, crystal

growth, image processing and computer vision. The solutions of such equations are continuous

but their derivatives could be discontinuous even if the initial condition is smooth. Viscosity

solutions were firstly introduced and studied in [6, 7], which are the unique physically relevant

solutions.

* Received September 10, 2018 / Revised version received December 16, 2018 / Accepted February 16, 2019 /

Published online December 31, 2019 /

ADER-DG Scheme for Hamilton-Jacobi Equations 59

It is well known that the HJ equations are closely related to hyperbolic conservation laws,

thus many successful numerical methods for the conservation laws can be adapted for solving

the HJ equations. In [7], a monotone finite difference scheme was introduced and proved to be

convergent to the viscosity solution. A second order finite difference essentially non-oscillatory

(ENO) scheme was developed in [16], and then a higher-order weighted ENO (WENO) scheme is

proposed in [14]. Tang and his collaborators developed an adaptive mesh redistribution method

and the relaxing scheme for the HJ equations [18, 19]. Qiu et al. [17] developed the Hermite

WENO (HWENO) schemes of the HJ equations. The high order finite difference WENO scheme

on unstructured meshes was developed in [22], but its implementation is a bit complicated.

Alternatively, a DG method was designed in [13] to solve the HJ equations, and its rein-

terpretation and simplified implementation was given in [15]. Those DG methods were based

on the fact that the derivatives of the solution satisfied the conservation laws. It was correct

in the one-dimensional case but at risk in the multi-dimensional case because corresponding

multi-dimensional conservation laws is only weakly hyperbolic in general. Later, a DG method

for directly solving the HJ equations with convex Hamiltonians was proposed in [3]. It was fur-

ther improved and a new DG method was derived for directly solving the general HJ equations

with nonconvex Hamiltonians in [4]. This paper will construct the scheme based on the RKDG

scheme in [4]. The RKDG method [5] was originally designed to solve conservation laws, which

has the advantages of flexibility on complicated geometries and a compact stencil, and is easy

to obtain high order accuracy.

Most of the above methods use the multi-stage Runge-Kutta time discretization, thus have

the advantage of simplicity but are time-consuming because at each stage, the volume integra-

tion and the numerical fluxes at cell interfaces have to be calculated and the nonlinear limiters

should be performed to suppress the numerical oscillations. Thus, in order to save the com-

putational cost, it is desirable to use an alternative to the multi-stage Runge-Kutta method.

One choice is the Lax-Wendroff type time discretization, which converts all (or partial, when

approximations with certain accuracy are expected) time derivatives in a temporal Taylor ex-

pansion of the solution into spatial derivatives by repeatedly using the underlying differential

equation and its differentiated forms [12]. In [12], a local-structure-preserving DG method with

Lax-Wendroff type time discretization was proposed for solving the HJ equations. It is shown

that such method is relatively more efficient than the RKDG method in [15]. But the Cauchy-

Kowalewski procedure may become a little cumbersome when we want to construct a high order

scheme. This paper will use the time discretization (named ADER) proposed in [8, 9]. The

ADER scheme has been successfully applied to the (magneto) hydrodynamics and relativistic

(magneto) hydrodynamics with stiff or non-stiff source terms [1,2,8,9,11]. It is based on a local

spacetime Galerkin predictor step, at which a local Cauchy problem is solved in each cell, based

on a weak formulation of the original partial differential equations in spacetime. Through the

above procedure, the resulting spacetime representation of the numerical solution provides the

temporal accuracy that matches the spatial accuracy of the underlying DG solution. The AD-

ER scheme is a one-step one-stage time discretization, which means that the volume integration

and the numerical fluxes terms at cell interfaces are only calculated once at each time step. Our

ADER-DG scheme is formulated in modal space. Thanks to the spacetime representation of

the numerical solution, we can write down explicit formulae of the scheme using the strategy

presented in [1], and we will provide the implementation details of the scheme at third order on

two-dimensional structured meshes. Our ADER-DG scheme can capture the viscosity solution

accurately and efficiently, and will be validated by the analysis of the computational complexity

60 J.M. DUAN AND H.Z. TANG

and the numerical experiments.

The paper is organized as follows. Section 2 presents the general formulation of our one-

and two-dimensional ADER-DG schemes. Section 3 introduces the local spacetime continuous

Galerkin predictor, and gives a detailed description of the two-dimensional predictor step at

third order. Section 4 describes the calculation of the volume integration and the numerical

fluxes terms at the cell interfaces, and the computational complexity of our ADER-DG scheme

will be compared to the RKDG scheme in [4]. Section 5 presents numerical experiments and

the concluding remarks are given in Section 6.

2. General Formulation of the ADER-DG Schemes

This section will present the general formulation of the ADER-DG schemes, in which the

numerical fluxes and the penalty terms adding to the numerical fluxes are firstly developed

in [4].

2.1. One-dimensional ADER-DG scheme

Let us consider the one-dimensional HJ equation at first. In this case, (1.1) becomes

ϕt +H(ϕx, x) = 0, ϕ(x, 0) = ϕ0(x). (2.1)

Assume the computational domain [a, b] is divided into N cells, Ii = (xi− 1
2
, xi+ 1

2
), i = 1, · · · , N ,

where

a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b.

Denote the center of Ii as xi = (xi− 1
2
+ xi+ 1

2
)/2 and the mesh size as ∆xi = xi+ 1

2
− xi− 1

2
.

Moreover, use H1 = ∂H/∂ϕx to denote the partial derivative of the Hamiltonian with respect

to ϕx.

The spatial DG approximation space is

V k
h = {v : v|Ii ∈ P k(Ii), i = 1, . . . , N}, (2.2)

where P k(Ii) denotes all polynomials of degree at most k on Ii. Assume the current time

interval is [tn, tn+1], and the time stepsize is ∆t = tn+1 − tn. Following [4], if multiplying (2.1)

with the test function φm(x) ∈ V k
h , k > 1, introducing the numerical fluxes, adding penalty

terms for the numerical fluxes at the interfaces of computational cells, and integrating it over

the spacetime control volume Ii × [tn, tn+1], then one has

∫ tn+1

tn

∫

Ii

φm(x)(∂tϕ(x, t) +H(∂xϕ(x, t), x))dxdt

+

∫ tn+1

tn
min(H̃1,ϕ(xi+ 1

2
, t), 0)[ϕ]i+ 1

2
(φm)−

i+ 1
2

dt+

∫ tn+1

tn
max(H̃1,ϕ(xi− 1

2
, t), 0)[ϕ]i− 1

2
(φm)+

i− 1
2

dt

−

∫ tn+1

tn
C∆xi

(

S1,ϕ(xi+ 1
2
, t)− |H̃1,ϕ(xi+ 1

2
, t)|

)

[(ϕ)x]i+ 1
2
(φm)−

i+ 1
2

dt

−

∫ tn+1

tn
C∆xi

(

S1,ϕ(xi− 1
2
, t)− |H̃1,ϕ(xi− 1

2
, t)|

)

[(ϕ)x]i− 1
2
(φm)+

i− 1
2

dt

= 0, ∀i = 1, . . . , N, (2.3)

ADER-DG Scheme for Hamilton-Jacobi Equations 61

where [u] = u+ − u− denotes the jump of function u at the cell interface, the superscripts +,−

denote the right, and left limits of a function, C is a positive penalty parameter chosen as 0.25

in this paper, and H̃1,ϕ and S1,ϕ are the Roe speed and the parameter to identify the entropy

violating cells [4]. For all t ∈ [tn, tn+1], assume (x∗, t) is a point located at the cell interface,

then H̃1,ϕ and S1,ϕ are defined by

H̃1,ϕ(x∗, t) =











H(ϕx(x
+
∗
, t), x+

∗
)−H(ϕx(x

−

∗
, t), x−

∗
)

ϕx(x
+
∗ , t)− ϕx(x

−

∗ , t)
, if ϕx(x

−

∗
, t) 6= ϕx(x

+
∗
, t),

1

2
(H1(ϕx(x

+
∗
, t), x+

∗
) +H1(ϕx(x

−

∗
, t), x−

∗
)) , if ϕx(x

−

∗
, t) = ϕx(x

+
∗
, t),

δ1,ϕ(x∗, t) = max(0, H̃1,ϕ(x∗, t)−H1((ϕ)x(x
−

∗
, t), x−

∗
), H1((ϕ)x(x

+
∗
, t), x+

∗
)− H̃1,ϕ(x∗, t)),

S1,ϕ(x∗, t) = max(δ1,ϕ(x∗, t), |H̃1,ϕ(x∗, t)|). (2.4)

It is worth noting that the above definitions only make sense for k > 1. That is why we choose

the DG space as V k
h , k > 1.

Calculate the time derivative parts in (2.3), restrict the solutions ϕ(x, t) to V k
h , thus (2.3)

becomes

∫

Ii

φm(x)(ϕh(x, t
n+1)− ϕh(x, t

n))dx +

∫ tn+1

tn

∫

Ii

φm(x)H(∂xqh(x, t), x)dxdt

+

∫ tn+1

tn
min(H̃1,qh(xi+ 1

2
, t), 0)[qh]i+ 1

2
(φm)−

i+ 1
2

dt+

∫ tn+1

tn
max(H̃1,qh(xi− 1

2
, t), 0)[qh]i− 1

2
(φm)+

i− 1
2

dt

−

∫ tn+1

tn
C∆xi

(

S1,qh(xi+ 1
2
, t)− |H̃1,qh(xi+ 1

2
, t)|

)

[(qh)x]i+ 1
2
(φm)−

i+ 1
2

dt

−

∫ tn+1

tn
C∆xi

(

S1,qh(xi− 1
2
, t)− |H̃1,qh(xi− 1

2
, t)|

)

[(qh)x]i− 1
2
(φm)+

i− 1
2

dt

= 0, ∀i = 1, 2, · · · , N, (2.5)

where an element-local spacetime predictor solution qh(x, t) is introduced to replace the solution

ϕ(x, t) in the integral of the Hamiltonian and the numerical fluxes, which is a high order

approximation polynomial obtained by using the local spacetime Galerkin predictor, and will

be presented in detail in Section 3. At time tn, the DG solution ϕh(x, t
n) is known, if we get

qh(x, t), then the DG solution can be evolved to time tn+1 as ϕh(x, t
n+1) from (2.5).

2.2. Two-dimensional ADER-DG scheme on structured meshes

Consider the two-dimensional HJ equation

ϕt +H(ϕx, ϕy, x, y) = 0, ϕ(x, y, 0) = ϕ0(x, y), (2.6)

and the computational domain [a, b] × [c, d] is divided into Nx × Ny cells. Ii,j = Ji × Kj

with Ji = [xi− 1
2
, xi+ 1

2
], Kj = [yj− 1

2
, yj+ 1

2
], ∆xi = xi+ 1

2
− xi− 1

2
, and ∆yj = yj+ 1

2
− yj− 1

2
,

i = 1, · · · , Nx, j = 1, · · · , Ny. Use H1 = ∂H/∂ϕx and H2 = ∂H/∂ϕy to denote the partial

derivatives of the Hamiltonian with respect to ϕx and ϕy respectively.

The spatial DG approximation space is

V k
h = {v : v|Ii,j ∈ P k(Ii,j), i = 1, . . . , Nx, j = 1, . . . , Ny}, (2.7)

62 J.M. DUAN AND H.Z. TANG

where P k(Ii,j) denotes all polynomials of degree at most k on Ii,j , k > 1. Assume the current

time interval is [tn, tn+1], and the time step is ∆t = tn+1 − tn. Multiplying (2.6) with test

functions φm(x, y) ∈ V k
h , k > 1, introducing the numerical fluxes and adding penalty terms for

the numerical fluxes at the cell interfaces, and then integrating it over the spacetime control

volume Ii,j × [tn, tn+1] can give

∫ tn+1

tn

∫

Ii,j

φm(x, y)(∂tϕ(x, y, t) +H(∂xϕ(x, y, t), ∂yϕ(x, y, t), x, y))dxdydt

+

∫ tn+1

tn

∫

Kj

min(H̃1,ϕ(xi+ 1
2
, y, t), 0)[ϕ](xi+ 1

2
, y, t)φm(x−

i+ 1
2

, y)dydt

+

∫ tn+1

tn

∫

Kj

max(H̃1,ϕ(xi− 1
2
, y, t), 0)[ϕ](xi− 1

2
, y, t)φm(x+

i− 1
2

, y)dydt

+

∫ tn+1

tn

∫

Ji

min(H̃2,ϕ(x, yj+ 1
2
, t), 0)[ϕ](x, yj+ 1

2
, t)φm(x, y−

j+ 1
2

)dxdt

+

∫ tn+1

tn

∫

Ji

max(H̃2,ϕ(x, yj− 1
2
, t), 0)[ϕ](x, yj− 1

2
, t)φm(x, y+

j− 1
2

)dxdt

− C∆xi

∫ tn+1

tn

∫

Kj

(

S1,ϕ(xi+ 1
2
, y, t)− |H̃1,ϕ(xi+ 1

2
, y, t)|

)

[ϕx](xi+ 1
2
, y, t)φm(x−

i+ 1
2

, y)dydt

− C∆xi

∫ tn+1

tn

∫

Kj

(

S1,ϕ(xi− 1
2
, y, t)− |H̃1,ϕ(xi− 1

2
, y, t)|

)

[ϕx](xi− 1
2
, y, t)φm(x+

i− 1
2

, y)dydt

− C∆yj

∫ tn+1

tn

∫

Ji

(

S2,ϕ(x, yj+ 1
2
, t)− |H̃2,ϕ(x, yj+ 1

2
, t)|

)

[ϕy](x, yj+ 1
2
, t)φm(x, y−

j+ 1
2

)dxdt

− C∆yj

∫ tn+1

tn

∫

Ji

(

S2,ϕ(x, yj− 1
2
, t)− |H̃2,ϕ(x, yj− 1

2
, t)|

)

[ϕy](x, yj− 1
2
, t)φm(x, y+

j− 1
2

)dxdt

= 0, ∀i = 1, . . . , Nx, j = 1, . . . , Ny. (2.8)

For all t ∈ [tn, tn+1], ∀y, if assuming (x∗, y, t) is a point located at the cell interface in the

x-direction, then the Roe speed and the parameters to identify the entropy violating cells in

the scheme are given by

H̃1,ϕ(x∗, y, t)

=











H(ϕx(x
+
∗
, y, t), ϕy, x

+
∗
, y)−H(ϕx(x

−

∗
, y, t), ϕy, x

−

∗
, y)

ϕx(x
+
∗ , y, t)− ϕx(x

−

∗ , y, t)
, ϕx(x

−

∗
, y, t) 6= ϕx(x

+
∗
, y, t),

1

2
(H1(ϕx(x

+
∗
, y, t), ϕy, x

+
∗
, y) +H1(ϕx(x

−

∗
, y, t), ϕy, x

−

∗
, y)) , ϕx(x

−

∗
, y, t) = ϕx(x

+
∗
, y, t),

δ1,ϕ(x∗, y, t)

=max(0, H̃1,ϕ(x∗, y, t)−H1(ϕx(x
−

∗
, y, t), ϕy, x

−

∗
, y), H1(ϕx(x

+
∗
, y, t), ϕy, x

+
∗
, y)− H̃1,ϕ(x∗, y, t)),

S1,ϕ(x∗, y, t) = max(δ1,ϕ(x∗, y, t), |H̃1,ϕ(x∗, y, t)|),

where ϕy =
1

2
(ϕy(x

+
∗
, y, t) + ϕy(x

−

∗
, y, t)) is the average of the tangential derivative.

Similarly, for all t ∈ [tn, tn+1], ∀x, if denoting (x, y∗, t) as a point located at the cell interface

ADER-DG Scheme for Hamilton-Jacobi Equations 63

in the y-direction, then the Roe speed and the parameters are given by

H̃2,ϕ(x, y∗, t)

=











H(ϕx, ϕy(x, y
+
∗
, t), x, y+

∗
)−H(ϕx, ϕy(x, y

−

∗
, t), x, y−

∗
)

ϕy(x, y
+
∗ , t)− ϕy(x, y

−

∗ , t)
, ϕy(x, y

−

∗
, t) 6= ϕy(x, y

+
∗
, t),

1

2
(H2(ϕx, ϕy(x, y

+
∗
, t), x, y+

∗
) +H2(ϕx, ϕy(x, y

−

∗
, t), x, y−

∗
)) , ϕy(x, y

−

∗
, t) = ϕy(x, y

+
∗
, t),

δ2,ϕ(x, y∗, t)

=max(0, H̃2,ϕ(x, y∗, t)−H2(ϕx, ϕy(x, y
−

∗
, t), x, y−

∗
), H2(ϕx, ϕy(x, y

+
∗
, t), x, y+

∗
)− H̃2,ϕ(x, y∗, t)),

S2,ϕ(x, y∗, t) = max(δ2,ϕ(x, y∗, t), |H̃2,ϕ(x, y∗, t)|),

where ϕx =
1

2
(ϕx(x, y

+
∗
, t) + ϕx(x, y

−

∗
, t)).

After calculating the time derivative parts in (2.8) and restricting the solutions ϕ(x, y, t) to

V k
h , then (2.8) becomes

∫

Ii,j

φm(x, y)(ϕh(x, y, t
n+1)− ϕh(x, y, t

n))dxdy

+

∫ tn+1

tn

∫

Ii,j

φm(x, y)H(∂xqh(x, y, t), ∂yqh(x, y, t), x, y)dxdydt

+

∫ tn+1

tn

∫

Kj

min(H̃1,qh(xi+ 1
2
, y, t), 0)[qh](xi+ 1

2
, y, t)φm(x−

i+ 1
2

, y)dydt

+

∫ tn+1

tn

∫

Kj

max(H̃1,qh(xi− 1
2
, y, t), 0)[qh](xi− 1

2
, y, t)φm(x+

i− 1
2

, y)dydt

+

∫ tn+1

tn

∫

Ji

min(H̃2,qh(x, yj+ 1
2
, t), 0)[qh](x, yj+ 1

2
, t)φm(x, y−

j+ 1
2

)dxdt

+

∫ tn+1

tn

∫

Ji

max(H̃2,qh(x, yj− 1
2
, t), 0)[qh](x, yj− 1

2
, t)φm(x, y+

j− 1
2

)dxdt

− C∆xi

∫ tn+1

tn

∫

Kj

(

S1,qh(xi+ 1
2
, y, t)− |H̃1,qh(xi+ 1

2
, y, t)|

)

[(qh)x](xi+ 1
2
, y, t)φm(x−

i+ 1
2

, y)dydt

− C∆xi

∫ tn+1

tn

∫

Kj

(

S1,qh(xi− 1
2
, y, t)− |H̃1,qh(xi− 1

2
, y, t)|

)

[(qh)x](xi− 1
2
, y, t)φm(x+

i− 1
2

, y)dydt

− C∆yj

∫ tn+1

tn

∫

Ji

(

S2,qh(x, yj+ 1
2
, t)− |H̃2,qh(x, yj+ 1

2
, t)|

)

[(qh)y](x, yj+ 1
2
, t)φm(x, y−

j+ 1
2

)dxdt

− C∆yj

∫ tn+1

tn

∫

Ji

(

S2,qh(x, yj− 1
2
, t)− |H̃2,qh(x, yj− 1

2
, t)|

)

[(qh)y](x, yj− 1
2
, t)φm(x, y+

j− 1
2

)dxdt

= 0, ∀i = 1, . . . , Nx, j = 1, . . . , Ny, (2.9)

where the element-local spacetime predictor solution qh(x, y, t) will be introduced in Section 3.

The remaining task is to give qh(x, y, t).

64 J.M. DUAN AND H.Z. TANG

3. Local Spacetime Continuous Galerkin Predictor

Unlike the classical ADER schemes in [20, 21] using Cauchy-Kovalewski procedure, which

may become cumbersome for high order schemes, the new formulation of ADER schemes pro-

posed in [8] is based on a local weak formulation of the governing PDE in spacetime. The new

ADER schemes rely on an iterative predictor step to obtain the spacetime representation of

the solution within each cell, i.e., the previous mentioned local spacetime predictor solution qh.

This part will construct the predictor step, and give the implementation details of the predictor

step in the two-dimensional case at third order.

3.1. General formulation of continuous Galerkin predictor

For the sake of convenience, we will only consider the two-dimensional case. Assume the

spatial coordinates in the reference element is (ξ, η) ∈ [− 1
2
, 1
2
]2, and the temporal coordinates

in the reference element is τ ∈ [0, 1]. In the reference element, Eq. (2.6) can be written as

∂ϕ

∂τ
+ h

(

1

∆x

∂ϕ

∂ξ
,
1

∆y

∂ϕ

∂η
, ξ, η

)

= 0, (3.1)

where h = ∆tH , and ∆x,∆y are the mesh sizes of the cell. The ADER scheme used here

is a modal variant of the ADER scheme with a continuous Galerkin representation in time

described in [8]. Assume that there are L spacetime basis functions in the reference element,

θl = θl(ξ, η, τ), l = 0, · · · , L − 1. The continuous Galerkin approach requires that the first Ls

elements in the set of basis functions only depend on the space but not on time τ , that is to

say, θl(ξ, η, τ) only depend on the space, l = 0, · · · , Ls − 1. Now the numerical solution qh can

be represented in the basis space as

qh(ξ, η, τ) =

L−1
∑

l=0

q̂lθl(ξ, η, τ), (3.2)

where q̂ ≡ (q̂0, · · · , q̂Ls−1, q̂Ls
, · · · , q̂L−1)

T is a vector of modes. Similarly, the Hamiltonian can

also be represented in the form of (3.2), ĥ ≡ (ĥ0, · · · , ĥLs−1, ĥLs
, · · · , ĥL−1)

T. The transcription

from q̂ to ĥ will be given in the next subsection. Another simplification of the continuous

Galerkin approach is that the solution qh(ξ, η, τ) is continuous with the initial condition ϕn
h(ξ, η)

at τ = 0, which means we only have to calculate ĥl, l = 0, · · · , Ls − 1 once at τ = 0. If the

initial condition can be represented in the modal space as

ϕn
h(ξ, η) =

Ls−1
∑

l=0

ŵlθl(ξ, η, τ = 0), (3.3)

then at τ = 0, q̂l = ŵl, l = 0, · · · , Ls − 1.

Applying the Galerkin approach to (3.1) gives

〈

θk,
∂θl
∂τ

〉

q̂l + 〈θk, θl〉 ĥl = 0, (3.4)

where the angled brackets denote the spacetime integration over the reference element, and the

Einstein summation convection is used. Eq. (3.4) can be rewritten in the matrix-vector form

Kτ q̂ +Mĥ = 0, (3.5)

ADER-DG Scheme for Hamilton-Jacobi Equations 65

whereKτ andM are the time-stiffness matrix and the mass matrix respectively, and the (k, l)-th

elements of them are

Kτ ;k,l =

〈

θk,
∂θl
∂τ

〉

, Mk,l = 〈θk, θl〉 . (3.6)

From the previous assumption and simplification, we know that only the last L− Ls elements

of q̂ are needed to be determined in the continuous Galerkin predictor step. So we can split

q̂ into two parts q̂ = (q̂0, q̂1)T, where q̂0 is the first Ls components and q̂1 is the last L − Ls

components. A similar split can be done for Ĥ , then the mass matrix and the time-stiffness

matrix can be written as

M =

[

M00 M01

M10 M11

]

, Kτ =

[

K00
τ K01

τ

K10
τ K11

τ

]

, (3.7)

where the dimensions of sub-matrices M00,M01,M10,M11 are Ls × Ls, Ls × (L − Ls), (L −

Ls)×Ls, (L−Ls)× (L−Ls) respectively, and it is similar for the sub-matrices of Kτ . In (3.5),

only the last L− Ls components are useful, and they can be written as

q̂1 = −M̂ĥ1 − M̂0ĥ0, (3.8)

where M̂ = (K11
τ)−1M11, M̂0 = (K11

τ)−1M10. We can obtain q̂1 from ĥ1 through one iteration

using the above equation. In the continuous Galerkin predictor step, M times iterations of

Eq. (3.8) are adequate for a M -th order scheme [1], thus the cost of the iterative part in our

scheme is not high. Once the basis functions are determined, the matrices in (3.8) are known,

and the whole iterative scheme can be explicitly written down. We are going to describe the

implementation details in the next subsection.

3.2. Implementation details of 2D third order continuous Galerkin predictor

This subsection will give the implementation details at third order. Other cases can be

completed similarly and we will provide some difference of the implementation in other cases in

Remark 3.1. Assume that the basis functions in the reference element [− 1
2
, 1
2
] are orthogonal

Legendre polynomials

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) = ξ2 −
1

12
, P3(ξ) = ξ3 −

3

20
ξ. (3.9)

Thus the solution at time tn or τ = 0 can be represented as a combination of Ls = 6 basis

functions

ϕh(x, t
n) =ŵ0P0(ξ)P0(η) + ŵ1P1(ξ)P0(η) + ŵ2P0(ξ)P1(η)

+ ŵ3P2(ξ)P0(η) + ŵ4P0(ξ)P2(η) + ŵ5P1(ξ)P1(η). (3.10)

Take the basis functions in the temporal reference element [0, 1] as

Q0(τ) = 1, Q1(τ) = τ, Q2(τ) = τ2, Q3(τ) = τ3, (3.11)

the first three of which are needed for the third order scheme while the last basis function is

only needed for fourth order schemes. In order to obtain full third order accuracy in space and

time we use a total of L = 10 basis functions, and the continuous Galerkin predictor solution

66 J.M. DUAN AND H.Z. TANG

can be expressed as

qh(ξ, η, τ) =ŵ0P0(ξ)P0(η)Q0(τ) + ŵ1P1(ξ)P0(η)Q0(τ) + ŵ2P0(ξ)P1(η)Q0(τ)

+ ŵ3P2(ξ)P0(η)Q0(τ) + ŵ4P0(ξ)P2(η)Q0(τ) + ŵ5P1(ξ)P1(η)Q0(τ)

+ q̂6P0(ξ)P0(η)Q1(τ) + q̂7P1(ξ)P0(η)Q1(τ) + q̂8P0(ξ)P1(η)Q1(τ)

+ q̂9P0(ξ)P0(η)Q2(τ), (3.12)

noticing that the first Ls coefficients have been substituted by ŵl, l = 0, · · · , Ls − 1 due to the

simplification.

Now we can explicitly write down the iterative equation (3.8)

q̂6 = −ĥ0 +
3

10
ĥ7, q̂7 = −

1

2
ĥ6 −

3

5
ĥ7, q̂8 = −ĥ1 −

2

3
ĥ8, q̂9 = −ĥ2 −

2

3
ĥ9, (3.13)

which give one iteration in the predictor step.

At last we have to obtain ĥ from q̂. The most accurate way is to use the L2 projection, but

it is expensive to do lots of numerical integration. Following [1], we use the nodal approach to

determine ĥ. Choose Ln points in the reference element, where Ln is equal to or slightly larger

than L. In the two-dimensional case at third order, we choose Ln = 13 nodal points

{

(1
2
, 0, 0), (− 1

2
, 0, 0), (0, 1

2
, 0), (0,− 1

2
, 0), (1

2
, 1
2
, 0), (− 1

2
, 1
2
, 0), (1

2
,− 1

2
, 0), (− 1

2
,− 1

2
, 0),

(1
2
, 0, 1

2
), (− 1

2
, 0, 1

2
), (0, 1

2
, 1
2
), (0,− 1

2
, 1
2
), (0, 0, 1)

}

. (3.14)

Then we can define two Ln component vectors ū and v̄, which are the nodal values of ∂qh/∂ξ

and ∂qh/∂η, and their ordering follows that of nodal points. Without ambiguity in the text,

here we use bar to denote the values at nodal points, which are not the cell average values

defined in the numerical fluxes.ū and v̄ can be written down explicitly

ū0 = q̂1 + q̂3, ū1 = q̂1 − q̂3, ū2 = q̂1 +
1

2
q̂5, ū3 = q̂1 −

1

2
q̂5,

ū4 = ū0 +
1

2
q̂5, ū5 = ū1 +

1

2
q̂5, ū6 = ū0 −

1

2
q̂5, ū7 = ū1 −

1

2
q̂5,

ū8 = ū0 +
1

2
q̂8, ū9 = ū1 +

1

2
q̂8, ū10 = ū2 +

1

2
q̂8, ū11 = ū3 +

1

2
q̂8, ū12 = q̂1 + q̂8,

v̄0 = q̂2 +
1

2
q̂5, v̄1 = q̂2 −

1

2
q̂5, v̄2 = q̂2 + q̂4, v̄3 = q̂2 − q̂4,

v̄4 = v̄0 + q̂4, v̄5 = v̄1 + q̂4, v̄6 = v̄0 − q̂4, v̄7 = v̄1 − q̂4,

v̄8 = v̄0 +
1

2
q̂9, v̄9 = v̄1 +

1

2
q̂9, v̄10 = v̄2 +

1

2
q̂9, v̄11 = v̄3 +

1

2
q̂9, v̄12 = q̂2 + q̂9, (3.15)

also noticing that the first eight elements of ū and v̄ only depend on the initial condition, thus

they only have to be calculated once in the predictor step. Once we obtain ū and v̄, we can

get the values of h at each nodal points respectively, denoted by h̄. The above formulae give

a transcription from modal space to nodal space. Then we may express the transcription from

nodal space to modal space explicitly, where r1, r2 are temporary variables to save cost in the

ADER-DG Scheme for Hamilton-Jacobi Equations 67

calculation

ĥ1 = h̄0 − h̄1, ĥ2 = h̄2 − h̄3, ĥ5 = 2(h̄4 − h̄5 − ĥ1), ĥ3 = 4(h̄4 − h̄2)− 2ĥ1 − ĥ5,

ĥ4 = 4(h̄4 − h̄0)− 2ĥ2 − ĥ5, ĥ0 =
1

8
(h̄0 + h̄1 + h̄2 + h̄3 + h̄4 + h̄5 + h̄6 + h̄7 −

5

6
(ĥ3 + ĥ4)),

ĥ8 = 2(h̄8 − h̄9 − h̄0 + h̄1), ĥ9 = 2(h̄10 − h̄11 − h̄2 + h̄3),

r1 = h̄9 + h̄9 − h̄0 − h̄1, r2 = h̄12 − ĥ0 +
1

12
(ĥ3 + ĥ4),

ĥ7 = 2(r2 − r1), ĥ6 = r2 − ĥ7. (3.16)

Similarly, we only have to compute the first six coefficients once, while the last four need to

be determined in the iterative predictor step. So far we have provided all the implementation

details of the continuous Galerkin predictor step in the two-dimensional case at third order.

Remark 3.1. For the strategy to choose the points in the reference element, we refer the

readers to [1]. In this paper, the points we choose in the one-dimensional case are

1. second order:
{

(1
2
, 0), (− 1

2
, 0), (0, 1)

}

,

2. third order:
{

(0, 0), (1
2
, 0), (− 1

2
, 0), (1

2
, 1
2
), (− 1

2
, 1
2
), (0, 1)

}

,

3. fourth order: {(0, 0), (1
2
, 0), (− 1

2
, 0), (1

4
, 0), (− 1

4
, 0), (0, 1

3
), (1

2
, 1
3
), (− 1

2
, 1
3
), (1

2
, 2
3
), (− 1

2
, 2
3
),

(0, 1)}.

The points we choose in the two-dimensional case are

1. second order:
{

(1
2
, 0, 0), (− 1

2
, 0, 0), (0, 1

2
, 0), (0,− 1

2
, 0), (0, 0, 1)

}

,

2. fourth order:

{

(0, 0, 0), (1
2
, 0, 0), (− 1

2
, 0, 0), (0, 1

2
, 0), (0,− 1

2
, 0), (1

2
, 1
2
, 0), (− 1

2
, 1
2
, 0), (1

2
,− 1

2
, 0),

(− 1
2
,− 1

2
, 0), (1

4
, 0, 0), (− 1

4
, 0, 0), (0, 1

4
, 0), (0,− 1

4
, 0), (0, 0, 1

3
), (1

2
, 1
2
, 1
3
), (− 1

2
, 1
2
, 1
3
),

(1
2
,− 1

2
, 1
3
), (− 1

2
,− 1

2
, 1
3
), (1

2
, 0, 2

3
), (− 1

2
, 0, 2

3
), (0, 1

2
, 2
3
), (0,− 1

2
, 2
3
), (0, 0, 1)

}

.

Once those points are determined, the transcription between modal space and nodal space can

be obtained by the similar procedure described for two-dimensional case at third order.

4. Calculation of the Volume Integral and Fluxes in ADER-DG

In the RKDG scheme [4], we have to calculate the volume integral of Hamiltonian, and

the numerical fluxes (in two-dimensional case or above) by numerical integration, so that we

have to compute Roe speed and the parameter at every integration point at cell interfaces,

which is expensive. If we use the same way to accomplish them in the ADER-DG scheme,

the computational complexity will be much larger, because one more dimension will appear in

the ADER-DG scheme. For the volume integral, thanks to the spacetime representation of the

Hamiltonian in the spacetime control volume, it can be expressed explicitly. For the numerical

fluxes, we use a substantially simpler strategy presented in [10] to calculate the numerical fluxes

in our ADER-DG scheme.

68 J.M. DUAN AND H.Z. TANG

4.1. The explicit formulae of the volume integral

Because we have saved all ĥ in each cell, i.e. the coefficients of the basis functions, and

the test functions φm in (2.9) are transformed from the six basis functions in (3.10) to the

computational cell Ii,j , we can write down the spacetime integral of the Hamiltonian in the

ADER-DG scheme (2.9) immediately

∫ tn+1

tn

∫

Ii,j

φ0H(∂xqh, ∂yqh, x, y)dxdydt = ∆xi∆yj(ĥ0 +
1

2
ĥ6 +

1

3
ĥ7),

∫ tn+1

tn

∫

Ii,j

φ1H(∂xqh, ∂yqh, x, y)dxdydt = ∆xi∆yj(
1

12
ĥ1 +

1

24
ĥ8),

∫ tn+1

tn

∫

Ii,j

φ2H(∂xqh, ∂yqh, x, y)dxdydt = ∆xi∆yj(
1

12
ĥ2 +

1

24
ĥ9),

∫ tn+1

tn

∫

Ii,j

φ3H(∂xqh, ∂yqh, x, y)dxdydt =
∆xi∆yj
180

ĥ3,

∫ tn+1

tn

∫

Ii,j

φ4H(∂xqh, ∂yqh, x, y)dxdydt =
∆xi∆yj
180

ĥ4,

∫ tn+1

tn

∫

Ii,j

φ5H(∂xqh, ∂yqh, x, y)dxdydt =
∆xi∆yj
144

ĥ5. (4.1)

4.2. The explicit formulae of the numerical fluxes

In [10], the central idea consists of freezing the wave speeds to equal their values evaluated at

the spacetime barycenters of the face under consideration. For the numerical fluxes considered

here, we would freeze the Roe speed H̃qh and the parameter Sqh to their values at the spacetime

barycenters, then the remaining parts can be explicitly calculated. Now we take the face

xi+ 1
2
×[yj− 1

2
, yj+ 1

2
]×[tn, tn+1] for example, whose left neighbor cell is Ii,j , and the right is Ii+1,j .

In order to calculate the Roe speed H̃1,qh and the parameter S1,qh at the spacetime barycenter

(xi+ 1
2
, yj, t

n+ 1
2), we need to give the left and right limit values of the partial derivatives at the

point

uL = q̂L,1 + q̂L,3 +
1

2
q̂L,8, uR = q̂R,1 − q̂R,3 +

1

2
q̂R,8,

vL = q̂L,2 +
1

2
q̂L,5 +

1

2
q̂L,9, vR = q̂R,2 −

1

2
q̂R,5 +

1

2
q̂R,9, (4.2)

where the subscripts L and R denote values in the left and right side respectively, and u, v

denote the partial derivatives (qh)x and (qh)y respectively. Then we can obtain H̃1,qh and S1,qh

by using the definition (4.2) at (xi+ 1
2
, yj , t

n+ 1
2). Now freeze H̃1,qh and S1,qh in the numerical

fluxes terms in the ADER-DG scheme (2.9), and introduce three temporary variables as

λ1 = min(H̃1,qh (xi+ 1
2
, yj , t

n+ 1
2), 0),

λ2 = max(H̃1,qh(xi+ 1
2
, yj , t

n+ 1
2), 0),

λ3 = S1,qh(xi+ 1
2
, yj , t

n+ 1
2)− | ˜H1,qh(xi+ 1

2
, yj , t

n+ 1
2)|.

ADER-DG Scheme for Hamilton-Jacobi Equations 69

Denote the basis functions in the left cell Ii,j and in the right cell Ii+1,j by φL,m and φR,m

respectively. For the first basis function φL,0 = φR,0 = 1, we have

ϕL = q̂L,0 +
1

2
(q̂L,1 + q̂L,6) +

1

6
q̂L,3 +

1

3
q̂L,7 +

1

4
q̂L,8,

ϕR = q̂R,0 +
1

2
(−q̂R,1 + q̂R,6) +

1

6
q̂R,3 +

1

3
q̂R,7 −

1

4
q̂R,8,

uL = q̂L,1 + q̂L,3 +
1

2
q̂L,8,

uR = q̂R,1 − q̂R,3 +
1

2
q̂R,8, (4.3)

and the numerical fluxes terms in (2.9) are

∫ tn+1

tn

∫

Kj

min(H̃1,qh(xi+ 1
2
, y, t), 0)[qh](xi+ 1

2
, y, t)φL,0(x

−

i+ 1
2

, y)dydt ≈ λ1(ϕR − ϕL)∆t∆yj ,

∫ tn+1

tn

∫

Kj

max(H̃1,qh (xi+ 1
2
, y, t), 0)[qh](xi+ 1

2
, y, t)φR,0(x

+

i− 1
2

, y)dydt ≈ λ2(ϕR − ϕL)∆t∆yj ,

C∆xi

∫ tn+1

tn

∫

Kj

(

S1,qh(xi+ 1
2
, y, t)− |H̃1,qh(xi+ 1

2
, y, t)|

)

[(qh)x](xi+ 1
2
, y)φL,0(x

−

i+ 1
2

, y)dydt

≈Cλ3(uR − uL)∆t∆yj ,

C∆xi

∫ tn+1

tn

∫

Kj

(

S1,qh(xi+ 1
2
, y, t)− |H̃1,qh(xi+ 1

2
, y, t)|

)

[(qh)x](xi+ 1
2
, y)φR,0(x

+

i− 1
2

, y)dydt

≈Cλ3(uR − uL)∆t∆yj , (4.4)

where the first and the third integrations are the contributions to the left cell, and the second

and the fourth integrations are the contributions to the right cell. For the second basis function

transformed from φ1 = P1(ξ(x))P0(η(y)) and the fourth basis function transformed from φ3 =

P2(ξ(x))P0(η(y)), the corresponding integrations are

1

2
λ1(ϕR−ϕL)∆t∆yj , −

1

2
λ2(ϕR−ϕL)∆t∆yj ,

1

2
Cλ3(uR−uL)∆t∆yj , −

1

2
Cλ3(uR−uL)∆t∆yj ,

and

1

6
λ1(ϕR − ϕL)∆t∆yj ,

1

6
λ2(ϕR − ϕL)∆t∆yj ,

1

6
Cλ3(uR − uL)∆t∆yj ,

1

6
Cλ3(uR − uL)∆t∆yj .

We can clearly see from the above formulae that, for the second and the fourth basis functions,

the numerical fluxes terms are just a scaling of the corresponding numerical fluxes terms for the

first basis function, thus the computational costs can be reduced greatly. Similarly, if denoting

ϕL =
1

24
(2q̂L,2 + q̂L,5 + q̂L,9), ϕR =

1

24
(2q̂R,2 − q̂R,5 + q̂R,9),

uL =
1

12
q̂L,5, uR =

1

12
q̂R,5, (4.5)

then for the third basis function transformed from φ2 = P0(ξ(x))P1(η(y)) and the sixth basis

function transformed from φ5 = P1(ξ(x))P1(η(y)), the four numerical fluxes terms in (2.9)

corresponding to (4.4) are

λ1(ϕR − ϕL)∆t∆yj , λ2(ϕR − ϕL)∆t∆yj , Cλ3(uR − uL)∆t∆yj , Cλ3(uR − uL)∆t∆yj ,

70 J.M. DUAN AND H.Z. TANG

and

1

2
λ1(ϕR−ϕL)∆t∆yj , −

1

2
λ2(ϕR−ϕL)∆t∆yj ,

1

2
Cλ3(uR−uL)∆t∆yj , −

1

2
Cλ3(uR−uL)∆t∆yj ,

respectively. If denoting

ϕL =
1

180
q̂L,4, ϕR =

1

180
q̂R,4, uL = 0, uR = 0, (4.6)

then for the fifth basis function transformed from φ4 = P0(ξ(x))P2(η(y)), the four corresponding

numerical fluxes terms are

λ1(ϕR − ϕL)∆t∆yj , λ2(ϕR − ϕL)∆t∆yj , Cλ3(uR − uL)∆t∆yj , Cλ3(uR − uL)∆t∆yj .

We have explicitly given the volume integral and the numerical fluxes terms in the ADER-

DG scheme (2.9) in the two-dimensional case at third order. In the next subsection, we would

like to compare the computational complexity of the ADER-DG scheme to that of the RKDG

scheme.

4.3. Complexity comparison between ADER-DG and RKDG

This section give a comparison of the computational complexities of the ADER-DG scheme

and the RKDG scheme. As an example, we consider them in the two-dimensional case at third

order, and are going to count the number of operations needed in the evolution procedure at a

time step for one cell. Four types of basic operations, i.e., addition, subtraction, multiplication

and division, are all treated as one operation. And we regard one calculation of the Hamiltonian

as one operation. The main part is evolving the DG solutions in each cell, so the part for

calculating the time step is negligible.

In the ADER-DG scheme, we need 79 operations to calculate the partial derivatives u and

v and 31 operations to obtain the value of Hamiltonian, 120 operations to accomplish the

transcription from nodal space to modal space, 57 operations to perform three iterations, 13

operations to calculate the volume integral of Hamiltonian. For each face, we need 28 operations

to compute the Roe speed and the parameters, 84 operations for the numerical fluxes terms.

Because there are four faces for a cell and each face is shared by two cells, the operations on

the faces of one cell should be doubled. At one time step, we need 36 operations to evolve the

DG solution in a cell, so 560 operations are needed to update one cell in a time step.

In the RKDG scheme, we need to use numerical integration. We use three points Gauss-

Legendre integration on an edge, and nine points Gauss-Legendre integration in the tensor

product form for the volume integral. Because the values of each basis functions at each

integration points in the reference element will be used many times, we compute them once and

save them. We need 11 and 12 operations to compute the value and the partial derivatives of

ϕ respectively. Thus we need 486 operations to calculate the volume integral of Hamiltonian

once in the RKDG scheme, and on each edge, 222 operations to compute the Roe speed and

the parameter S, 189 operations to compute the numerical fluxes. At each sub-step, we need

36 operations to evolve the DG solution, thus 1344 operations are needed in a sub-step and

4032 operations in total.

At second order, the number of the operations for the ADER-DG scheme and the RKDG

scheme are 180 and 868 respectively, and at fourth order, they are 2358 and 12944 respectively.

The above analysis shows that the ADER-DG scheme has much less computational com-

plexity when the solution is evolved in a cell at a time step, which is about 20.7%, 13.9%, 18.2%

ADER-DG Scheme for Hamilton-Jacobi Equations 71

of the RKDG scheme at second, third and fourth order, respectively. The reason is that the

ADER-DG scheme is a one-step one-stage scheme and we use a cheap way to calculate the vol-

ume integral and the numerical fluxes terms in the ADER-DG schemes. Further, we will show

that our schemes can achieve the designed order of accuracy in the numerical experiments,

and the comparison of the CPU times will be also recorded to validate the efficiency of the

ADER-DG scheme.

5. Numerical Results

This section will provide some numerical experiments in one- and two-dimensions. In the

two-dimensional experiments, we use N × N uniform meshes with ∆x = ∆y. The time

stepsize is chosen as ∆t = CFL∆x/α, where α = max |H1| for one-dimensional cases and

α = max{|H1|, |H2|} for two-dimensional cases.

5.1. One-dimensional results

Example 5.1. We solve the following linear problem [3] with a smooth variable coefficient

ϕt + sin(x)ϕx = 0, 0 6 x 6 2π.

The initial condition is ϕ(x, 0) = sin(x), and the periodic boundary condition is specified. The

exact solution is ϕ(x, t) = sin(2 arctan(e−t tan(x
2
))).

The numerical errors and the orders of convergence at t = 1 are presented in Table 5.1. We

can see that the ADER-DG scheme can achieve (k + 1)-th order accuracy for P k polynomials.

Example 5.2. We solve the following linear problem [3]

ϕt + sign(cos(x))ϕx = 0, 0 6 x 6 2π,

with initial condition ϕ(x, 0) = sin(x), and periodic boundary condition. Obviously, the variable

coefficient is not smooth.

In the viscosity solution, there is a shock forming in ϕx at x = π
2
, and a rarefaction wave at

x = 3π
2
, thus the numerical errors are only calculated in the smooth region [0, 1]∪[2, 3.4]∪[6, 2π].

The errors and the orders of convergence at t = 1 are presented in Table 5.2. From the table,

we can observe that our schemes can achieve (k + 1)-th order accuracy for P k polynomials in

the smooth region. The results obtained with P 2 and P 3 ADER-DG scheme and N = 80 are

also shown in Fig. 5.1. The ADER-DG scheme can converge to the viscosity solution.

Example 5.3. We solve one-dimensional Burgers’ equation

ϕt +
1

2
(ϕx + 1)2 = 0, −1 6 x 6 1,

with smooth initial condition, initial condition ϕ(x, 0) = − cos(πx), and periodic boundary

condition.

We compute the solution up to t = 0.5/π2. At this time, the solution is still smooth. We

provide the errors and the orders of convergence in Table 5.3. Our scheme can achieve the

72 J.M. DUAN AND H.Z. TANG

Table 5.1: Errors and orders of convergence for Example 5.1, t = 1.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

20 1.322e-02 - 1.884e-02 - 1.966e-02 -

40 3.620e-03 1.87 5.096e-03 1.89 5.318e-03 1.89

80 9.576e-04 1.92 1.392e-03 1.87 1.524e-03 1.80

160 2.437e-04 1.97 3.458e-04 2.01 3.891e-04 1.97

320 6.157e-05 1.98 8.612e-05 2.01 9.859e-05 1.98

640 1.536e-05 2.00 2.162e-05 1.99 2.500e-05 1.98

k = 2,CFL = 0.10

20 1.060e-03 - 1.460e-03 - 1.761e-03 -

40 1.391e-04 2.93 2.022e-04 2.85 1.976e-04 3.16

80 2.033e-05 2.77 2.781e-05 2.86 3.556e-05 2.47

160 2.868e-06 2.83 3.778e-06 2.88 5.535e-06 2.68

320 3.927e-07 2.87 5.063e-07 2.90 7.534e-07 2.88

640 5.230e-08 2.91 6.658e-08 2.93 9.928e-08 2.92

k = 3,CFL = 0.05

20 7.609e-05 - 1.278e-04 - 9.354e-05 -

40 8.493e-06 3.16 1.034e-05 3.63 2.101e-05 2.15

80 6.436e-07 3.72 7.851e-07 3.72 1.307e-06 4.01

160 4.450e-08 3.85 5.410e-08 3.86 7.630e-08 4.10

320 2.939e-09 3.92 3.557e-09 3.93 4.779e-09 4.00

640 1.890e-10 3.96 2.278e-10 3.96 3.141e-10 3.93

Table 5.2: Errors and orders of convergence for Example 5.2, t = 1.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.10

20 9.156e-03 - 1.276e-02 - 5.403e-03 -

40 2.206e-03 2.05 3.023e-03 2.08 1.515e-03 1.83

80 3.920e-04 2.49 5.679e-04 2.41 4.227e-04 1.84

160 9.269e-05 2.08 1.355e-04 2.07 5.170e-05 3.03

320 2.111e-05 2.13 3.074e-05 2.14 1.341e-05 1.95

640 5.127e-06 2.04 7.532e-06 2.03 2.425e-06 2.47

k = 2,CFL = 0.10

20 3.419e-04 - 4.731e-04 - 3.417e-04 -

40 3.845e-05 3.15 5.057e-05 3.23 4.548e-05 2.91

80 4.185e-06 3.20 5.476e-06 3.21 5.279e-06 3.11

160 4.920e-07 3.09 6.129e-07 3.16 6.623e-07 2.99

320 6.144e-08 3.00 7.668e-08 3.00 8.205e-08 3.01

640 7.703e-09 3.00 9.629e-09 2.99 1.040e-08 2.98

k = 3,CFL = 0.03

20 3.168e-05 - 2.887e-05 - 5.832e-05 -

40 2.891e-06 3.45 2.017e-06 3.84 5.459e-06 3.42

80 9.858e-08 4.87 5.897e-08 5.10 4.190e-07 3.70

160 1.298e-09 6.25 1.268e-09 5.54 3.669e-09 6.84

320 5.215e-11 4.64 6.367e-11 4.32 3.469e-11 6.72

640 3.250e-12 4.00 3.970e-12 4.00 2.209e-12 3.97

ADER-DG Scheme for Hamilton-Jacobi Equations 73

0 1 2 3 4 5 6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

exact
ADER-DG
RKDG

(a) P 2

0 1 2 3 4 5 6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

exact
ADER-DG
RKDG

(b) P 3

Fig. 5.1. Example 5.2, N = 80. Left: P 2, right: P 3.

Table 5.3: Errors and orders of convergence for Example 5.3, t = 0.5/π2.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 1.307e-02 - 1.567e-02 - 2.185e-02 -

20 4.242e-03 1.62 4.323e-03 1.86 8.331e-03 1.39

40 8.865e-04 2.26 9.420e-04 2.20 1.986e-03 2.07

80 2.007e-04 2.14 2.250e-04 2.07 5.241e-04 1.92

160 4.850e-05 2.05 5.566e-05 2.02 1.534e-04 1.77

320 1.227e-05 1.98 1.406e-05 1.99 4.123e-05 1.90

k = 2,CFL = 0.10

10 1.139e-03 - 1.244e-03 - 2.522e-03 -

20 1.426e-04 3.00 1.452e-04 3.10 3.850e-04 2.71

40 2.034e-05 2.81 2.013e-05 2.85 5.262e-05 2.87

80 2.796e-06 2.86 2.675e-06 2.91 7.144e-06 2.88

160 3.719e-07 2.91 3.469e-07 2.95 1.298e-06 2.46

320 4.843e-08 2.94 4.456e-08 2.96 1.924e-07 2.75

k = 3,CFL = 0.05

10 1.320e-04 - 1.272e-04 - 2.718e-04 -

20 9.644e-06 3.78 8.445e-06 3.91 3.740e-05 2.86

40 7.291e-07 3.73 5.760e-07 3.87 3.211e-06 3.54

80 4.937e-08 3.88 3.793e-08 3.92 2.347e-07 3.77

160 3.231e-09 3.93 2.438e-09 3.96 1.549e-08 3.92

320 2.078e-10 3.96 1.544e-10 3.98 9.509e-10 4.03

designed order of accuracy in this example. We also compute the solution up to t = 1.5/π2,

there will be a shock in ϕx. In Fig. 5.2, we show the results obtained with P 2 and P 3 ADER-

DG scheme with N = 40. From the figures, we can see that the ADER-DG scheme can give

good results.

Example 5.4. We solve one-dimensional Burgers’ equation [4],

ϕt +
ϕ2
x

2
= 0, 0 6 x 6 2π,

74 J.M. DUAN AND H.Z. TANG

-1 -0.5 0 0.5 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

exact
ADER-DG
RKDG

(a) P 2

-1 -0.5 0 0.5 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

exact
ADER-DG
RKDG

(b) P 3

Fig. 5.2. Example 5.3, N = 40.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5
exact
ADER-DG
RKDG

(a) P 2,CFL = 0.10

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5
exact
ADER-DG
RKDG

(b) P 3,CFL = 0.05

Fig. 5.3. Example 5.4, N = 40.

with unsmooth initial condition, initial condition ϕ(x, 0) = |x − π|, and periodic boundary

condition.

There is a rarefaction wave formed in the derivative of the exact solution, thus the initial

sharp corner at x = π will be smeared out over time. Fig. 5.3 includes the P 2 and P 3 ADER-

DG results with N = 40. Thanks to the penalty terms adding to the numerical fluxes, the

results of the ADER-DG scheme converge to the viscosity solution correctly.

Example 5.5. We solve one-dimensional HJ equation

ϕt − cos(ϕx + 1) = 0, −1 6 x 6 1,

with a nonconvex Hamiltonian, initial condition ϕ(x, 0) = − cos(πx), and periodic boundary

condition.

We compute the solution up to t = 0.5/π2. At this time, the solution is still smooth. We

list the errors and the orders of convergence in Table 5.4. In the table, (k+1)-th order accuracy

for P k polynomials can be observed.

Then we compute the solution up to t = 1.5/π2. We plot the results of the ADER-DG

scheme in Fig. 5.4. In the figures, the kinks in the solution are clearly resolved by our scheme.

ADER-DG Scheme for Hamilton-Jacobi Equations 75

Table 5.4: Errors and orders of convergence for Example 5.5, t = 0.5/π2.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 1.082e-02 - 1.177e-02 - 2.009e-02 -

20 3.776e-03 1.52 3.199e-03 1.88 8.995e-03 1.16

40 7.522e-04 2.33 6.459e-04 2.31 2.063e-03 2.12

80 1.449e-04 2.38 1.380e-04 2.23 4.803e-04 2.10

160 3.011e-05 2.27 2.918e-05 2.24 1.138e-04 2.08

320 6.978e-06 2.11 7.261e-06 2.01 2.174e-05 2.39

k = 2,CFL = 0.10

10 1.345e-03 - 1.526e-03 - 2.355e-03 -

20 2.141e-04 2.65 2.359e-04 2.69 4.445e-04 2.41

40 2.968e-05 2.85 2.807e-05 3.07 7.981e-05 2.48

80 4.135e-06 2.84 3.728e-06 2.91 1.283e-05 2.64

160 5.532e-07 2.90 4.891e-07 2.93 1.704e-06 2.91

320 7.138e-08 2.95 6.098e-08 3.00 2.320e-07 2.88

k = 3,CFL = 0.05

10 3.630e-04 - 3.227e-04 - 1.099e-03 -

20 1.756e-05 4.37 1.551e-05 4.38 5.326e-05 4.37

40 1.436e-06 3.61 1.247e-06 3.64 4.616e-06 3.53

80 1.076e-07 3.74 8.771e-08 3.83 4.173e-07 3.47

160 7.396e-09 3.86 5.831e-09 3.91 4.216e-08 3.31

320 4.960e-10 3.90 3.817e-10 3.93 3.411e-09 3.63

Example 5.6. We solve one-dimensional Riemann problem

ϕt +
1

4
(ϕ2

x − 1)(ϕ2
x − 4) = 0, −1 6 x 6 1,

with a nonconvex Hamiltonian, initial condition ϕ(x, 0) = −2|x|.

The results at t = 1 of the ADER-DG scheme with N = 80 and N = 81 are plotted in Fig.

5.5. It is a benchmark problem to test a numerical scheme’s capability to capture the viscosity

solution. Similar as the RKDG scheme in [4], Minmod limiter is used for the convergence to

the entropy solution, and the result with odd N gives smaller errors.

5.2. Two-dimensional results

Example 5.7. We solve the following linear problem with smooth variable coefficient [4]

ϕt − yϕx + xϕy = 0, (x, y) ∈ [−1, 1]2,

with the initial condition

ϕ(x, y, 0) = exp

(

−
(x− 0.4)2 + (y − 0.4)2

2σ2

)

,

and periodic boundary condition. The parameter σ is 0.05, and the computational time is t = 1.

This problem describes a smooth solid body rotating around the origin. We list the errors

and the orders of convergence in Table 5.5.

76 J.M. DUAN AND H.Z. TANG

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

exact
ADER-DG
RKDG

(a) P 2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

exact
ADER-DG
RKDG

(b) P 3

Fig. 5.4. Example 5.5, N = 40.

-1 -0.5 0 0.5 1
-2

-1.8

-1.6

-1.4

-1.2

-1

exact
ADER-DG
RKDG

(a) N = 80

-1 -0.5 0 0.5 1
-2

-1.8

-1.6

-1.4

-1.2

-1

exact
ADER-DG
RKDG

(b) N = 81

Fig. 5.5. Example 5.6, P 2,CFL = 0.10. Left: N = 80, right: N = 81.

Example 5.8. We solve the same problem as Example 5.7, but with a unsmooth initial con-

dition

ϕ(x, y, 0) =















0, 0.3 6 r,

0.3− r, 0.1 < r < 0.3,

0.2, r 6 0.1,

(5.1)

where r =
√

(x− 0.4)2 + (y − 0.4)2.

The numerical results at t = 2π are provided in Table 5.6. From the table, we can observe

that the ADER-DG scheme is nearly first order, because the initial condition is unsmooth. But

we can see from Fig. 5.6 that, high order scheme can obtain better results.

Example 5.9. We solve two-dimensional Burgers’ equation

ϕt +
1

2
(ϕx + ϕy + 1)2 = 0, (x, y) ∈ [−2, 2]2,

with a smooth initial condition ϕ(x, y, 0) = − cos(π
2
(x+ y)), and periodic boundary condition.

ADER-DG Scheme for Hamilton-Jacobi Equations 77

Table 5.5: Errors and orders of convergence for Example 5.7, t = 1.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 6.631e-02 - 2.646e-02 - 5.453e-01 -

20 4.472e-02 0.57 1.296e-02 1.03 4.730e-01 0.21

40 2.085e-02 1.10 4.872e-03 1.41 2.831e-01 0.74

80 5.349e-03 1.96 1.066e-03 2.19 9.463e-02 1.58

160 9.966e-04 2.42 1.877e-04 2.51 1.988e-02 2.25

k = 2,CFL = 0.05

10 4.743e-02 - 1.828e-02 - 4.470e-01 -

20 2.097e-02 1.18 5.772e-03 1.66 2.832e-01 0.66

40 3.030e-03 2.79 6.260e-04 3.20 5.288e-02 2.42

80 2.383e-04 3.67 4.720e-05 3.73 4.951e-03 3.42

160 2.338e-05 3.35 4.744e-06 3.31 4.190e-04 3.56

k = 3,CFL = 0.05

10 3.508e-02 - 1.222e-02 - 3.618e-01 -

20 6.505e-03 2.43 1.706e-03 2.84 7.337e-02 2.30

40 3.530e-04 4.20 7.418e-05 4.52 6.290e-03 3.54

80 1.682e-05 4.39 3.501e-06 4.41 5.178e-04 3.60

160 9.300e-07 4.18 1.958e-07 4.16 2.627e-05 4.30

Table 5.6: Errors and orders of convergence for Example 5.8, t = 2π.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 3.354e-02 - 2.623e-02 - 1.176e-01 -

20 1.630e-02 1.04 1.198e-02 1.13 5.408e-02 1.12

40 6.029e-03 1.43 3.973e-03 1.59 2.052e-02 1.40

80 2.705e-03 1.16 1.512e-03 1.39 1.225e-02 0.74

160 1.268e-03 1.09 5.870e-04 1.36 7.223e-03 0.76

k = 2,CFL = 0.05

10 1.336e-02 - 1.082e-02 - 3.939e-02 -

20 4.216e-03 1.66 2.883e-03 1.91 1.953e-02 1.01

40 1.964e-03 1.10 1.149e-03 1.33 9.025e-03 1.11

80 8.123e-04 1.27 3.794e-04 1.60 5.138e-03 0.81

160 3.462e-04 1.23 1.243e-04 1.61 2.919e-03 0.82

k = 3,CFL = 0.05

10 5.797e-03 - 4.822e-03 - 2.688e-02 -

20 2.525e-03 1.20 1.656e-03 1.54 1.103e-02 1.29

40 9.705e-04 1.38 5.182e-04 1.68 5.527e-03 1.00

80 3.982e-04 1.29 1.643e-04 1.66 3.026e-03 0.87

160 1.639e-04 1.28 5.113e-05 1.68 1.721e-03 0.81

We compute the solution until t = 0.5/π2. It is smooth at this time. We give the numerical

errors and the orders of convergence in Table 5.7. It is clearly that our scheme can achieve

(k + 1)-th order of convergence for P k polynomial. We also compute the same equation until

t = 1.5/π2, and the discontinuous derivative has already appeared in the solution. We plot the

results in Fig. 5.7, from which we can observe good resolutions of the ADER-DG scheme for

this example.

78 J.M. DUAN AND H.Z. TANG

-1 -0.5 0 0.5 1

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a) P 1

-1 -0.5 0 0.5 1

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b) P 2

-1 -0.5 0 0.5 1

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

(c) P 3

Fig. 5.6. The comparisons of ϕ cut along the line y = x for Example 5.8, N = 80. Solid line is the exact

solution and the circles are numerical solutions obtained by the ADER-DG scheme with P 1, P 2, P 3

polynomials.

(a) t =
0.5

π2
(b) t =

1.5

π2

Fig. 5.7. Example 5.9, P 2, N = 40

Example 5.10. We solve the following two-dimensional equation with nonconvex Hamiltonian

ϕt − cos(ϕx + ϕy + 1) = 0, (x, y) ∈ [−2, 2]2,

with initial condition ϕ(x, y, 0) = − cos(π
2
(x+ y)), and periodic boundary condition.

The solution is still smooth at t = 0.5/π2, and the numerical errors and the orders of

convergence at this time are listed in Table 5.8. We also compute the same equation until

t = 1.5/π2, and singular features develop in the solution. The results of the ADER-DG scheme

are shown in Fig. 5.8.

Example 5.11. We solve the following problem from optimal control

ϕt + sin(y)u+ (sin(x) + sign(v))v −
1

2
sin2(y) + cos(x) − 1 = 0, (x, y) ∈ [−π, π]2,

with initial condition ϕ(x, y, 0) = 0, and periodic boundary condition.

ADER-DG Scheme for Hamilton-Jacobi Equations 79

Table 5.7: Errors and orders of convergence for Example 5.9, t = 0.5/π2.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 1.121e-01 - 3.599e-01 - 9.131e-02 -

20 2.855e-02 1.97 8.840e-02 2.03 2.609e-02 1.81

40 7.174e-03 1.99 2.200e-02 2.01 6.557e-03 1.99

80 1.808e-03 1.99 5.467e-03 2.01 1.800e-03 1.86

160 4.579e-04 1.98 1.361e-03 2.01 4.963e-04 1.86

320 1.160e-04 1.98 3.391e-04 2.00 1.326e-04 1.90

k = 2,CFL = 0.10

10 1.970e-02 - 5.484e-02 - 2.837e-02 -

20 2.729e-03 2.85 7.248e-03 2.92 3.011e-03 3.24

40 3.568e-04 2.94 8.996e-04 3.01 4.757e-04 2.66

80 4.662e-05 2.94 1.157e-04 2.96 6.699e-05 2.83

160 6.024e-06 2.95 1.474e-05 2.97 9.528e-06 2.81

320 7.714e-07 2.97 1.869e-06 2.98 1.296e-06 2.88

k = 3,CFL = 0.05

10 5.118e-03 - 9.484e-03 - 1.798e-02 -

20 2.893e-04 4.14 5.677e-04 4.06 8.581e-04 4.39

40 1.932e-05 3.90 3.588e-05 3.98 6.199e-05 3.79

80 1.258e-06 3.94 2.250e-06 4.00 4.992e-06 3.63

160 8.186e-08 3.94 1.420e-07 3.99 3.548e-07 3.81

320 5.299e-09 3.95 9.022e-09 3.98 2.391e-08 3.89

Table 5.8: Errors and orders of convergence for Example 5.10, t =
0.5

π2
.

N ℓ2 error Order ℓ1 error Order ℓ∞ error Order

k = 1,CFL = 0.15

10 1.011e-01 - 3.371e-01 - 8.475e-02 -

20 2.649e-02 1.93 8.548e-02 1.98 2.185e-02 1.96

40 6.610e-03 2.00 2.144e-02 2.00 6.102e-03 1.84

80 1.648e-03 2.00 5.343e-03 2.00 1.630e-03 1.90

160 4.156e-04 1.99 1.335e-03 2.00 4.330e-04 1.91

320 1.030e-04 2.01 3.326e-04 2.00 1.127e-04 1.94

k = 2,CFL = 0.10

10 3.503e-02 - 1.051e-01 - 2.916e-02 -

20 4.819e-03 2.86 1.456e-02 2.85 4.849e-03 2.59

40 5.946e-04 3.02 1.740e-03 3.07 6.406e-04 2.92

80 7.574e-05 2.97 2.102e-04 3.05 9.473e-05 2.76

160 9.764e-06 2.96 2.629e-05 3.00 1.618e-05 2.55

320 1.258e-06 2.96 3.303e-06 2.99 2.377e-06 2.77

k = 3,CFL = 0.05

10 7.142e-03 - 1.732e-02 - 9.557e-03 -

20 8.431e-04 3.08 1.703e-03 3.35 1.887e-03 2.34

40 5.677e-05 3.89 1.004e-04 4.08 2.464e-04 2.94

80 3.687e-06 3.94 6.144e-06 4.03 2.008e-05 3.62

160 2.400e-07 3.94 3.785e-07 4.02 1.323e-06 3.92

320 1.541e-08 3.96 2.378e-08 3.99 8.863e-08 3.90

80 J.M. DUAN AND H.Z. TANG

(a) t =
0.5

π2
(b) t =

1.5

π2

Fig. 5.8. Example 5.10,P 2, N = 40

-5

y

0-0.5

0

4

0.5

1

x

2

1.5

2

0

2.5

-2 5-4

(a) ϕ

4-1
4 2

-0.5

2

x

0

y

0

0
-2-2

0.5

-4-4

1

(b) ϕy

Fig. 5.9. Example 5.11, P 2, N = 40,CFL = 0.10

The results obtained by the ADER-DG scheme with P 2 and N = 40 are plotted in Fig. 5.9.

We can see that our scheme can simulate the problem well.

Example 5.12. We solve the following two-dimensional Riemann problem

ϕt + sin(ϕx + ϕy) = 0, (x, y) ∈ [−1, 1]2,

with initial condition ϕ(x, y, 0) = π(|y| − |x|).

We need limiters in this example to have its convergence to the viscosity solution. The

results of P 1 and P 2 ADER-DG scheme with N = 40 are given in Fig. 5.10. Our results are

nearly the same as that in [4].

Example 5.13. We solve the problem of a propagating surface, which is a special case of the

example in [16]

ϕt −
√

ϕ2
x + ϕ2

y + 1 = 0, (x, y) ∈ [0, 1]2,

with initial condition ϕ(x, y, 0) = 1−
1

4
(cos(2πx)− 1)(cos(2πy)− 1).

ADER-DG Scheme for Hamilton-Jacobi Equations 81

1

0.5

x

0-3

-2

1

-1

0.5 -0.5

y

0

0

1

-0.5

2

-1-1

3

(a) P 1,CFL = 0.15

1

0.5

x

0-3

-2

1

-1

0.5 -0.5

y

0

0

1

-0.5

2

-1-1

3

(b) P 2,CFL = 0.10

Fig. 5.10. Example 5.12, N = 40

10.5
y

-0.5

0

0

0.5

1

1.5

2

0.5
x

10

(a) P 2,CFL = 0.10

10.5
y

-0.5

0

0

0.5

1

1.5

2

0.5
x

01

(b) P 3,CFL = 0.05

Fig. 5.11. Example 5.13, N = 41

We output the results at t = 0, 0.3, 0.6, 0.9, and plot them in Fig. 5.11. The result at t = 0

is shifted down to show the detail of the solution at later time.

At the end of this section, presents a comparison of the CPU times of the ADER-DG and

RKDG schemes when they are applied to the above three two-dimensional examples, Examples

5.7, 5.9, and 5.10. To make the fair comparison, we take the largest CFL number of both

schemes, although we have to use a slightly smaller CFL number for the ADER-DG scheme in

82 J.M. DUAN AND H.Z. TANG

some cases. The results given in Table 5.9 show that the average CPU times of the ADER-

DG scheme are about 25%, 21%, 14% of the RKDG scheme at second, third and fourth order,

respectively, and the ADER-DG scheme is more efficient than the RKDG scheme.

Table 5.9: The CPU times (second) of the ADER-DG scheme and the RKDG scheme.

Example 5.7

with N = 160

Example 5.9

with N = 320

Example 5.10

with N = 320

P 1 ADER-DG 3.95 3.43 1.32

RKDG 10.9 9.69 4.11

P 2 ADER-DG 19.5 8.67 3.90

RKDG 80.2 47.9 26.8

P 3 ADER-DG 45.3 36.3 15.7

RKDG 405 185 87.7

6. Conclusion

An efficient ADER-DG scheme was presented to directly solve the Hamilton-Jacobi equa-

tions. The ADER-DG scheme depended on a local continuous spacetime Galerkin predictor to

achieve high order accuracy both in space and time. In the local continuous spacetime Galerkin

predictor step, a local Cauchy problem was solved in each cell, based on a weak formulation of

the original partial differential equations in spacetime. Then the high order accuracy in space

and time could be obtained by using the resulting spacetime representation of the numerical

solution in each cell. Our scheme was formulated in modal space, and the volume integral and

the numerical fluxes terms at the cell interfaces in the scheme could be explicitly expressed

to save computational cost. This paper provided the implementation details of the scheme

on two-dimensional structured meshes at third order. The computational complexity of the

ADER-DG scheme was compared to that of the RKDG scheme, and extensively numerical

experiments were presented to show that the scheme could capture the viscosity solutions of

the HJ equations accurately and it was more efficient. By the way, this scheme does work on

unstructured grid.

Acknowledgments. This work was partially supported by the Special Project on High-

performance Computing under the National Key R&D Program (No. 2016YFB0200603), Sci-

ence Challenge Project (No. JCKY2016212A502), and the National Natural Science Foundation

of China (Nos. 91330205, 91630310, 11421101).

References

[1] D.S. Balsara, C. Meyer, M. Dumbser, H. Du, and Z. Xu, Efficient implementation of ADER

schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons

with Runge-Kutta methods, J. Comput. Phys., 235 (2013), 934-969.

[2] D.S. Balsara, T. Rumpf, M. Dumbser, and C.D. Munz, Efficient, high accuracy ADER-WENO

schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228

(2009), 2480-2516.

[3] Y. Cheng and C.W. Shu, A discontinuous Galerkin finite element method for directly solving the

Hamilton-Jacobi equations, J. Comput. Phys., 223 (2007), 398-415.

ADER-DG Scheme for Hamilton-Jacobi Equations 83

[4] Y. Cheng and Z. Wang, A new discontinuous Galerkin finite element method for directly solving

the Hamilton-Jacobi equations, J. Comput. Phys., 268 (2014), 134-153.

[5] B. Cockburn and C.W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-

dominated problems, J. Sci. Comput., 16 (2001), 173-261.

[6] M.G. Crandall and P.L Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am.

Math. Soc., 277 (1983), 1-42.

[7] M.G. Crandall and P.L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,

Math. Comput., 43 (1984), 1-19.

[8] M. Dumbser, D.S. Balsara, E.F. Toro, and C.D. Munz, A unified framework for the construction

of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput.

Phys., 227 (2008), 8209-8253.

[9] M. Dumbser, C. Enaux, and E.F. Toro, Finite volume schemes of very high order of accuracy

for stiff hyperbolic balance laws, J. Comput. Phys., 227 (2008), 3971-4001.

[10] M. Dumbser, M. Käser, V.A. Titarev, and E.F. Toro, Quadrature-free non-oscillatory finite

volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys.,

226 (2007), 204-243.

[11] F. Fambri, M. Dumbser, S. Köppel, L. Rezzolla, and O. Zanotti, ADER discontinuous Galerkin

schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477

(2018), 4543-4564.

[12] W. Guo, F. Li, and J. Qiu, Local-structure-preserving discontinuous Galerkin methods with Lax-

Wendroff type time discretizations for Hamilton-Jacobi equations, J. Sci. Comput., 47 (2011),

239-257.

[13] C. Hu and C.W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi

equations, SIAM J. Sci. Comput., 21 (1999), 666-690.

[14] G.S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci.

Comput., 21 (2000), 2126-2143.

[15] F. Li and C.W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin

method for Hamilton-Jacobi equations, Appl. Math. Lett., 18 (2005), 1204-1209.

[16] S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: Algorithms

based on Hamilton-Jacobi formulations, Comput. Phys., 79 (1988), 1-5.

[17] J.X. Qiu and C.W. Shu, Hermite WENO schemes for Hamilton-Jacobi equations, J. Comput.

Phys., 204 (2005), 82-99.

[18] H.Z. Tang, T. Tang, and P.W. Zhang, An adaptive mesh redistribution method for nonlinear

Hamilton-Jacobi equations in two- and three-dimensions, J. Comput. Phys., 188 (2003), 543-572.

[19] H.Z. Tang and H.M. Wu, The relaxing schemes for Hamilton-Jacobi equations, J. Comput. Math.,

19 (2001), 231-240.

[20] V.A. Titarev and E.F. Toro, ADER: Arbitrary high order Godunov approach, J. Sci. Comput.,

17 (2002), 609-618.

[21] V.A. Titarev and E.F. Toro, ADER schemes for three-dimensional non-linear hyperbolic systems,

J. Comput. Phys., 204 (2005), 715-736.

[22] Y.T. Zhang and C.W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on trian-

gular meshes, SIAM J. Sci. Comput., 24 (2003), 1005-1030.

