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Abstract

We consider a control-constrained parabolic optimal control problem without Tikhonov

term in the tracking functional. For the numerical treatment, we use variational discretiza-

tion of its Tikhonov regularization: For the state and the adjoint equation, we apply

Petrov-Galerkin schemes in time and usual conforming finite elements in space. We prove

a-priori estimates for the error between the discretized regularized problem and the limit

problem. Since these estimates are not robust if the regularization parameter tends to zero,

we establish robust estimates, which — depending on the problem’s regularity — enhance

the previous ones. In the special case of bang-bang solutions, these estimates are further

improved. A numerical example confirms our analytical findings.

Mathematics subject classification: 49J20, 35K20, 49J30, 49M05, 49M25, 49M29, 65M12,

65M60.

Key words: Optimal control, Heat equation, Control constraints, Finite elements, A-priori

error estimates, Bang-bang controls.

1. Introduction

In this article we are interested in the numerical solution of the optimal control problem

min
u∈Uad

J0(u) with J0(u) :=
1

2
‖Tu− z‖2H . (P0)

Here, T is basically the (weak) solution operator of the heat equation, the set of admissible

controls Uad is given by box constraints, and z ∈ H is a given function to be tracked.

Often, the solutions of (P0) possess a special structure: They take values only on the bounds

of the admissible set Uad and are therefore called bang-bang solutions.

Theoretical and numerical questions related to this control problem attracted much interest

in recent years, see, e.g., [1–11]. The last four papers are concerned with T being the solution

operator of an ordinary differential equation, the former papers with T being a solution operator

of an elliptic PDE or T being a continuous linear operator. In [12], a brief survey of the content

of these and some other related papers is given at the end of the bibliography.

Problem (P0) is in general ill-posed, meaning that a solution does not depend continuously

on the datum z, see [3, p. 1130]. The numerical treatment of a discretized version of (P0) is

also challenging, e.g., due to the absense of formula (2.10) in the case α = 0, which corresponds

to problem (P0).
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Therefore we use Tikhonov regularization to overcome these difficulties. The regularized

problem is given by

min
u∈Uad

Jα(u) with Jα(u) :=
1

2
‖Tu− z‖2H +

α

2
‖u‖2U (Pα)

where α > 0 denotes the regularization parameter. Note that for α = 0, problem (Pα) reduces

to problem (P0).

For the numerical treatment of the regularized problem, we then use variational discretiza-

tion introduced by Hinze in [13], see also [14, Chapter 3.2.5]. The state equation is treated with

a Petrov-Galerkin scheme in time using a piecewise constant Ansatz for the state and piecewise

linear, continuous test functions. This results in variants of the Crank-Nicolson scheme for the

discretization of the state and the adjoint state, which were proposed recently in [15]. In space,

usual conforming finite elements are taken. See [12] for the fully discrete case and [16] for an

alternative discontinuous Galerkin approach.

The purpose of this paper is to prove a-priori bounds for the error between the discretized

regularized problem and the limit problem, i.e. the continuous unregularized problem.

We first derive error estimates between the discretized regularized problem and its continu-

ous counterpart. Together with Tikhonov error estimates recently obtained in [17], see also [12],

one can establish estimates for the total error between the discretized regularized solution and

the solution of the continous limit problem, i.e. α = 0. Here, second order convergence in space

is not achievable and (without coupling) the estimates are not robust if α tends to zero. Using

refined arguments, we overcome both drawbacks. In the special case of bang-bang controls, we

further improve those estimates.

The obtained estimates suggest a coupling rule for the parameters α (regularization pa-

rameter), k, and h (time and space discretization parameters, respectively) to obtain optimal

convergence rates which we numerically observe.

The paper is organized as follows.

In the next section, we introduce the functional analytic description of the regularized

problem. We recall several of its properties, such as existence of a unique solution for all α ≥ 0

(thus especially in the limit case α = 0 we are interested in), an explicit characterization of

the solution structure, and the function space regularity of the solution. We then introduce

the Tikhonov regularization and recall some error estimates under suitable assumptions. In the

special case of bang-bang controls, we recall a smoothness-decay lemma which later helps to

improve the error estimates for the discretized problem.

The third section is devoted to the discretization of the optimal control problem. At first,

the discretization of the state and adjoint equation is introduced and several error estimates

needed in the later analysis are recalled. Then, the analysis of variational discretization of the

optimal control problem is conducted.

The last section discusses a numerical example where we observe the predicted orders of

convergence.

2. The Continuous Optimal Control Problem

2.1. Problem setting and basic properties

Let Ω ⊂ R
d, d ∈ {2, 3}, be a spatial domain which is assumed to be bounded and convex

with a polygonal boundary ∂Ω. Furthermore, a fixed time interval I := (0, T ) ⊂ R, 0 < T < ∞,
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a desired state yd ∈ L2(I, L2(Ω)), a non-negative real constant 0 ≤ α ∈ R, and an initial value

y0 ∈ L2(Ω) are prescribed. With the Gelfand triple H1
0 (Ω) →֒ L2(Ω) →֒ H−1(Ω) we consider

the following optimal control problem

min
y∈Y,u∈Uad

J(y, u) with J(y, u) :=
1

2
‖y − yd‖2L2(I,L2(Ω)) +

α

2
‖u‖2U ,

s.t. y = S(Bu, y0)

(P)

where U := L2(ΩU ) is the control space, the (closed and convex) set of admissible controls is

defined by

Uad := {u ∈ U | a(x) ≤ u(x) ≤ b(x) ∀′x ∈ ΩU } (2.1)

with fixed control bounds a, b ∈ L∞(ΩU ) fulfilling a ≤ b almost everywhere in ΩU ,

Y := W (I) :=
{
v ∈ L2(I,H1

0 (Ω))
∣
∣ vt ∈ L2(I,H−1(Ω))

}

is the state space, and the control operator B as well as the control region ΩU are defined below.

Note that we use the notation vt and ∂tv for weak time derivatives and ∀′ for “for almost

all”.

The operator

S : L2(I,H−1(Ω))× L2(Ω) → W (I), (f, g) 7→ y := S(f, g), (2.2)

denotes the weak solution operator associated with the heat equation, i.e., the linear parabolic

problem

∂ty −∆y = f in I × Ω ,

y = 0 in I × ∂Ω ,

y(0) = g in Ω .

The weak solution is defined as follows. For (f, g) ∈ L2(I,H−1(Ω)) × L2(Ω) the function

y ∈ W (I) with 〈·, ·〉 := 〈·, ·〉H−1(Ω)H1
0
(Ω) satisfies the two equations

y(0) = g, (2.3a)
∫ T

0

〈

∂ty(t), v(t)

〉

+ a(y(t), v(t)) dt =

∫ T

0

〈

f(t), v(t)

〉

dt, ∀ v ∈ L2(I,H1
0 (Ω)). (2.3b)

Note that by the embedding W (I) →֒ C([0, T ], L2(Ω)), see, e.g., [18, Theorem 5.9.3], the first

relation is meaningful.

In the preceding equation, the bilinear form a : H1(Ω)×H1(Ω) → R is given by

a(f, g) :=

∫

Ω

∇f(x)∇g(x) dx.

We show below that (2.3) yields an operator S in the sense of (2.2).

For the control region ΩU and the control operator B we consider two situations.

1. (Distributed controls) We set ΩU := I × Ω, and define the control operator B : U →
L2(I,H−1(Ω)) by B := Id, i.e., the identity mapping induced by the standard Sobolev

embedding L2(Ω) →֒ H−1(Ω).
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2. (Located controls) We set the control region ΩU := I. With a fixed functional g1 ∈
H−1(Ω) the linear and continuous control operator B is given by

B : U = L2(I) → L2(I,H−1(Ω)) , u 7→ (t 7→ u(t)g1) . (2.4)

The case of D fixed functionals gi with controls ui and a control operator B : L2(I,RD) →
L2(I,H−1(Ω)), u 7→

(

t 7→ ∑D
i=1 ui(t)gi

)

is a possible generalization. To streamline the

presentation we restrict ourselves to the case D = 1 here and refer to [12] for the case

D > 1.

For later use we observe that the adjoint operator B∗ is given by

B∗ : L2(I,H1
0 (Ω)) → U = L2(I), (B∗q)(t) = 〈g1, q(t)〉H−1(Ω)H1

0
(Ω).

If furthermore g1 ∈ L2(Ω) holds, we can consider B as an operator B : L2(I) →
L2(I, L2(Ω)) and get the adjoint operator

B∗ : L2(I, L2(Ω)) → U = L2(I), (B∗q)(t) = (g1, q(t))L2(Ω).

Note that the adjoint operator B∗ (and also the operator itself) is preserving time regu-

larity, i.e., B∗ : Hk(I,X) → Hk(I) for k ≥ 0 where X is a subspace of L2(Ω) depending

on the regularity of the g1 (as noticed just before), e.g., X = L2(Ω) or X = H1
0 (Ω).

Lemma 2.1 (Properties of the solution operator S).

1. For every (f, g) ∈ L2(I,H−1(Ω))×L2(Ω) a unique state y ∈ W (I) satisfying (2.3) exists.

Thus the operator S from (2.2) exists. Furthermore the state fulfills

‖y‖W (I) ≤ C
(

‖f‖L2(I,H−1(Ω)) + ‖g‖L2(Ω)

)

. (2.5)

2. Consider the bilinear form A : W (I)×W (I) → R given by

A(y, v) :=

∫ T

0

−
〈

vt, y

〉

+ a(y, v) dt+

〈

y(T ), v(T )

〉

(2.6)

with 〈·, ·〉 := 〈·, ·〉H−1(Ω)H1
0
(Ω). Then for y ∈ W (I), Eq. (2.3) is equivalent to

A(y, v) =

∫ T

0

〈

f, v

〉

dt+ (g, v(0))L2(Ω) ∀ v ∈ W (I). (2.7)

Furthermore, y is the only function in W (I) fulfilling equation (2.7).

Proof. This can be derived using standard results, see [12, Lemma 1]. �

An advantage of the formulation (2.7) in comparison to (2.3) is the fact that the weak time

derivative yt of y is not part of the equation. Later in discretizations of this equation, it offers

the possibility to consider states which do not possess a weak time derivative.

We can now establish the existence of a solution to problem (P).

Lemma 2.2 (Unique solution of the o.c.p.). The optimal control problem (P) admits for

fixed α ≥ 0 a unique solution (ȳα, ūα) ∈ Y × U , which can be characterized by the first order

necessary and sufficient optimality condition

ūα ∈ Uad, (αūα +B∗p̄α, u− ūα)U ≥ 0 ∀ u ∈ Uad, (2.8)
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where B∗ denotes the adjoint operator of B, and the so-called optimal adjoint state p̄α ∈ W (I)

is the unique weak solution defined and uniquely determined by the equation

A(v, p̄α) =

∫ T

0

〈h, v〉H−1(Ω)H1
0
(Ω) dt ∀ v ∈ W (I) (2.9)

with right-hand side h := ȳα − yd.

Proof. This follows from standard results, see, e.g., [12, Lemma 2]. �

As a consequence of the fact that Uad is a closed and convex set in a Hilbert space we have the

following lemma.

Lemma 2.3. In the case α > 0 the variational inequality (2.8) is equivalent to

ūα = PUad

(

− 1

α
B∗p̄α

)

, (2.10)

where PUad
: U → Uad is the orthogonal projection.

Proof. See [14, Corollary 1.2, p. 70] with γ = 1
α . �

The orthogonal projection in (2.10) can be made explicit in our setting.

Lemma 2.4. Let us for c1, c2 ∈ R with c1 ≤ c2 consider the projection of a real number x ∈ R

into the interval [c1, c2], i.e., P[c1,c2](x) := max{c1,min{x, c2}}.
There holds for v ∈ U with Uad defined in (2.1) the equation

PUad
(v)(x) = P[a(x),b(x)](v(x)) ∀′x ∈ ΩU .

Proof. See [12, Lemma 4] for a proof of this standard result in our setting. �

We now derive an explicit characterization of the optimal control.

Lemma 2.5. If α > 0, then for almost all x ∈ ΩU there holds for the optimal control

ūα(x) =







a(x) if B∗p̄α(x) + αa(x) > 0,

−α−1B∗p̄α(x) if B∗p̄α(x) + αūα(x) = 0,

b(x) if B∗p̄α(x) + αb(x) < 0.

(2.11)

Suppose α = 0 is given. Then the optimal control fulfills a.e.

ū0(x) =

{

a(x) if B∗p̄0(x) > 0,

b(x) if B∗p̄0(x) < 0.
(2.12)

Proof. We refer to [12, Lemma 5] for a proof of this standard result in our setting. �

Remark 2.1. As a consequence of (2.12) we have: If B∗p̄0 vanishes only on a subset of ΩU

with Lebesgue measure zero, the optimal control ū0 only takes values on the bounds a, b of the

admissible set Uad. In this case ū0 is called a bang-bang solution.
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Assuming more regularity on the data than stated above, we get regularity for the optimal

state ȳα and the adjoint state p̄α needed for the convergence rates in the numerical realization

of the problem.

We use here and in what follows the notation

‖·‖ := ‖·‖L2(Ω), ‖·‖I := ‖·‖L2(I,L2(Ω)),

(·, ·) := (·, ·)L2(Ω), and (·, ·)I := (·, ·)L2(I,L2(Ω)).

Assumption 2.1. Let yd ∈ H2(I, L2(Ω))
⋂

H1(I,H2(Ω)∩H1
0 (Ω)) with ∆yd(T ) ∈ H1

0 (Ω) and

y0 ∈ H1
0 (Ω). Furthermore, we expect ∆y0 ∈ H1

0 (Ω). In the case of distributed controls, we

assume a, b ∈ H1(I, L2(Ω))
⋂

C(Ī , H1
0 (Ω) ∩C(Ω̄)). In the case of located controls, we assume

g1 ∈ H1
0 (Ω), and a, b ∈ W 1,∞(I).

Lemma 2.6 (Regularity of problem (P), α > 0). Let Assumption 2.1 hold and let α > 0.

For the unique solution (ȳ, ū) of (P) and the corresponding adjoint state p̄ there holds

• p̄ ∈ H3(I, L2(Ω))
⋂
H2(I,H2(Ω) ∩H1

0 (Ω)) →֒ C2(Ī , H1
0 (Ω)),

• ȳ ∈ H2(I, L2(Ω))
⋂
H1(I,H2(Ω) ∩H1

0 (Ω)) →֒ C1(Ī , H1
0 (Ω)), and

• ū ∈ W 1,∞(I) in the case of located controls or

• ū ∈ H1(I, L2(Ω)) ∩ C(Ī , H1
0 (Ω)) ∩ C(Ī × Ω̄) in the case of distributed controls.

With some constant C > 0 independent of α, we have the a priori estimates

‖∂2
t ȳ‖I + ‖∂t∆ȳ‖I + max

t∈[0,T ]
‖∇∂tȳ(t)‖

≤ d1(ū) := C
(

‖Bū‖H1(I,L2(Ω)) + ‖∇Bū(0)‖+ ‖∇∆y0‖
)

,

‖∂2
t p̄‖I + ‖∂t∆p̄‖I + max

t∈[0,T ]
‖∇∂tp̄(t)‖

≤ d0(ū) := C
(

‖yd‖H1(I,L2(Ω)) + ‖∇yd(T )‖+ ‖Bū‖I + ‖∇y0‖
)

,

‖∂3
t p̄‖I + ‖∂2

t∆p̄‖I + max
t∈[0,T ]

‖∇∂2
t p̄(t)‖

≤ d+1 (ū) := d1(ū) + C
(

‖∂2
t yd‖I + ‖∇∂tyd(T )‖+ ‖∇∆yd(T )‖+ ‖∇Bū(T )‖

)

. (2.13)

Proof. See [12, Lemma 12]. �

Remark 2.2 (Regularity in the case α = 0). In the case α = 0, we have less regularity:

• p̄ ∈ H1(I,H2(Ω) ∩H1
0 (Ω))

⋂
H2(I, L2(Ω)) →֒ C1(Ī , H1

0 (Ω)), and

• ȳ ∈ L2(I,H2(Ω) ∩H1
0 (Ω))

⋂
H1(I, L2(Ω)) →֒ C([0, T ], H1

0 (Ω)).

Since (2.10) does not hold, we can not derive regularity for ū from that of p̄ as above. We only

know from the definition of Uad that ū ∈ L∞(ΩU ), but might be discontinuous as we will see

later.
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2.2. Tikhonov regularization

For this subsection, it is useful to rewrite problem (P) in the reduced form (Pα) with

H := L2(I, L2(Ω)), fixed data z := yd − S(0, y0) and the linear and continuous control-to-

state operator T : U → H , Tu := S(Bu, 0). From now onwards we assume

a ≤ 0 ≤ b (2.14)

in a pointwise almost everywhere sense where a and b are the bounds of the admissable set Uad.

For the limit problem (P0), which we finally want to solve, this assumption can always be met

by a simple transformation of the variables.

To prove rates of convergence with respect to α, we rely on the following assumption.

Assumption 2.2. There exist a set A ⊂ ΩU , a function w ∈ H with T ∗w ∈ L∞(ΩU ), and

constants κ > 0 and C ≥ 0, such that there holds the inclusion {x ∈ ΩU | B∗p̄0(x) = 0} ⊂ Ac

for the complement Ac = ΩU\A of A and in addition

1. (source condition)

χAc ū0 = χAcPUad
(T ∗w). (2.15)

2. ((p̄0-)measure condition)

∀ ǫ > 0 : meas({x ∈ A | 0 ≤ |B∗p̄0(x)| ≤ ǫ}) ≤ Cǫκ (2.16)

with the convention that κ := ∞ if the left-hand side of (2.16) is zero for some ǫ > 0.

For a discussion of this assumption we refer to the texts subsequent to [17, Assumption 7]

or [12, Assumption 15].

Key ingredient in the analysis of the regularization error and also of the discretization error

considered later is the following lemma, see [17, Lemma 8] or [12, Lemma 16] for a proof.

Lemma 2.7. Let Assumption 2.2.2 hold. For the solution ū0 of (P0), there holds with some

constant C > 0 independent of α and u

C‖u− ū0‖1+1/κ
L1(A) ≤ (B∗p̄0, u− ū0)U ∀ u ∈ Uad. (2.17)

Using this lemma, we can now state regularization error estimates.

Theorem 2.1. For the regularization error there holds with positive constants c and C indepent

of α > 0 the following.

1. Let Assumption 2.2.2 be satisfied with meas(Ac) = 0 (measure condition holds a.e. on the

domain). Then the estimates

‖ūα − ū0‖L1(ΩU ) ≤ Cακ, (2.18)

‖ūα − ū0‖U ≤ Cακ/2, (2.19)

‖ȳα − ȳ0‖H ≤ Cα(κ+1)/2 (2.20)

hold true. If κ > 1 holds and in addition

T ∗ : range(T ) → L∞(ΩU ) exists and is continuous, (2.21)

we can improve (2.20) to

‖ȳα − ȳ0‖H ≤ Cακ. (2.22)
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2. Let Assumption 2.2 be satisfied with meas(A)·meas(Ac) > 0 (source and measure condition

on parts of the domain). Then the following estimates

‖ūα − ū0‖L1(A) ≤ Cαmin(κ, 2
1+1/κ

), (2.23)

‖ūα − ū0‖U ≤ Cαmin(κ, 1)/2, (2.24)

‖ȳα − ȳ0‖H ≤ Cαmin((κ+1)/2, 1) (2.25)

hold true.

If furthermore κ > 1 and (2.21) hold, we have the improved estimate

‖ūα − ū0‖L1(A) ≤ Cακ. (2.26)

For a proof of this recent result, we refer to [17, Theorem 11] and [12, Theorem 19], where also

a discussion can be found. We only recall two points for convenience here:

The assumption of the first case of the above Theorem implies

meas({x ∈ ΩU | B∗p̄0(x) = 0}) = 0, (2.27)

which induces bang-bang controls, compare Remark 2.1.

By Lemma 2.6 and Remark 2.2 we can immediately see that the assumption (2.21) on T ∗

is fulfilled for our parabolic problem.

2.3. Bang-bang controls

We now introduce a second measure condition which leads to an improved bound on the

decay of smoothness in the derivative of the optimal control when α tends to zero. This bound

will be useful later to derive improved convergence rates for the discretization errors.

Definition 2.1 (p̄α-measure condition). If for the set

Iα := {x ∈ ΩU | αa < −B∗p̄α < αb} (2.28)

the condition

∃ ᾱ > 0 ∀ 0 < α < ᾱ : meas(Iα) ≤ Cακ (2.29)

holds true (with the convention that κ := ∞ if the measure in (2.29) is zero for all 0 < α < ᾱ),

we say that the p̄α-measure condition is fulfilled.

Theorem 2.2. Let us assume the σ-condition

∃ σ > 0 ∀′ x ∈ ΩU : a ≤ −σ < 0 < σ ≤ b. (2.30)

If the p̄α-measure condition (2.29) is valid, then theorem 2.1.1 holds, omitting its first sentence

(“Let Assumption...”).

Proof. See [17, Theorem 15] or [12, Theorem 24]. �

If the limit problem is of certain regularity, both measure conditions coincide:

Corollary 2.1. Let a bang-bang solution be given, i.e., (2.27) holds true. In the case of κ > 1,

(2.21), and the σ-condition (2.30), both measure conditions are equivalent.
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Proof. See [17, Corollary 18] or [12, Corollary 27]. �

Let us now consider located controls. Since p̄α ∈ C1(Ī , L2(Ω)) for α ≥ 0 by Lemma 2.6 and

Remark 2.2, we conclude

‖∂tB∗p̄α‖L∞(I) ≤ C‖∂tp̄α‖L∞(I,L2(Ω)) ≤ C + C‖ūα‖U ≤ C

with a constant C > 0 independent of α due to the definition of Uad. Recall that a, b ∈ W 1,∞(I)

by Assumption 2.1. With this estimate, the projection formula (2.10) and the stability of the

projection (see [12, Lemma 11]) we obtain the bound

‖∂tūα‖L∞(I) ≤
1

α
‖∂tB∗p̄α‖L∞(I) + ‖∂ta‖L∞(I) + ‖∂tb‖L∞(I) ≤ C

1

α
, (2.31)

if α > 0 is sufficiently small.

If the p̄α-measure condition (2.29) is valid, this decay of smoothness in terms of α can be

relaxed in weaker norms, as the following Lemma shows.

Lemma 2.8 (Smoothness decay in the derivative). Let the p̄α-measure condition (2.29)

be fulfilled and located controls be given. Then for α > 0 sufficiently small there holds

‖∂tūα‖Lp(I) ≤ Cmax(Cab, α
κ/p−1) (2.32)

with a constant C > 0 independent of α. Here, Cab := ‖∂ta‖L∞(I)+‖∂tb‖L∞(I) and 1 ≤ p < ∞.

Note that Cab = 0 in the case of constant control bounds a and b.

Proof. See [17, Lemma 19] or [12, Lemma 28]. �

The question of necessity of Assumption 2.2 and the p̄α-measure condition (2.28) to obtain

the convergence rates of Theorem 2.1.1 is discussed in [17, sections 4 and 5] and [12, sections 1.4.3

and 1.4.4]. The results there show that in several cases the conditions are in fact necessary to

obtain the convergence rates from above.

3. The Discretized Problem

3.1. Discretization of the optimal control problem

Consider a partition 0 = t0 < t1 < · · · < tM = T of the time interval Ī. With Im =

[tm−1, tm) we have [0, T ) =
⋃M

m=1 Im. Furthermore, let t∗m = (tm−1 + tm)/2 for m = 1, . . . ,M

denote the interval midpoints. By 0 =: t∗0 < t∗1 < · · · < t∗M < t∗M+1 := T we get a second

partition of Ī, the so-called dual partition, namely [0, T ) =
⋃M+1

m=1 I∗m, with I∗m = [t∗m−1, t
∗
m). The

grid width of the first mentioned (primal) partition is given by the parameters km = tm− tm−1

and

k = max
1≤m≤M

km.

Here and in what follows we assume k < 1. We also denote by k (in a slight abuse of notation)

the grid itself.

We need the following conditions on sequences of time grids.

Assumption 3.1. There exist constants 0 < κ1 ≤ κ2 < ∞ and µ > 0 independent of k such

that there holds

∀ m ∈ {1, 2, . . . ,M − 1} : κ1 ≤ km
km+1

≤ κ2 and k ≤ µ min
m=1,...,M

km.
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On these partitions of the time interval, we define the Ansatz and test spaces of the Petrov–

Galerkin schemes. These schemes will replace the continuous-in-time weak formulations of the

state equation and the adjoint equation, i.e., (2.7) and (2.9), respectively. To this end, we define

at first for an arbitrary Banach space X the semidiscrete function spaces

Pk(X) :=
{

v ∈ C([0, T ], X)
∣
∣
∣ v

∣
∣
Im

∈ P1(Im, X)
}

→֒ H1(I,X), (3.1a)

P ∗
k (X) :=

{

v ∈ C([0, T ], X)
∣
∣
∣ v

∣
∣
I∗

m
∈ P1(I

∗
m, X)

}

→֒ H1(I,X), (3.1b)

Yk(X) :=
{

v : [0, T ] → X∗
∣
∣
∣ v

∣
∣
Im

∈ P0(Im, X)
}

. (3.1c)

Here, Pi(J,X), J ⊂ Ī, i ∈ {0, 1}, is the set of polynomial functions in time with degree of at

most i on the interval J with values in X . We note that functions in Pk(X) can be uniquely

determined by M +1 elements from X . The same holds true for functions v ∈ Yk(X) but with

v(T ) only uniquely determined in X∗ by definition of the space. The reason for this is given

in the discussion below [12, (2.16), p. 41]. Furthermore, for each function v ∈ Yk(X) we have

[v] ∈ L2(I,X) where [.] denotes the equivalence class with respect to the almost-everywhere

relation.

In the sequel, we will frequently use the following interpolation operators.

1. (Orthogonal projection) PYk(X) : L
2(I,X) → Yk(X)

PYk(X)v
∣
∣
Im

:=
1

km

∫ tm

tm−1

v dt, m = 1, . . . ,M, PYk(X)v(T ) := 0. (3.2)

2. (Piecewise linear interpolation on the dual grid) πP∗

k
(X) : C([0, T ], X) ∪ Yk(X) → P ∗

k (X)

πP∗

k (X)v
∣
∣
∣
I∗

1
∪I∗

2

:= v(t∗1) +
t− t∗1
t∗2 − t∗1

(v(t∗2)− v(t∗1)) , (3.3a)

πP∗

k (X)v
∣
∣
∣
I∗

m

:= v(t∗m−1) +
t− t∗m−1

t∗m − t∗m−1

(

v(t∗m)− v(t∗m−1)
)

, 3 ≤ m ≤ M − 1, (3.3b)

πP∗

k (X)v
∣
∣
∣
I∗

M∪I∗

M+1

:= v(t∗M−1) +
t− t∗M−1

t∗M − t∗M−1

(

v(t∗M )− v(t∗M−1)
)

. (3.3c)

The interpolation operators are obviously linear mappings. Furthermore, they are bounded,

and we have error estimates, as [12, Lemma 31] shows.

In addition to the notation introduced after Remark 2.1, adding a subscript Im to a norm

will indicate an L2(Im, L2(Ω)) norm in the following. Inner products are treated in the same

way.

Note that in all of the following results C denotes a generic, strict positive real constant

that does not depend on quantities which appear to the right or below of it.

Note that we can extend the bilinear form A of (2.6) in its first argument to W (I) ∪
Yk(H

1
0 (Ω)), thus consider the operator

A : W (I) ∪ Yk(H
1
0 (Ω))×W (I) → R, A given by (2.6). (3.4)

Using continuous piecewise linear functions in space, we can formulate fully discretized

variants of the state and adjoint equation.
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We consider a regular triangulation Th of Ω with mesh size

h := max
T∈Th

diam(T ),

see, e.g., [19, Definition (4.4.13)], and N = N(h) triangles. We assume that h < 1. We also

denote by h (in a slight abuse of notation) the grid itself.

With the space

Xh :=
{

φh ∈ C0(Ω̄)
∣
∣φh

∣
∣
T
∈ P1(T,R) ∀ T ∈ Th

}

, (3.5)

we define Xh0 := Xh ∩H1
0 (Ω) to discretize H1

0 (Ω).

For the space grid we make use of a standard grid assumption, as we did for the time grid,

sometimes called quasi-uniformity.

Assumption 3.2. There exists a constant µ > 0 independent of h such that

h ≤ µ min
T∈Th

diam(T ).

We fix fully discrete ansatz and test spaces, derived from their semidiscrete counterparts

from (3.1), namely

Pkh := Pk(Xh0), P ∗
kh := P ∗

kh(Xh0), and Ykh := Yk(Xh0). (3.6)

With these spaces, we introduce fully discrete state and adjoint equations as follows.

Definition 3.1 (Fully discrete adjoint equation). For h ∈ L2(I,H−1(Ω)) find pkh ∈ Pkh

such that

A(ỹ, pkh) =

∫ T

0

〈h(t), ỹ(t)〉H−1(Ω)H1
0
(Ω) dt ∀ ỹ ∈ Ykh. (3.7)

Definition 3.2 (Fully discrete state equation). For (f, g) ∈ L2(I,H−1(Ω)) × L2(Ω) find

ykh ∈ Ykh, such that

A(ykh, vkh) =

∫ T

0

〈f(t), vkh(t)〉H−1(Ω)H1
0
(Ω) dt+ (g, vkh(0)) ∀ vkh ∈ Pkh. (3.8)

Existence and uniqueness of these two schemes follow as in the semidiscrete case discussed

in [15] or [12, section 2.1.2].

Let us recall some stability results and error estimates for these schemes. The first result

is [12, Lemma 56].

Lemma 3.1. Let pkh ∈ Pkh solve (3.7) with h ∈ L2(I, L2(Ω)). Then there exists a constant

C > 0 independent of the mesh sizes k and h such that

‖pkh‖H1(I,L2(Ω)) + ‖∇pkh‖C(Ī,L2(Ω)) ≤ C‖h‖I .

For stability of a fully discrete state ykh and an error estimate, we recall [12, Lemma 59].

Lemma 3.2. Let y be the solution of (2.7) for some (f, g) ∈ L2(I,H−1(Ω)) × L2(Ω) and let

ykh ∈ Ykh be the solution of (3.8) for the same (f, g). Then with a constant C > 0 independent

of k and h, it holds

‖ykh‖I ≤ C
(

‖f‖L2(I,H−1(Ω)) + ‖g‖
)

.
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If furthermore the regularity f ∈ L2(I, L2(Ω)) as well as g ∈ H1
0 (Ω) is fulfilled, we have the

error estimate

‖y − ykh‖I ≤ C(h2 + k) (‖f‖I + ‖∇g‖) . (3.9)

Let us now consider the error of the fully discrete adjoint state. We begin with an L2(I, L2(Ω))

norm result, which is [12, Lemma 62].

Lemma 3.3. Let p solve (2.9) for some right-hand side h such that p has the regularity p ∈
H1

(
I,H2(Ω) ∩H1

0 (Ω)
)⋂

H2
(
I, L2(Ω)

)
. Let furthermore pkh ∈ Pkh solve (3.7) for the same

right-hand side h. Then it holds (with h referring to the space grid)

‖pkh − p‖I ≤ C(k2 + h2)(‖ptt‖I + ‖∆pt‖I).

For the pointwise-in-time error, we recall [12, Lemma 65]:

Lemma 3.4. Let the assumptions of Lemma 3.3 be fulfilled. Then it holds

‖p− pkh‖L∞(I,L2(Ω)) ≤ C(h2 + k)
(

‖∆pt‖I + ‖pt‖L∞(I,L2(Ω))

)

.

If in addition p ∈ H2(I,H2(Ω)∩H1
0 (Ω)) and ptt ∈ L∞(I, L2(Ω)) is known to hold, we have the

improved estimate

‖p− pkh‖L∞(I,L2(Ω))

≤C(h2 + k2)
(

‖∆pt‖I + ‖pt‖L∞(I,L2(Ω))

)

+ Ck2
(

‖∆ptt‖I + ‖ptt‖L∞(I,L2(Ω))

)

.

The following superconvergence result, which is [12, Lemma 66], will also be used in the

later error analysis.

Lemma 3.5. Let y ∈ Y and ykh ∈ Ykh solve (2.7) and (3.8), respectively, with data (f, g)

fulfilling f ∈ H1(I, L2(Ω)), f(0) ∈ H1
0 (Ω), g ∈ H1

0 (Ω), and ∆g ∈ H1
0 (Ω). By pkh(h) ∈ Pkh we

denote the solution to (3.7) with right-hand side h. Then it holds

‖ykh − PYk
y‖I + ‖pkh(ykh − y)‖C(Ī,L2(Ω)) ≤ C

(

k2F1(f, g) + h2F2(f, g)
)

with

F2(f, g) := ‖f‖I + ‖g‖H1(Ω),

F1(f, g) := F2(f, g) + ‖∂tf‖I + ‖f(0)‖H1(Ω) + ‖∆g‖H1(Ω).

We are now able to introduce the discretized optimal control problem which reads

min
ykh∈Ykh,u∈Uad

J(ykh, u) = min
1

2
‖ykh − yd‖2I +

α

2
‖u‖2U ,

s.t. ykh = Skh(Bu, y0)

(Pkh)

where α, B, y0, yd, and Uad are chosen as for (P) and Skh is the solution operator associated

to the fully discrete state equation (3.8). Recall that the space Ykh was introduced in (3.6).

For every α > 0, this problem admits a unique solution triple (ūkh, ȳkh, p̄kh) where ȳkh =

Skh(Būkh, y0) and p̄kh denotes the discrete adjoint state which is the solution of the fully
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discrete adjoint equation (3.7) with right-hand side h := ȳkh − yd. The first order necessary

and sufficient optimality condition for problem (Pkh) is given by

ūkh ∈ Uad, (αūkh +B∗p̄kh, u− ūkh)U ≥ 0 ∀ u ∈ Uad, (3.10)

which can be rewritten as

ūkh = PUad

(

− 1

α
B∗p̄kh

)

. (3.11)

The above mentioned facts can be proven in the same way as for the continuous problem (P).

Note that the control space U is not discretized in the formulation (Pkh). In the numerical

treatment, the relation (3.11) is instead exploited to get a discrete control. This approach is

called Variational Discretization and was introduced in [13], see also [14, Chapter 3.2.5] for

further details.

Remark 3.1. In the case α = 0, problem (Pkh) has at least one solution, but only ȳkh and

p̄kh are unique, whereas an associated optimal control is in general non-unique. The reason is

that f 7→ Skh(f, y0) is not injective in contrast to f 7→ S(f, y0). However, the discrete solution

is unique (and of bang-bang type) if the zero level set of B∗p̄kh has measure zero.

3.2. Error estimates for the regularized problem

In what follows, we use the notation ykh(v) := Skh(Bv, y0) with v ∈ Uad, and pkh(h) is an

abbreviation of the solution to (3.7) with right-hand side h ∈ L2(I,H−1(Ω)). Furthermore,

y(v) and p(h) denote the continuous counterparts. Note that therefore we have ȳ = y(ū),

ȳkh = ykh(ūkh), p̄ = p(ȳ − yd), and p̄kh = pkh(ȳkh − yd).

The following Lemma provides a first step towards an error estimate with respect to the

control and state discretization.

Lemma 3.6. Let ū and ūkh solve (P) and (Pkh), respectively, both for the same α ≥ 0. Then

there holds

α‖ūkh − ū‖2U + ‖ȳkh − ykh(ū)‖2I
≤
(

B∗
(

pkh(ȳ − yd)− p̄+ pkh(ykh(ū)− ȳ)
)

, ū− ūkh

)

U
.

Proof. Inserting ūkh into (2.8) and ū into (3.10) and adding up the resulting inequalities

yields
(

α(ūkh − ū) +B∗(p̄kh − p̄), ūkh − ū
)

U
≤ 0.

After some simple manipulations we obtain

α‖ūkh − ū‖2U ≤
(

B∗
(

pkh(ȳ − yd)− p̄+ pkh(ykh(ū))− pkh(ȳ)
)

, ū− ūkh

)

U

+
(

B∗
(

p̄kh − pkh(ykh(ū)− yd)
)

, ū− ūkh

)

U
,

and since the last line equals −‖ȳkh− ykh(ū)‖2I , we end up with the desired estimate by moving

this term to the left. �

We can now prove an error estimate, which resembles the standard estimate for variational

discretized controls. It is build upon [15, Theorem 5.2]. Since we are interested in the limit

behavior α → 0, we try to give a precise dependence of the right-hand side on α. Note the

splitting in terms of the quantities d0 and d1. In contrast to d0, the term d1 is not bounded if

α → 0.



Variational Discretization of a Control-constrained Parabolic Bang-bang Optimal Control Problem 27

Theorem 3.1. Let ū and ūkh solve (P) and (Pkh), respectively, both for the same α ≥ 0. Then

there exists a constant αmax > 0 independent of k and h, so that for all 0 ≤ α ≤ αmax (with

the convention “1/0 = ∞ = d1” in the case of α = 0) the estimate

√
α‖ūkh − ū‖U + ‖ȳkh − ykh(ū)‖I

≤Cmin

(
k2 + h2

√
α

d0, (k + h)
√

‖ūkh − ū‖U
√

d0

)

+ Cmin
(
k2d1, kd0

)
+ Ch2d0

≤Cmax(d0 + 1,
√

d0)min

(
k2

α
+

h2

√
α
, k + h

)

(3.12)

is satisfied with the constants d0 = d0(ū) and d1 = d1(ū) from the estimates (2.13) in Lem-

ma 2.6.

Proof. We split the right-hand side of the estimate from Lemma 3.6 and get with the

Cauchy-Schwarz inequality

α‖ūkh − ū‖2U + ‖ȳkh − ykh(ū)‖2I
≤‖pkh(ȳ − yd)− p̄‖I‖ū− ūkh‖U + (B∗ (pkh (ykh (ū)− ȳ)) , ū− ūkh)U =: I + II.

With the help of Lemmas 3.3 and 2.6, we conclude

‖pkh(ȳ − yd)− p̄‖I ≤ C(k2 + h2)(‖p̄tt‖I + ‖∆p̄t‖I) ≤ C(k2 + h2)d0.

Now we use Cauchy’s inequality to obtain

I ≤ C

α
‖pkh(ȳ − yd)− p̄‖2I +

α

2
‖ū− ūkh‖2U .

Here, the second addend can be moved to the left. Both estimates can be summarized as

√
I ≤ Cmin

(
k2 + h2

√
α

d0, (k + h)
√

‖ūkh − ū‖U
√

d0

)

.

The addend II can be estimated as

II = (ykh(ū)− ȳ, ykh(ū)− ȳkh)I ≤ 1

2

(

‖ykh(ū)− ȳ‖2I + ‖ykh(ū)− ȳkh‖2I
)

.

We move the second term to the left. Note that in the previous estimate ȳ can be replaced by

PYk
ȳ by definition of PYk

. We thus can invoke either the error estimate of the state equation

(3.9) from Lemma 3.2 or the superconvergence result from Lemma 3.5. In conclusion, we have
√
II ≤ Cmin

(
(k + h2)d0, k

2d1 + h2d0
)
= min

(
kd0, k

2d1
)
+ h2d0.

Together with the estimate for
√
I, we obtain the first inequality of the claim.

For the second inequality, we first note that with the help of the projection formula (2.10),

the stability of the projection, see, e.g., [12, Lemma 11], and the regularity result [12, Lemma 6]

one immediately derives the estimate

‖ū‖H1(I,Ũ) + ‖Bū(0)‖H1(Ω)

≤C

α

(

‖p̄‖H1(I,L2(Ω)) + ‖p̄(0)‖H1(Ω)

)

+ C(a) + C(b)

≤C

α

(

‖yd‖I + ‖ū‖U + ‖y0‖H1(Ω)

)

+ C(a) + C(b), (3.13)
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where Ũ ∈ {R, L2(Ω)}, depending on whether located or distributed controls are given, and

C(x) = ‖x‖H1(I,Ũ) + ‖x(0)‖X with X = H1(Ω) (distributed controls) or X = R (located

controls). This term is bounded due to Assumption 2.1.

Since there exists an αmax > 0, depending only on the data a, b, y0, yd, such that

∀ 0 ≤ α ≤ αmax : d1 + d+1 ≤ C
1

α
(d0 + 1) (3.14)

holds with d+1 := d+1 (ū) from the estimates (2.13) in Lemma 2.6, and since
√
‖ūkh − ū‖U is

bounded independently of α due to the definition of Uad, we get the claim. �

From the proof of the previous theorem, one can immediately derive a first robust (with

respect to α → 0) error bound for the optimal state.

Corollary 3.1. Let ū and ūkh solve (P) and (Pkh), respectively, both for the same arbitrarily

chosen α ≥ 0. Then there holds

‖ȳ − ȳkh‖I ≤ C(k + h)max(d0 + 1,
√

d0)

with a constant C > 0 independent of α where d0 is given in Theorem 3.1.

Proof. Combining

‖ȳ − ȳkh‖I ≤ ‖ykh(ū)− ȳkh‖I + ‖ȳ − ykh(ū)‖I

with the previous Theorem and (3.9) from Lemma 3.2 proves the claim. �

Now, from the above Theorem we derive further non-robust estimates for the discrete state and

adjoint state. Finally, we prove second order convergence for πP∗

k
ȳkh, i.e., the piecewise linear

interpolation on the dual grid of the optimal state. This function is obtained for free from ȳkh,

since ȳkh only has to be evaluated on the dual time grid. Compare [15, Theorem 5.3] for the

convergence of the interpolation in the semidiscrete case.

Corollary 3.2. Let ū and ūkh denote the solutions to (P) and (Pkh), respectively, both for the

same sufficiently small α > 0 (in the sense of Theorem 3.1). With d0 and d1 as in Theorem 3.1

and

d+1 := d+1 (ū) = d1(ū) + C
(

‖∂2
t yd‖I + ‖∇∂tyd(T )‖+ ‖∇∆yd(T )‖+ ‖∇Bū(T )‖

)

from the estimates (2.13) in Lemma 2.6, the estimates

‖ū− ūkh‖U ≤ C

(
k2d1√

α
+

k2 + h2

α
d0

)

≤ C

(
k2

α3/2
+

h2

α

)

(d0 + 1),

‖ȳ − ȳkh‖I ≤ C
(

k +
k2

α
+

h2

√
α

)

(d0 + 1),

α‖ū− ūkh‖L∞(I,Ũ) + ‖p̄− p̄kh‖L∞(I,L2(Ω)) + ‖ȳ − πP∗

k
ȳkh‖I

≤ C

(

k2d+1 +
k2 + h2

√
α

d0

)

≤ C

(
k2

α
+

h2

√
α

)

(d0 + 1)

hold with Ũ ∈ {R, L2(Ω)} depending on whether located or distributed controls are given.
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Proof. The first estimate for the optimal control and the estimate for the optimal state

follow from Theorem 3.1. For the latter, we argue as in the proof of Corollary 3.1.

For the optimal adjoint state, we split the error into three parts to obtain with L :=

L∞(I, L2(Ω))

‖p̄− p̄kh‖L ≤ ‖p̄− pkh(ȳ − yd)‖L + ‖pkh(PYk
ȳ − ykh(ū))‖L + ‖pkh(ykh(ū)− ȳkh)‖L.

With the second error estimate from Lemma 3.4, the regularity given in Lemma 2.6, and the

estimate from Lemma 3.5, we conclude

‖p̄− pkh(ȳ − yd)‖L + ‖pkh(PYk
ȳ − ykh(ū))‖L ≤ C(h2d0 + k2d+1 ),

since d1 ≤ d+1 .

Stability from Lemma 3.1 combined with Theorem 3.1 gives the estimate

‖pkh(ykh(ū)− ȳkh)‖L ≤ C
k2 + h2

√
α

d0 + Ck2d1 + Ch2d0.

From this, we get

‖p̄− p̄kh‖L ≤ C
k2 + h2

√
α

d0 + Ck2d+1 .

The projection formulae (2.10) and (3.11), Lipschitz continuity of the projection given in [12,

Lemma 11], and stability of B∗ yield

‖ū− ūkh‖L∞(I,Ũ) ≤ C
1

α
‖p̄− p̄kh‖L.

Together with the just established estimate this yields the pointwise-in-time error estimate for

the optimal control.

For the proof of the error ‖ȳ − πP∗

k
ȳkh‖I , we refer the reader to [12, Corollary 71].

Using the inequality (3.14), we can finally reduce the non-robust constants d1 and d+1 to the

robust one d0. �

Let us comment on the estimates of Theorem 3.1 and Corollary 3.2. These estimates show

that if α > 0 is fixed, we have convergence rates h2+k2 except for the state error. Invoking the

regularization error, one obtains estimates for the total error between the limit problem and

the discrete regularized one. From this, a coupling rule for the parameters α, k and h can be

derived.

As an example, consider the error in the projected state for the special case κ = 1. With

the help of Theorem 2.1, and Corollary 3.2 we get with the inequality (3.14) the estimate

‖ȳ0 − πP∗

k
(ȳkh)‖I ≤ ‖ȳ0 − ȳα‖I + ‖ȳα − πP∗

k
(ȳkh)‖I

≤C

(

α+ k2d+1 +
k2 + h2

√
α

d0

)

≤ C

(

α+
k2

α
+

h2

√
α

)

(d0 + 1), (3.15)

which implies ‖ȳ0 − πP∗

k
(ȳkh)‖I ≤ Ck = Ch4/3 when setting α = k = h4/3.

However, if the decay estimate d+1 ≤ C
α , i.e., (3.14), can be improved, we can get a better

convergence rate (with respect to k) for the total error. In Lemma 2.8 we saw that this is indeed

possible.

Unfortunately, space convergence of order h2 is not achievable in the above mentioned

estimates if α tends to zero due to α appearing in the denominator. To overcome this, we

establish other estimates in the next subsection. The question of improving the decay estimate

(3.14) is discussed in the next but one subsection using the estimates of the next subsection.
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3.3. Robust error estimates

All the previous estimates (except Corollary 3.1) are not robust for α → 0, since α appears

always in a denominator on the right-hand side. Especially, convergence of order h2 is not

achievable as discussed at the end of the previous subsection. With some refined analysis,

however, one can show estimates which are robust with respect to α → 0. A key ingredient is

Lemma 2.7, which was also very important for the derivation of the regularization error.

Recall the notation from the beginning of subsection 3.2.

Theorem 3.2. Let Assumption 2.2 be fulfilled so that either (2.18) or (2.23) from Theorem 2.1

holds. We denote the valid convergence rate for the control by αω1 . Then, either (2.20) or (2.25)

is fulfilled. We abbreviate the corresponding convergence rate by αω2 .

Let ū0 be the solution of (P0) with associated state ȳ0. For some α ≥ 0 let in addition

ūd := ūα,kh ∈ Uad be a solution of (Pkh) with associated discrete state ȳd and adjoint state p̄d.

Then there holds

‖ū0 − ūd‖L1(A)

≤C(αω1 + ‖B∗(pkh − p)(y(ūd)− yd)‖κL∞(A) + ‖B∗(pkh − p)(y(ūd)− yd)‖
1

1+1/κ

L1(Ac)

+ ‖B∗pkh(ykh(ūd)− y(ūd))‖κL∞(A) + ‖B∗pkh(ykh(ūd)− y(ūd))‖
1

1+1/κ

L1(Ac)) (3.16)

for the error in the control and

‖ȳ0 − ȳd‖I ≤C(αω2 + ‖B∗(pkh − p)(y(ūd)− yd)‖
1+κ
2

L∞(A)

+ ‖B∗(pkh − p)(y(ūd)− yd)‖1/2L1(Ac) + ‖B∗pkh(ykh(ūd)− y(ūd))‖
1+κ
2

L∞(A)

+ ‖B∗pkh(ykh(ūd)− y(ūd))‖1/2L1(Ac) + ‖ykh(ūd)− y(ūd)‖I) (3.17)

for the error in the state.

Proof. To the estimate (2.17) from Lemma 2.7 with u := ūd, i.e.,

C‖ūd − ū0‖1+1/κ
L1(A) ≤ (−B∗p̄0, ū0 − ūd)U , (3.18)

we add the necessary condition (3.10) for ūd with u := ū0, which can be rewritten as

α‖ū0 − ūd‖2U ≤ (αū0 +B∗p̄d, ū0 − ūd)U . (3.19)

We end up with

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I

≤C
(

−B∗p(y(ūd)− yd) +B∗pkh(ykh(ūd)− yd) + αū0, ū0 − ūd

)

U

≤C
(

B∗(pkh − p)(y(ūd)− yd)
︸ ︷︷ ︸

I

+B∗pkh(ykh(ūd)− y(ūd))
︸ ︷︷ ︸

II

+ αū0
︸︷︷︸

III

, ū0 − ūd

)

U
. (3.20)

We now use [12, Lemma 18], Cauchy’s and Young’s inequality to estimate III as

α(ū0, ū0 − ūd)U ≤ αC
(

‖T (ūd − ū0)‖H + ‖ūd − ū0‖L1(A)

)

≤ Cα2 +
1

4
‖T (ūd − ū0)‖2H + Cα1+κ +

1

4
‖ūd − ū0‖1+1/κ

L1(A) .
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The α-free terms can now be moved to the left, since ‖T (ūd − ū0)‖H = ‖y(ūd)− y(ū0)‖I . Note
that Cα2 can be omitted if A = ΩU since by Young’s inequality we then get

α‖ūα − ū0‖L1(ΩU ) ≤ Cακ+1 + C‖ūα − ū0‖1+1/κ
L1(ΩU ).

Thus only the term Cα2ω2 remains on the right-hand side.

For I and II, we proceed with the help of Young’s inequality to obtain

(∼, ū0 − ūd)U

= (∼, ū0 − ūd)L2(A) + (∼, ū0 − ūd)L2(Ac)

≤ C‖∼‖1+κ
L∞(A) +

1

4
‖ū0 − ūd‖1+1/κ

L1(A) + ‖∼‖L1(Ac)‖b− a‖L∞(Ac)

and move the second addend to the left. Finally, we end up with

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I

≤ C
(

α2ω2 + ‖B∗(pkh − p)(y(ūd)− yd)‖1+κ
L∞(A) + ‖B∗(pkh − p)(y(ūd)− yd)‖L1(Ac)

+ ‖B∗pkh(ykh(ūd)− y(ūd))‖1+κ
L∞(A) + ‖B∗pkh(ykh(ūd)− y(ūd))‖L1(Ac)

)

.

From this we conclude the claim for the optimal control. �

The just established estimate together with the decomposition

‖ȳ0 − ȳd‖I ≤ ‖ykh(ūd)− y(ūd)‖I + ‖y(ūd)− y(ū0)‖I

yields the claim for the optimal state.

Remark 3.2. The error estimate (3.16) in the previous Theorem for α > 0 is also valid if ū0 is

replaced by ūα, i.e., the solution of (P) for some α > 0, since by Theorem 2.1 we can estimate

‖ūα − ūd‖L1(A)

≤‖ūα − ū0‖L1(A) + ‖ū0 − ūd‖L1(A) ≤ Cαω1 + ‖ū0 − ūd‖L1(A). (3.21)

Likewise, in (3.17) the state ȳ0 can be replaced by ȳα.

We will make use of this fact in the proof of the next theorem.

In combination with the error estimates for the state and adjoint state equations previously

derived, we can now prove a first error estimate between solutions of (Pkh) and (P0), which is

robust if α tends to zero. In view of the numerical verification, we restrict ourselves now to the

situation A = ΩU and located controls.

Theorem 3.3. Let the assumptions of Theorem 3.2 be fulfilled. Further, we assume located

controls and A = ΩU (measure condition on the whole domain). Then there hold the estimates

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(ΩU ) ≤ C
(
α+ h2 + k

)κ
(1 + d0(ūd)

κ) (3.22)

for the error in the control, for the auxiliary error

‖ȳd − ykh(ūα)‖2I ≤ C(h2 + k)d0(ūα)
(

ακ + (h2 + k)κd0(ūd)
κ
)

(3.23)
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where by ūα we denote the solution of (P), and

‖ȳd − ȳ0‖I ≤ C
(

α
1+κ
2 + (h2 + k)min(1, 1+κ

2
)
)(

1 + d0(ūd)
min(1, 1+κ

2
)
)

(3.24)

for the error in the state.

If κ > 1, we have the improved convergence rate

‖ȳd − ȳ0‖I ≤ C(ακ + h2 + k)(1 + max
(

d0(ūd)
κ, d0(ūα)

)

), (3.25)

thus observe the regularization error (2.22).

Proof. Combining Theorem 3.2 with the adjoint error estimate in Lemma 3.4, the adjoint

stability from Lemma 3.1, the error estimate (3.9) in Lemma 3.2, and the regularity given in

Lemma 2.6 and Remark 2.2, we achieve (3.22) and (3.24) except for the U error in the control.

This error can be derived from the corresponding L1 error by the estimate

‖ū0 − ūd‖2U ≤ ‖ū0 − ūd‖L∞(ΩU )‖ū0 − ūd‖L1(ΩU )

≤ ‖b− a‖L∞(ΩU )‖ū0 − ūd‖L1(ΩU ), (3.26)

which follows immediately from standard Lp interpolation, see, e.g., [20, Theorem 2.11], and

the definition of Uad.

Let us now tackle the improved state convergence, thereby proving the estimate (3.23). We

split the error into three parts and obtain with the help of (2.22) and the error estimate (3.9)

from Lemma 3.2

‖ȳd − ȳ0‖2I
≤ C

(

‖ȳd − ykh(ūα)‖2I + ‖ykh(ūα)− y(ūα)‖2I + ‖y(ūα)− y(ū0)‖2I
)

≤ C
(

‖ȳd − ykh(ūα)‖2I + (h2 + k)2d20(ūα) + α2κ
)

,

where we also used (2.13) from Lemma 2.6.

For the remaining term, we invoke Lemma 3.6 in combination with (3.16) and Remark 3.2

and setting L := L∞(I, L2(Ω)) we obtain with the stability of B∗ for located controls

‖ȳd − ykh(ūα)‖2I
≤ C

(

‖pkh(ȳα − yd)− p̄α‖L + ‖pkh(ykh(ūα)− ȳα)‖L
)

‖ūα − ūd‖L1(ΩU )

≤ C
(

‖pkh(ȳα − yd)− p̄α‖L + ‖pkh(ykh(ūα)− ȳα)‖L
)

·
(

ακ + ‖(pkh − p)(y(ūd)− yd)‖κL + ‖pkh(ykh(ūd)− y(ūd))‖κL
)

. (3.27)

Invoking again Lemma 3.4, Lemma 3.1, estimate (3.9) from Lemma 3.2, and Lemma 2.6, we

get

‖ȳd − ykh(ūα)‖2I ≤ C(h2 + k)d0(ūα)
(

ακ + (h2 + k)κdκ0 (ūd)
)

,

which is the auxiliary estimate (3.23) of the statement.

If κ > 1, we can use the Cauchy-Schwarz inequality to get from it the estimate

‖ȳd − ykh(ūα)‖2I ≤ C
(

(h2 + k)2d20(ūα) + α2κ + (h2 + k)1+κd0(ūα)d
κ
0 (ūd)

)

.
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Since κ > 1, collecting all estimates yields the inequality

‖ȳd − ȳ0‖2I ≤ C(α2κ + (h2 + k)2 max
(

d2κ0 (ūd), d
2
0(ūα)

)

),

from which we finally get (3.25). �

Corollary 3.3. Let the assumptions of the previous theorem hold. For the adjoint state we

have the error estimate

‖p̄0 − p̄d‖L∞(I,L2(Ω)) ≤ C
(

αmax( 1+κ
2

,κ) + (k + h2)min(1, 1+κ
2

)C(ūd, ūα)
)

with C(ūd, ūα) = max(1, d0(ūd), d0(ūα))
max(1, 1+κ

2
).

Proof. Inspecting the proof of Corollary 3.2, we get the estimate

‖p̄α − p̄d‖L∞(I,L2(Ω)) ≤ C
(

(k + h2)d0(ūα) + ‖ykh(ūα)− ȳd‖I
)

.

The last addend can be estimated with the auxiliary estimate (3.23) from the previous theorem

and Cauchy’s inequality. We obtain

‖p̄α − p̄d‖L∞(I,L2(Ω)) ≤ C(αmax( 1+κ
2

,κ) + (k + h2)min(1, 1+κ
2

)C(ūd, ūα)).

Invoking the regularization errors (2.20) and (2.22) proves the claim. �

3.4. Improved estimates for bang-bang controls

As motivated at the end of subsection 3.2, improving the decay estimate (3.14) with the help

of Lemma 2.8 leads to improved (non-robust) error estimates. However, the convergence rate h2

is not achievable in these estimates, but the robust estimates from Theorem 3.2 overcome this

problem. On the other hand, in Theorem 3.2 we have ūd on the right-hand side instead of ūα,

so that Lemma 2.8 can not be directly applied. Therefor, we have to estimate some additional

terms in combination with Theorem 3.2 to finally get the desired improved estimates.

Theorem 3.4. Let the assumptions of Theorem 3.2 be fulfilled. Further, we assume located

controls and A = ΩU up to a set of measure zero (measure condition on the whole domain). If

κ < 1, we additionally require the p̄α-measure condition (2.29). (For κ ≥ 1, this condition is

automatically met as shown in [12, Lemma 26].) Then, for α > 0 sufficiently small, d0 := d0(ūα)

given as in Theorem 3.1, and Cab defined in Lemma 2.8 it holds

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(ΩU ) ≤ C
(

α+ h2 + k2 max(1, Cab, α
κ/2−1)

)κ

(1 + dκ0 )

for the error in the control.

Proof. Let us recall the estimate (3.20) from the proof of Theorem 3.2, i.e.,

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I

≤C
(

−B∗p(y(ūd)− yd) +B∗pkh(ykh(ūd)− yd) + αū0, ū0 − ūd

)

U
,
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which we rearrange as follows:

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤C
(

−B∗p(y(ū0)− y(ūα))
︸ ︷︷ ︸

I

−B∗p(y(ūα)− yd) +B∗pkh(ykh(ūα)− yd)
︸ ︷︷ ︸

IIa

+αū0
︸ ︷︷ ︸

IIb

+B∗pkh(ykh(ū0)− ykh(ūα))
︸ ︷︷ ︸

III

, ū0 − ūd

)

U
. (3.28)

For term III, we use the optimality conditions together with Cauchy’s inequality to get

(ykh(ū0)− ykh(ūα)), ykh(ū0)− ykh(ūd))I

≤C‖ykh(ū0)− ykh(ūα)‖2I +
1

16
‖ykh(ū0)− ykh(ūd)‖2I ,

and move the latter addend to the left-hand side of (3.28). We split the former addend with

the help of (3.9) from Lemma 3.2 and the regularization errors (2.19) and (2.20) to obtain with

the help of Young’s inequality

‖ykh(ū0)− ykh(ūα)‖2I ≤ C(‖(ŷkh − ŷ)(ū0 − ūα)‖I + ‖y(ū0)− y(ūα)‖I)2

≤C((k + h2)ακ/2 + α
1+κ
2 )2 ≤ C(k + h2)2(κ+1) + Cα1+κ, (3.29)

where ŷkh and ŷ denote the solution operators for the state equation with initial value zero.

For IIb, we invoke again Young’s inequality and the inclusion ū0 ∈ Uad ⊂ L∞ to get the

estimate

α(ū0, ū0 − ūd)U ≤ Cα‖ūd − ū0‖L1(ΩU ) ≤ Cακ+1 +
1

16
‖ūd − ū0‖1+1/κ

L1(ΩU ).

We now move the second summand to the left of (3.28) since A = ΩU up to a set of measure

zero. The addend IIa can be rewritten and estimated with again the help of Young’s inequality

to get

(

−B∗p(y(ūα)− yd) +B∗pkh(ykh(ūα)− yd), ū0 − ūd

)

U

≤ C
(

B∗(pkh − p)(y(ūα)− yd) +B∗pkh(ykh(ūα)− y(ūα)), ū0 − ūd

)

U

≤ C‖B∗(pkh − p)(y(ūα)− yd) +B∗pkh(ykh(ūα)− y(ūα))‖1+κ
L∞(ΩU ) +

1

16
‖ū0 − ūd‖1+1/κ

L1(ΩU ).

The last addend can now be moved to the left of (3.28). For summand I, we add an additional

term to get

(

−B∗p(y(ū0)− y(ūα)), ū0 − ūd

)

U

=
(

B∗(pkh − p)(y(ū0)− y(ūα))−B∗pkh(y(ū0)− y(ūα)), ū0 − ūd

)

U
.

We estimate the second addend with the help of the regularization error (2.20) as

(

y(ū0)− y(ūα), ykh(ū0)− ykh(ūd)
)

I
≤ Cα1+κ +

1

16
‖ykh(ū0)− ykh(ūd)‖2I ,
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and move the second addend to the left of (3.28). For the remaining addend, we use again the

above mentioned results and the estimate (3.26) to obtain
(

B∗(pkh − p)(y(ū0)− y(ūα)), ū0 − ūd

)

U

=
(

y(ū0)− y(ūα), (ŷkh − ŷ)(ū0 − ūd)
)

≤ C‖y(ū0)− y(ūα)‖2I + C‖(ŷkh − ŷ)(ū0 − ūd)‖2I
≤ Cα1+κ + C(k + h2)2‖ū0 − ūd‖2U
≤ Cα1+κ + C(k + h2)2‖ū0 − ūd‖L1(ΩU )

≤ Cα1+κ + C(k + h2)2(κ+1) +
1

16
‖ū0 − ūd‖1+1/κ

L1(ΩU )

and move the last term to the left of (3.28).

Collecting all previous estimates, we with L := L∞(I, L2(Ω)) obtain

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(

ακ+1 + (k + h2)2(κ+1) + ‖(pkh − p)(y(ūα)− yd)‖1+κ
L

+ ‖pkh(ykh(ūα)− PYk
y(ūα))‖1+κ

L

)

.

Note that we introduced the orthogonal projection PYk
in the last addend, which is possible

due to the definition of the fully discrete adjoint equation (3.7). Furthermore, we used stability

of B∗ for located controls.

We combine the previous estimate with the (improved) adjoint error estimate from Lem-

ma 3.4, the adjoint stability from Lemma 3.1, and the superconvergence result from Lemma 3.5,

making use of the regularity given in Lemma 2.6, to get

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(

α+ h2d0 + k2(1 + d+1 (ūα))
)1+κ

.
(3.30)

With the help of the estimate given in Lemma 2.8 for p = 2, i.e.,

‖∂tūα‖L2(ΩU ) ≤ Cmax(Cab, α
κ/2−1),

we conclude that for α > 0 sufficiently small it holds

d+1 (ūα) ≤ C + Cmax(Cab, α
κ/2−1). (3.31)

In conclusion, we get

‖ū0 − ūd‖1+1/κ
L1(A) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(

α+ h2d0 + k2 max(1, Cab, α
κ/2−1)

)1+κ

.

Finally, recall that the U error in the control can be derived from the corresponding L1

error using the estimate (3.26). �

From the previous theorem we get coupling rules for α and k, always with α = h2, and

convergence rates, which are shown in Table 3.1.

Note that in any case we get a better rate than kκ proven in Theorem 3.3.
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Table 3.1: Coupling and convergence implied by Theorem 3.4.

α = ‖ūd − ū0‖L1(ΩU ) ≤ C . . . if

k4/(4−κ) ακ = h2κ = k4κ/(4−κ) κ < 2

k2 ακ = h2κ = k2κ κ ≥ 2

Corollary 3.4. Let the assumptions of the previous Theorem hold. For the adjoint and the

projected state we have the error estimate

‖p̄0 − p̄d‖L∞(I,L2(Ω)) + ‖ȳ0 − πP∗

k
ȳd‖I

≤ Cαmax(κ+1

2
,κ) + C

(

h2d0 + k2 max(1, Cab, α
κ/2−1)

)min(1,κ+1

2
)

.

Proof. Inspecting the proof of Corollary 3.2, we obtain the estimate

‖p̄α − p̄d‖L∞(I,L2(Ω)) + ‖ȳα − πP∗

k
ȳd‖I ≤ C

(

k2d+1 + h2d0 + ‖ykh(ūα)− ȳd‖I
)

.

To estimate the last addend, let us first combine the estimate (3.30) from the proof of Theo-

rem 3.4 with Remark 3.2 to get

‖ūα − ūd‖L1(A) ≤ C
(

α+ h2d0 + k2(1 + d+1 (ūα))
)κ

.

With this estimate, we now follow the proof of Theorem 3.3 from the entry point (3.27) onwards.

We obtain

‖p̄α − p̄d‖2L∞(I,L2(Ω)) + ‖ȳα − πP∗

k
ȳd‖2I

≤ C
((

h2d0 + k2d+1
)2

+
(
h2d0 + k2d+1

) (
α+ h2d0 + k2

(
1 + d+1

))κ
)

.

With Young’s inequality, the regularization error (2.20), property (2.21), and the decay estimate

(3.31), we finally get the claim. �

4. Numerics

We will now consider a test example in order to finally validate numerically the theoretical

results.

As we have previously said, we solve numerically the regularized problem (Pkh) for some

α > 0 as an approximation of the limit problem (P0). Thus, we have the influence of two errors:

The regularization error in dependence of the parameter α > 0 and the discretization error due

to space and time approximation. The second error depends on the fineness of the space and

time grid, respectively, thus on the parameters h and k.

We do not investigate the time discretization error for fixed positive h and α by taking k → 0,

since this can be found in [15]. The numerical behavior of the error if h → 0, again for fixed

α > 0 but now with fixed k instead of h is discussed in [12, section 3.1.2]. The regularization

error for fixed small discretization parameters k and h in dependence of the parameter κ from

the measure condition (2.16) if α → 0 can be found in [17] or [12, section 3.2].

Here, we only report on the coupling of regularization and discretization parameters as

proposed by Theorem 3.4 and Table 3.1.
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We make use of the fact that instead of the linear control operator B, given by (2.4), we

can also use an affine linear control operator

B̃ : U → L2(I,H−1(Ω)) , u 7→ g0 +Bu, (4.1)

where g0 is a fixed function. If we assume that g0 is an element of the space H1(I, L2(Ω))

with g0(0) ∈ H1
0 (Ω) and g0(T ) ∈ H1

0 (Ω), the preceding theory remains valid since g0 can be

interpreted as a modification of yd.

For the limit problem (P0), we consider a test example which is a bang-bang problem with

meas(Ac) = 0 and κ = 1 in Assumption 2.2.

With a space-time domain Ω× I := (0, 1)2 × (0, 0.5), we consider a located control function

ū and a constant a := 2, not to be confused with the lower bound a1 of the admissible set Uad

defined below. This constant a influences the number of switching points between the active

and inactive set. Furthermore, we define the functions

g1(x1, x2) := sin(πx1) sin(πx2) ,

wa(t, x1, x2) := cos

(
t

T
2πa

)

· g1(x1, x2) ,

and choose an optimal adjoint state

p̄ :=
−T

2πa
sin

(
t

T
2πa

)

g1 ,

which is nonzero almost everywhere, and since

−∂tp̄−∆p̄ = cos

(
t

T
2πa

)

g1 −
T

2πa
sin

(
t

T
2πa

)

2π2g1 = ȳ − yd ,

we get the function yd by taking ȳ as

ȳ(t, x1, x2) := wa(t, x1, x2) . (4.2)

From the relation (2.12) we conclude that the optimal control is given by

ū =

{

a1 if B∗p̄ > 0,

b1 if B∗p̄ < 0

Note that B∗p̄(t) = (g1, p̄(t))L2(Ω), the initial value of the optimal state ȳ is

y0(x1, x2) = ȳ(0, x1, x2) = g1(x1, x2) ,

and (g1, g1)L2(Ω) = 0.25. We obtain

g0 = g12π

(

− a

T
sin

(
t

T
2πa

)

+ π cos

(
t

T
2πa

))

−Bū , (4.3)

and finally define the bounds of the admissible set Uad as a1 := 0.2 and b1 := 0.4.

Since κ = 1 in this example, we conclude with Theorem 3.4, Corollary 3.4, and the second

line of Table 3.1 the estimate

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(A) + ‖p̄0 − p̄d‖L∞(I,L2(Ω)) + ‖ȳ0 − πP∗

k
ȳd‖I

≤ C(α+ h2 + k4/3).
(4.4)
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Table 4.1: Errors and h-EOC in the control (α = k
4/3 = h

2).

‖ū− ukh‖ ‖ū− ukh‖ EOC EOC

ℓ L1(I,R) L2(I,R) L1 L2

1 0.05208333 0.10206207 / /

2 0.05156250 0.10155048 0.01 0.01

3 0.01551730 0.05249039 1.73 0.95

4 0.00395214 0.02696386 1.97 0.96

5 0.00100074 0.01375946 1.98 0.97

6 0.00026290 0.00704586 1.93 0.97

Table 4.2: Errors and h-EOC in the state (α = k
4/3 = h

2).

‖ȳ − ykh‖ ‖ȳ − ykh‖ ‖ȳ − ykh‖ EOC EOC EOC

ℓ L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.04168338 0.14344433 0.77006182 / / /

2 0.02298795 0.05061771 0.24946457 0.86 1.50 1.63

3 0.00877452 0.01795226 0.08863801 1.39 1.50 1.49

4 0.00314952 0.00624197 0.02943581 1.48 1.52 1.59

5 0.00111871 0.00218973 0.00994956 1.49 1.51 1.56

6 0.00039580 0.00077075 0.00339060 1.50 1.51 1.55

Consequently, we set Nh = (2ℓ + 1)2, Nk = (23/2ℓ+1 + 1), and α = 2−2ℓ with ℓ = 1, 2, 3, 4, 5, 6,

to obtain second order convergence with respect to h in (4.4).

We solve (Pkh) numerically with the above data using a fixed-point iteration for equation

(3.11). Each fixed-point iteration is initialized with the starting value u
(0)
kh := a1 which is the

lower bound of the admissible set. As a stopping criterion for the fixed-point iteration, we

require for the discrete adjoint states belonging to the current and the last iterate that

‖B∗
(

p
(i)
kh − p

(i−1)
kh

)

‖L∞(Ω×I) < t0

where t0 := 10−5 is a prescribed threshold.

The results are given in Tables 4.1–4.4. We also refer to Fig. 4.1.

As one can see from the tables, the coupling shows the expected behavior for the error in

the optimal control, projected state, and adjoint state.

Note that for the state ȳ, we observe convergence of order 3/2, which means by the coupling

from above (k = h3/2) first order convergence in k. Thus, it is in accordance with our expecta-

tion since the state is discretized piecewise constant in time. This is depicted in Table 4.2.

A better and second order convergent approximation of the state is given by the projection

πP∗

k
ykh of the computed discrete state ykh, see Corollary 3.2 and for the corresponding numerical

results see Table 4.3. This better approximation of the state can be obtained without further

numerical effort: One only has to interpret the vector containing the values of yk on each interval

Im as a vector of linearly-in-time linked values on the gridpoints of the dual grid t∗1 < · · · < t∗M .

Fig. 4.1 illustrates the convergence of ukh to ū. Note that the intersection points between the

inactive set Ikh := {t ∈ I | a < ukh(t) < b} and the active set Akh := I\Ikh need not coincide

with the time grid points since we use variational discretization for the control.

Let us mention that the convergence of the fixed-point iteration is in general guaranteed only

for values of α not too small. This is an immediate consequence of Banach’s fixed-point theorem
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Table 4.3: Errors and h-EOC in the projected state (α = k
4/3 = h

2).

‖ȳ − πP∗

k
ykh‖ ‖ȳ − πP∗

k
ykh‖ ‖ȳ − πP∗

k
ykh‖ EOC EOC EOC

ℓ L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.03984472 0.12699052 0.67616861 / / /

2 0.01063414 0.02423705 0.15855276 1.91 2.39 2.09

3 0.00235558 0.00482756 0.02588151 2.17 2.33 2.61

4 0.00059757 0.00116777 0.00526572 1.98 2.05 2.30

5 0.00015345 0.00029551 0.00128779 1.96 1.98 2.03

6 0.00003968 0.00007581 0.00032323 1.95 1.96 1.99

Table 4.4: Errors and h-EOC in the adjoint state (α = k
4/3 = h

2).

‖p̄− pkh‖ ‖p̄− pkh‖ ‖p̄− pkh‖ EOC EOC EOC

ℓ L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.00175355 0.00559389 0.02497779 / / /

2 0.00052886 0.00120225 0.00578048 1.73 2.22 2.11

3 0.00012807 0.00026289 0.00128201 2.05 2.19 2.17

4 0.00003156 0.00006214 0.00028508 2.02 2.08 2.17

5 0.00000786 0.00001530 0.00006829 2.01 2.02 2.06

6 0.00000195 0.00000377 0.00001649 2.01 2.02 2.05
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(c) ℓ = 5

Fig. 4.1. Optimal control ū (solid) and computed counterpart ukh (dashed) over time after level ℓ

(α = k
4/3 = h

2).

in combination with (3.11). In the numerical examples we considered, no convergence problems

occurred, even for very small values of α. This might be due to the fact that we consider

controls which “live” in one space dimension only. For higher dimensions, the situation is more

delicate. There, the application of semismooth Newton methods has turned out to be fruitful,

see [21] for its numerical analysis in the case of variational discretization of elliptic optimal

control problems.
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