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A TIME-ACCURATE, ADAPTIVE DISCRETIZATION FOR

FLUID FLOW PROBLEMS

VICTOR DECARIA, WILLIAM LAYTON, AND HAIYUN ZHAO

Abstract. This report presents a low computational and cognitive complexity, stable, time
accurate and adaptive method for the Navier-Stokes equations. The improved method requires a
minimally intrusive modification to an existing program based on the fully implicit / backward
Euler time discretization, does not add to the computational complexity, and is conceptually

simple. The backward Euler approximation is simply post-processed with a two-step, linear time
filter. The time filter additionally removes the overdamping of Backward Euler while remaining
unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not
reduce to a standard / named time stepping method but is related to a known 2-parameter family

of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence
rates and the improved predictions of flow quantities such as drag and lift.

Key words. Navier-Stokes, backward Euler, time filter, time discretization, finite element

method.

1. Introduction

The backward Euler time discretization is often used for complex, viscous flows
due to its stability, rapid convergence to steady state solutions and simplicity to
implement. However, it has poor time transient flow accuracy, [17], and can fail
by overdamping a solution’s dynamic behavior. For ODEs, adding a time filter to
backward Euler, as in (1.3) below, yields two, embedded, A-stable approximations
of first and second order accuracy, [20]. This report develops this idea into an adap-
tive time-step and adaptive order method for time accurate fluid flow simulation
and gives an analysis of the resulting methods properties for constant time-steps.
For constant time-steps, the resulting Algorithm 1.1 below involves adding only
1 extra line to a backward Euler code. The added filter step increases accuracy
and adds negligible additional computational complexity, see Figure 1a and Figure
1b. Further, both time adaptivity and order adaptivity, presented in Section 2 and
tested in Section 6, are easily implemented in a constant time step backward Eu-
ler code with O(20) added lines. Thus, algorithms herein have two main features.
First, they can be implemented in a legacy code based on backward Euler without
modifying the legacy components. Second, both time step and method order can
easily be adapted due to the embedded structure of the method. The variable step,
variable order (VSVO) method is presented in Section 2 and tested in Section 6.2.

Even for constant time-steps and constant order, the method herein does not re-
duce to a standard / named method. Algorithm 1.1 with Option B is (for constant
order and time-step) equivalent to a member of the known, 2 parameter family of
second order, 2-step, A-stable one leg methods (OLMs), see Algorithm 3.2, Section
3. Stability and velocity convergence of the (constant time step) general second
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order, two-step, A-stable method for the Navier-Stokes equations was proven al-
ready in [15], see equation (3.20) p. 185, and has been elaborated thereafter, e.g.,
[23]. Our velocity stability and error analysis, while necessary for completeness,
parallels this previous work and is thus collected in Appendix A. On the other
hand, Algorithm 1.1 with Option A does not fit within a general theory even for
constant stepsize, and produces more accurate pressure approximations.

We begin by presenting the simplest, constant stepsize case to fix ideas. Consider
the time dependent incompressible Navier-Stokes (NS) equations:

(1)

ut + u · ∇u− ν∆u+∇p = f, and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω × [0, T ] → Rd is the
fluid velocity; p : Ω × (0, T ] → R is the fluid pressure. The body force f(x, t) is
known, and ν is the kinematic viscosity of the fluid.

Suppressing the spacial discretization, the method calculates an intermediate
velocity ûn+1 using the backward Euler / fully implicit method. Time filters (re-
quiring only two additional lines of code and not affecting the BE calculation) are
applied to produce un+1 and pn+1 follows:

Algorithm 1.1 (Constant △t BE plus time filter). With u∗ = ûn+1 (Implicit) or
u∗ = 2un − un−1 (Linearly-Implicit), Step 1: (Backward Euler)

(2)

ûn+1 − un

∆t
+ u∗ · ∇ûn+1 − ν∆ûn+1 +∇p̂n+1 = f(tn+1),

∇ · ûn+1 = 0,

Step 2: (Time Filter for velocity and pressure)

(3) un+1 = ûn+1 − 1

3
(ûn+1 − 2un + un−1)

Option A: (No pressure filter)

pn+1 = p̂n+1.

Option B:

pn+1 = p̂n+1 − 1

3
(p̂n+1 − 2pn + pn−1)

Algorithm 1.1A means Option A is used, and Algorithm 1.1B means Option B is
used.

Its implementation in a backward Euler code does not require additional function
evaluations or solves, only a minor increase in floating point operations. Figure 1a
presents a runtime comparison with and without the filter step. It is apparent that
the added computational complexity of Step 2 is negligible. However, adding the
time filter step has a profound impact on solution quality, see Figure 1b.

Herein, we give a velocity stability and error analysis for constant timestep in Ap-
pendix A. Since (eliminating the intermediate step) the constant time-step method
is equivalent to an A-stable, second order, two step method, its velocity analysis has
only minor deviations from the analysis in [15] and [23]. We also give an analysis
of the unfiltered pressure error, which does not have a parallel in [15] or [23]. The
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Figure 1. The time filter does not add to the computational com-
plexity (Figure 1a), yet increases the method to second order (Fig-
ure 1b).

predicted (optimal) convergence rates are confirmed in numerical tests in Section 6.
We prove the pressure approximation is stable and second order accurate provided
only the velocity is filtered. The predicted second order pressure convergence, with
or without filtering the pressure, is also confirmed in our tests, Figure 2.

The rest of the paper is organized as follow. In Section 2, we give the full, self-
adaptive VSVO algorithm for a general initial value problem. Section 3 introduces
some important mathematical notations and preliminaries necessary and analyze
the method for the Navier-Stokes equations. In Section 4, we prove unconditional,
nonlinear energy stability in Theorem 7. We analyze consistency error in Section
4.1. In Appendix A.2, we prove O(∆t2) convergence for velocity, Theorem 10. The
proof of the stability of the pressure is in Theorem 12 in Section 5.1. We prove
second order accuracy for pressure in Section 5.2. Numerical tests are given in
Section 6 to validate the theoretical predictions.

1.1. Related work. Time filters are primarily used to stabilize leapfrog time
discretizations of weather models; see [30], [3], [34]. In [20] it was shown that
the time filter used herein increases accuracy to second order, preserves A-stability,
anti-diffuses the backward Euler approximation and yields an error estimator useful
for time adaptivity. The analysis in [20] is an application of classical numerical
ODE theory and does not extend to the Navier-Stokes equations. For the constant
time step case, our analysis is based on eliminating the intermediate approximation
ûn+1 and reducing the method to an equivalent two step, OLM (a twin of a linear
multistep method). The velocity stability and convergence of the general A-stable
OLM was analyzed for the NSE (semi-implicit, constant time step and without
space discretization) in [15]. Thus, the constant time step, discrete velocity results
herein follow from these results. There is considerable previous work on analysis
of multistep time discretizations of various PDEs, e.g. Crouzeix and Raviart [8].
Baker, Dougalis, and Karakashian [4] gave a long-time error analysis of the BDF
methods for the NSE under a small data condition. (We stress that the method
herein is not a BDF method.) The analysis of the method in Girault and Raviart
[15] was extended to include spacial discretizations in [23]. The work in [23] also
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shows how to choose those parameters to improve accuracy in higher Reynolds
number flows - a significant contribution by itself. Other interesting extensions
include the work of Gevici [14], Emmrich [10], [11], Jiang [22], Ravindran [29] and
[25].

2. The Adaptive VSVO Method

Section 6.2 tests both the constant time step method and the method with
adaptive step and adaptive order. This section will present the algorithmic details
of adapting both the order and time step based on estimates of local truncation
errors based on established methods [18]. The constant time step Algorithm 1.1
involves adding one (Option A) or two (Option B) lines to a backward Euler FEM
code. The full self adaptive VSVO Algorithm 2.1 below adds O(20) lines. We first
give the method for the initial value problem

y ′(t) = f(t, y(t)), for t > 0 and y(0) = y0.

Denote the nth time step size by ∆tn. Let t
n+1 = tn+∆tn and yn an approximation

to y(tn). The choice of filtering weights depend on ωn
..= ∆tn/∆tn−1, Step 2 below.

TOL is the user supplied tolerance on the allowable error per step.

Algorithm 2.1 (Variable Stepsize, Variable Order 1 and 2 (VSVO-12)).
Step 1 : Backward Euler

yn+1
(1) − yn

∆tn
= f(tn+1, y

n+1
(1) )

Step 2 : Time Filter

yn+1
(2) = yn+1

(1) − ωn

2ωn + 1

(
yn+1
(1) − (1 + ωn)y

n + ωny
n−1
)

Step 3 : Estimate error in yn+1
(1) and yn+1

(2) .

EST1 = yn+1
(2) − yn+1

(1)

EST2 =
ωn−1ωn(1 + ωn)

1 + 2ωn + ωn−1 (1 + 4ωn + 3ω2
n)

(
yn+1
(2)

− (1 + ωn)(1 + ωn−1(1 + ωn))

1 + ωn−1
yn + ωn(1 + ωn−1(1 + ωn))y

n−1

−
ω2
n−1ωn(1 + ωn)

1 + ωn−1
yn−2

)
.

Step 4 : Check if tolerance is satisfied.
If ∥EST1∥ < TOL or ∥EST2∥ < TOL, at least one approximation is acceptable.

Go to Step 5a. Otherwise, the step is rejected. Go to Step 5b.
Step 5a : At least one approximation is accepted. Pick an order and
stepsize to proceed.

If both approximations are acceptable, set

∆t(1) = 0.9∆tn

(
TOL

∥EST1∥

) 1
2

, ∆t(2) = 0.9∆tn

(
TOL

∥EST2∥

) 1
3

.

Set

i = argmax
i∈{1,2}

∆t(i), ∆tn+1 = ∆t(i), tn+2 = tn+1 +∆tn+1, yn+1 = yn+1
(i) .
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If only y(1) (resp. y(2)) satisfies TOL, set ∆tn+1 = ∆t(1) (resp. ∆t(2)), and
yn+1 = yn+1

(1) (resp. yn+1
(2) ). Proceed to Step 1 to calculate yn+2.

Step 5b : Neither approximations satisfy TOL.
Set

∆t(1) = 0.7∆tn

(
TOL

∥EST1∥

) 1
2

, ∆t(2) = 0.7∆tn

(
TOL

∥EST2∥

) 1
3

.

Set

i = argmax
i∈{1,2}

∆t(i), ∆tn = ∆t(i), tn+1 = tn +∆tn

Return to Step 1 to try again.

For clarity, we have not mentioned several standard features such as setting a
maximum and minimum timestep, the maximum or minimum stepsize ratio, etc.

The implementation above computes an estimation of the local errors in Step
3. EST1 provides an estimation for the local error of the first order approximation

y
(1)
n+1 since y

(2)
n+1 is a second order approximation. For a justification of EST2, see

Appendix B.
Standard formulas, see e.g. [19], are used to pick the next stepsize in Steps 5a

and 5b. Based on the previous ∆t and the current error estimator, the formula
estimates the largest next stepsize that can be taken by the method such that the
tolerance will still be satisfied. Out of the approximations that satisfy the tolerance,
the approximation which yielded the largest estimated ∆t is chosen to advance the
solution.

The numbers 0.9 in Step 5a and 0.7 in Step 5b are commonly used safety factors
to make the next approximation more likely to be accepted since the exact optimal
∆t is unknowable.

One more line is needed for linearly implicit methods. For linearly
implicit methods the point of linearization must also have O(∆t2) accuracy. For
example, with u∗ = un

(4)
un+1 − un

∆tn
+u∗ ·∇un+1+

1

2
(∇·u∗)un+1+∇pn+1−ν∆un+1 = fn+1 & ∇·un+1 = 0

is a common first order linearly implicit method. The required modification in the
BE step to ensure second order accuracy after the filter is to shift the point of
linearization from u∗ = un to

u∗ =

(
1 +

∆tn
∆tn−1

)
un − ∆tn

∆tn−1
un−1 = (1 + ωn)u

n − ωnu
n−1.

Other simplifications. The algorithm can be simplified if only the time-step
is adapted (not order adaptive). It can be further simplified using extrapolation
where the second order approximation is adapted based on EST1 (pessimistic for
the second order approximation).

3. Notations and preliminaries

We introduce some notations and inequalities which will be used in later sections.
(·, ·), ∥ ·∥ denotes the L2(Ω) inner product and norm. C will denote a generic, finite
constant depending possibly on T , Ω and f . The velocity space X and pressure
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space Q are defined

X := H1
0 (Ω)

d = {v ∈ H1(Ω)d : v|∂Ω = 0},

Q := L2
0(Ω)

d = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

The divergence free space V is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q)}.

For measurable v : [0, T ] → X, define for, respectively, 1 ≤ p < ∞ and p = ∞

||v||Lp(0,T ;X) =

(∫ T

0

||v(t)||pXdt

)1/p

and ||v||L∞(0,T ;X) = ess sup
0≤t≤T

||v(t)||X ,

|||v|||p,k =

(∫ T

0

∥v(t)∥p
Hk(Ω)

)1/p

and |||v|||∞,k = ess sup
0≤t≤T

∥v(t)∥Hk(Ω).

We define the skew-symmetrized nonlinear form:

B(u, v) := u · ∇v +
1

2
(∇ · u)v, ∀ u, v, w ∈ X,

b(u, v, w) := (B(u, v), w).

Lemma 1. There exists C > 0 such that

b(u, v, w) ≤ C∥∇u∥∥∇v∥∥∇w∥, ∀ u, v, w ∈ X

b(u, v, w) ≤ C∥u∥∥v∥2∥∇w∥ ∀u,w ∈ X, v ∈ X ∩H2(Ω).

Proof. See Lemma 2.1 on p. 12 of [32]. �

We use the following discrete Gronwall inequality found in [21, Lemma 5.1].

Lemma 2 (Discrete Gronwall Inequality). Let ∆t, H, an, bn, cn, dn (for integers
n ≥ 0) be non-negative numbers such that

(5) aN +∆t
N∑

n=0

bn ≤ ∆t
N∑

n=0

dnan +∆t
N∑

n=0

cn +H, ∀ N ≥ 0

Suppose ∆tdn < 1 ∀n, then,

(6) aN +∆t

N∑
n=0

bn ≤ exp
(
∆t

N∑
n=0

1

1−∆tdn

)(
∆t

N∑
n=0

cn +H
)
, ∀ N ≥ 0

Multiplying (1) by test functions (v, q) ∈ (X,Q) and integrating by parts gives

(7) (ut, v)+ b(u, u, v)+ν(∇u,∇v)− (p,∇·v)+(∇·u, q) = (f, v), (∇·u, q) = 0.

To discretize the above system in space, we choose conforming finite element spaces
for velocity Xh ⊂ X and pressure Qh ⊂ Q satisfying the discrete inf-sup condition
and the following approximation properties:

(8) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
∥qh∥∥∇vh∥

≥ β > 0.

We further assume that for each u ∈ X ∩Hk+1(Ω)d, and p ∈ Q∩Hs+1(Ω) there
exists vh ∈ Xh and qh ∈ Qh such that
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(9)

∥u− vh∥ ≤ Chk+1∥u∥k+1,

∥u− vh∥1 ≤ Chk∥u∥k+1,

∥p− qh∥ ≤ Chs+1∥p∥s+1.

h denotes the maximum triangle diameter. Examples of finite element spaces sat-
isfying these conditions are the MINI [2] and Taylor-Hood [33] elements. The
discretely divergence free subspace Vh ∈ Xh is defined

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

The following Lemma establishes that if the discrete inf-sup condition (8) and (9)
hold, then Vh also has good approximation properties. It is shown in the proof of
Theorem 1.1 in Chapter II of [16].

Lemma 3. Suppose the pair (Xh, Qh) satisfies (8). Then for all u ∈ V ,

inf
vh∈Vh

∥∇ (u− vh) ∥ ≤ inf
vh∈Xh

C(β)∥∇ (u− vh) ∥.

The dual norms of Xh and Vh are

∥w∥X∗
h
:= sup

vh∈Xh

(w, vh)

∥∇vh∥
, ∥w∥V ∗

h
:= sup

vh∈Vh

(w, vh)

∥∇vh∥
.

The following Lemma from Galvin [13, p. 243] establishes the equivalence of these
norms on Vh.

Lemma 4. Suppose the discrete inf-sup condition holds, let w ∈ Vh, then there
exists C > 0, independent of h, such that

C∥w∥X∗
h
≤ ∥w∥V ∗

h
≤ ∥w∥X∗

h
.

Lemma 4 is used to derive pressure error estimates with a technique shown in
Fiordilino [12]. We will use the following, easily proven, algebraic identity.

Lemma 5. The following identity holds.(
3

2
a− 2b+

1

2
c

)(
3

2
a− b+

1

2
c

)
=(10)(

a2

4
+

(2a− b)2

4
+

(a− b)2

4

)
−
(
b2

4
+

(2b− c)2

4
+

(b− c)2

4

)
+

3

4
(a− 2b+ c)2.

With the notation in place, we state the fully discrete method.

Algorithm 3.1 (Fully Discrete Method). Given un−1
h , un

h ∈ Xh (and if necessary,

given pn−1
h , pnh ∈ Qh), find (ûn+1

h , p̂n+1) ∈ (Xh, Qh) satisfying(
ûn+1
h − un

h

∆tn
, vh

)
+ b(ûn+1

h , ûn+1
h , vh) + ν(∇ûn+1

h ,∇vh)

−(p̂n+1
h ,∇ · vh) = (f(tn+1), vh),(11)

(∇ · ûn+1, qh) = 0.

for all (vh, qh) ∈ (Xh, Qh). Then compute

un+1
h = ûn+1

h − ωn

2ωn + 1

(
ûn+1
h − (1 + ωn)u

n
h + ωnu

n−1
h )

)
.
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Option A: (No pressure filter)

pn+1
h = p̂n+1

h .

Option B:

pn+1
h = p̂n+1

h − ωn

2ωn + 1

(
p̂n+1
h − (1 + ωn)p

n
h + ωnp

n−1
h )

)
.

The constant time-step stability and error analysis works with the following
equivalent formulation of the method. We stress that what follows is not the pre-
ferred implementation since it only yields one approximation, while Algorithm 3.1
gives the embedded approximations ûn+1

h and un+1
h and an error estimator.

Algorithm 3.2 (Constant time-step, equivalent method). Assume the time-step
is constant. Given (un

h, p
n
h) and (un−1

h , pn−1
h ), find (un+1

h , pn+1
h ) such that for all

(vh, qh) ∈ (Xh, Qh),
Option A

(
3
2u

n+1
h − 2un

h + 1
2u

n−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − un

h +
1

2
un−1
h ,

3

2
un+1
h − un

h +
1

2
un−1
h , vh

)(12)

+ν

(
∇
(
3

2
un+1
h − un

h +
1

2
un−1
h

)
,∇vh

)
−
(
pn+1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(
3

2
un+1
h − un

h +
1

2
un−1
h

)
, qh

)
= 0,

or Option B

(
3
2u

n+1
h − 2un

h + 1
2u

n−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − un

h +
1

2
un−1
h ,

3

2
un+1
h − un

h +
1

2
un−1
h , vh

)(13)

+ν

(
∇
(
3

2
un+1
h − un

h +
1

2
un−1
h

)
,∇vh

)
−
(
3

2
pn+1
h − pn

h +
1

2
pn−1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(
3

2
un+1
h − un

h +
1

2
un−1
h

)
, qh

)
= 0.

The pressure is highlighted in bold, and is the only difference between the two
above equations. The time difference term of the above equivalent method is that
of BDF2 but the remainder is different. This is not the standard BDF2 method.

Proposition 6. Algorithm 3.1A (respectively B) is equivalent Algorithm 3.2A (re-
spectively B).

Proof. We will just prove the case for Option A since the other case is similar.
Let (un+1

h , pn+1
h ) be the solution to Algorithm 3.1. By linearity of the time filter,

(un+1
h , pn+1

h ) ∈ (Xh, Qh). We can write ûn+1
h in terms of un+1

h ,un
h, and un−1

h as

ûn+1 = 3
2u

n+1 − un + 1
2u

n−1. Substitute this into (11). Then (un+1
h , pn+1

h ) satisfies
equation (12).

These steps can be reversed to show the converse. �
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We next define the discrete kinetic energy, viscous and numerical dissipation
terms that arise naturally from a G-stability analysis of Algorithm 3.2, regardless
of whether Option A or B is used. The (constant time-step) discrete kinetic energy,
discrete viscous energy dissipation rate and the numerical energy dissipation rate
of Algorithm 3.2 are

discrete energy: En = 1
4

[
∥un∥2 + ∥2un − un−1∥2 + ∥un − un−1∥2

]
,

viscous dissipation: Dn+1 = ∆tν||∇
(
3
2u

n+1 − un + 1
2u

n−1
)
||2,

numerical dissipation: Zn+1 = 3
4∥u

n+1 − 2un + un−1∥2.

Remark 1. As ∆t → 0, En is consistent with the kinetic energy 1
2∥u∥

2 and

Dn is consistent with the instantaneous viscous dissipation ν∥∇u∥2. The numerical
dissipation Zn+1 ≈ 3

4∆t4∥utt(t
n+1)∥2, is asymptotically smaller than the numerical

dissipation of backward Euler, 1
2∆t2∥ut(t

n+1)∥2.
The method’s kinetic energy differs from that of BDF2, which is (e.g. [26])

En
BDF2 =

1

4

[
∥un∥2 + ∥2un − un−1∥2

]
due to the term ∥un − un−1∥2 in En which is a dispersive penalization of a discrete
acceleration.

Define the interpolation and difference operators as follows

Definition 1. The interpolation operator I and difference operator D are

I[wn+1] =
3

2
wn+1 − wn +

1

2
wn−1 and D[wn+1] =

3

2
wn+1 − 2wn +

1

2
wn−1.

Formally, I[w(tn+1)] = w(tn+1) +O(∆t2), and D[w(tn+1)]
∆t = wt(t

n+1) +O(∆t2).
This will be made more precise in the consistency error analysis in Section 4.1.

4. Stability and Error Analysis

We prove stability and error analysis of the constant time-step method. The
velocity proofs parallel ones in [15] and [23] and are collected in Appendix A. The
pressure analysis is presented in Section 5.

Theorem 7. Assume the stepsize is constant. The following equality holds.

EN +
N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 = ∆t
N−1∑
n=1

(f, I[un+1
h ]) + E1.

Proof. In Algorithm 3.2, set vh = ∆tI[un+1
h ] and qh = pn+1

h for Option A, or

qh = I[pn+1
h ] for Option B, and add.

(14) (D[un+1
h ], I[un+1

h ]) +Dn+1 = ∆t(f, I[un+1
h ]).

By Lemma 5 and Definition 1,

(D[un+1
h ], I[un+1

h ]) = En+1 − En + Zn+1.

Thus, (14) can be written

En+1 − En +Dn+1 + Zn+1 = ∆t(f(tn+1), I[un+1
h ]).

Summing over n from 1 to N − 1 yields the result. �
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This result is for the time stepping method applied to the Navier-Stokes equa-
tions. More generally, the constant time-step method of Algorithm 1.1 is G-Stable,
a fact that follows from the equivalence of A and G-Stability [9]. We calculate the
G matrix explicitly below.

Corollary 8. Assume the time-step is constant. Backward Euler followed by the
time filter is G-Stable with G matrix

G =

[
3
2 −3

4
− 3

4
1
2

]
.

Proof. Simply check that

[un, un−1]G

[
un

un−1

]
=

1

4

[
|un|2 + |2un − un−1|2 + |un − un−1|2

]
.

�

4.1. Consistency error. By manipulating (7), we derive the consistency error.
The true solution to (7) satisfies

(15)

(
D[u(tn+1)]

∆t
, vh

)
+ b

(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

If Option A is used (pressure is unfiltered),

τn+1(u, p; vh) = τn+1
A (u, p; vh) ..=

(
D[u(tn+1)]

∆t
− ut(t

n+1), vh

)
(16)

+b
(
I[u(tn+1)], I[u(tn+1)], vh

)
− b(u(tn+1), u(tn+1), vh)

+ν
(
∇(I[u(tn+1)]− u(tn+1)),∇vh

)
.

If Option B is used (pressure is filtered),

τn+1(u, p; vh) = τn+1
A (u, p; vh)−

(
I[p(tn+1)]− p(tn+1),∇ · vh

)
.(17)

Thus, filtering the pressure introduces a term that, while still second order, adds
to the consistency error. We believe this is why Option A performs better in the
numerical tests, Figure 2. Furthermore, Option B requires assuming additional
regularity for convergence, see Theorem 10.

The terms in the consistency error are bounded in the following lemma.

Lemma 9 (Consistency). For u, p sufficiently smooth, we have∥∥∥∥D[u(tn+1)]

∆t
− ut(t

n+1)

∥∥∥∥2 ≤ 6

5
∆t3

∫ tn+1

tn−1

∥uttt∥2dt,

(18)

∥∥∥∥I[u(tn+1)]− u(tn+1)

∥∥∥∥2 ≤ 4

3
∆t3

∫ tn+1

tn−1

∥utt∥2dt,

(19)

∥∥∥∥I[p(tn+1)]− p(tn+1)

∥∥∥∥2 ≤ 4

3
∆t3

∫ tn+1

tn−1

∥ptt∥2dt.

Proof. See Appendix A. �
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4.2. Error estimates for the velocity. Next, we analyze the convergence of
Algorithm 3.2 and give an error estimate for the velocity. Let tn = n∆t. Denote
the errors enu = u(tn)− un

h and enp = p(tn)− pnh.

Theorem 10. Assume that the true solution (u, p) satisfies the following regularity
(20)
u ∈ L∞(0, T ; (Hk+1Ω))d), ut ∈ L2(0, T ; (Hk+1Ω))d), utt ∈ L2(0, T ; (H1Ω))d),

uttt ∈ L2(0, T ; (L2Ω))d), p ∈ L2(0, T ; (Hs+1(Ω))d).

Additionally for Option B, assume ptt ∈ L2(0, T ; (L2(Ω))d. For (un+1
h , pn+1

h ) satis-
fying (12), and for ∆t sufficiently small, we have the following estimate

(21)

∥eNu ∥2 + ∥2eNu − eN−1
u ∥2 + ∥eNu − eN−1

u ∥2 +
N−1∑
n=1

3∥en+1
u − 2enu + en−1

u ∥2

+ ν∆t

N−1∑
n=1

∥∇I[en+1
u ]∥2 ≤ C

(
h2k + h2s+2 +∆t4

)
.

Proof. See Appendix A. �

5. Pressure Stability and Convergence

5.1. Stability of Pressure. We introduce the following discrete norms

(22) ∥|ω∥|∞,k := max
0≤n≤T/∆t

∥ωn∥k, ∥|ω∥|2,k :=

T/∆t−1∑
n=0

∆t∥ωn∥2k

1/2

.

In this section, we prove that the pressure approximation is stable in l1(0, T ;L2(Ω)).
We first give a corollary of Theorem 7 asserting the stability of the velocity approx-
imation.

Corollary 11. Suppose f ∈ L2(0, T ;H−1(Ω)d), then the velocity approximation
satisfies

EN +
1

2

N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 ≤ 1

2ν
∥|f∥|22,−1 + E1.

Proof. Consider Theorem 7. Applying the Cauchy-Schwarz yields the inequality.
�

We now prove the stability of the filtered pressure.

Theorem 12. Suppose Corollary 11 holds, then the pressure approximation satis-
fies

(23)

β∆t

N−1∑
n=1

∥pn+1
h ∥ ≤ C for Option A,

β∆t

N−1∑
n=1

∥I[pn+1
h ]∥ ≤ C for Option B.
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Proof. We prove it for Option A, as the other case is similar. Isolating the discrete
time derivative in (12), and restricting vh to Vh yields

(24)

(
D[un+1

h ]

∆t
, vh

)
= −b

(
I[un+1

h ], I[un+1
h ], vh

)
− ν

(
∇I[un+1

h ],∇vh
)
+
(
fn+1, vh

)
∀vh ∈ Vh.

The terms on the right hand side of (24) can be bounded as follows,

(25)

b
(
I[un+1

h ], I[un+1
h ], vh

)
≤ C∥∇I[un+1

h ]∥∥∇I[un+1
h ]∥∥∇vh∥,

− ν
(
∇I[un+1

h ],∇vh
)
≤ ν∥∇I[un+1

h ]∥∥∇vh∥,(
fn+1, vh

)
≤ ∥fn+1∥−1∥∇vh∥.

In equation (24), we can use the above estimates in (25), divide both sides by
∥∇vh∥, and take the supremum over vh ∈ Vh. This gives

(26)

∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
V ∗
h

≤ (C∥∇I[un+1
h ]∥+ ν)∥∇I[un+1

h ]∥+ ∥fn+1∥−1.

Lemma 4 implies

(27)

∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
X∗

h

≤ C
[
(∥∇I[un+1

h ]∥+ 1)∥∇I[un+1
h ]∥+ ∥fn+1∥−1

]
.

Now consider Algorithm 3.2 again with vh ∈ Xh. Isolating the pressure term in
(12) and using the estimates from (25) yields

(
pn+1
h ,∇ · vh

)
≤
(
D[un+1

h ]

∆t
, vh

)
(28)

+C(∥∇I[un+1
h ]∥+ 1)∥∇I[un+1

h ]∥∥∇vh∥+ ∥fn+1∥−1∥∇vh∥.

Divide both sides by ∥∇vh∥, take supremum over vh ∈ Xh and use the discrete
inf-sup condition and the results in (28). Then,

(29) β∥pn+1
h ∥ ≤ C

[
(∥∇I[un+1

h ]∥+ 1)∥∇I[un+1
h ]∥+ ∥fn+1∥−1

]
.

We then multiply by ∆t, sum from n = 1 to n = N −1, and apply Cauchy-Schwarz
on the right hand side,

(30) β∆t
N−1∑
n=1

∥pn+1
h ∥ ≤ C∆t

[
(∥|∇I[uh]∥|2,0 + 1)∥|∇I[uh]∥|2,0 + ∥f∥2,−1

]
.

Then using the result from velocity approximation, we get,

(31) β∆t
N−1∑
n=1

∥pn+1
h ∥ ≤ C

[
(∥|f∥|2,−1 + 1)∥|f∥|2,−1 + (E1 + 1)E1

]
.

�
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5.2. Error estimates for the pressure. We now prove convergence of the pres-
sure approximation in l1(0, T ;L2(Ω)). Denote the pressure error as enp = p(tn)−pnh.

Theorem 13. Let u, p satisfy the equation (21). Let the assumption of regularity
in Theorem 10 be satisfied. Then there exists a constant C > 0 such that

(32)

∆tβ
N−1∑
n=1

∥en+1
p ∥ ≤ C

(
hk + hs+1 +∆t2

)
for Option A,

∆tβ
N−1∑
n=1

∥I[en+1
p ]∥ ≤ C

(
hk + hs+1 +∆t2

)
for Option B.

Proof. Again, we only prove this for Option A since the other case requires only
slight modification. Using the equations (A.4) and (A.5) yields

(33)

(
D[ϕn+1

h ]

∆t
, vh

)
= −

(
D[ηn+1]

∆t
, vh

)
− b

(
I[en+1

u ], I[u(tn+1)], vh
)

− b
(
I[un+1

h ], I[en+1
u ], vh

)
− ν

(
∇I[en+1

u ],∇vh
)

+
(
en+1
p ,∇ · vh

)
+ τn+1(u, p; vh) ∀vh ∈ Vh.

We bound the six individual terms on the right hand side of (33), term by term as
follows:

(34)

(
D[ηn+1]

∆t
, vh

)
≤ C∆t−

1
2 ∥ηt∥L2(tn−1,tn+1;L2(Ω))∥∇vh∥,

(35) − b
(
I[en+1

u ], I[u(tn+1)], vh
)
≤ C∥∇I[en+1

u ]∥∥∇I[u(tn+1)]∥∥∇vh∥,

(36) − b
(
I[un+1

h ], I[en+1
u ], vh

)
≤ C∥∇(I[un+1

h ])∥∥∇I[en+1
u ]∥∥∇vh∥,

(37) − ν
(
∇I[en+1

u ],∇vh
)
≤ ν∥∇I[en+1

u ]∥∥∇vh∥,

(38)
(
p(tn+1)− λn+1

h ,∇ · vh
)
≤ C∥p(tn+1)− λn+1

h ∥∥∇vh∥,

(39)
τn+1(u, p; vh) ≤ C∆t

3
2

(
∥uttt∥L2(tn−1,tn+1;L2(Ω)) + ∥∇utt∥L2(tn−1,tn+1;L2(Ω))

+
(
∥∇u(tn+1)∥2 + ∥∇I[u(tn+1)]∥

)
∥∇utt∥2L2(tn−1,tn+1;L2(Ω))

)
∥∇vh∥.

Considering equation (33) and Lemma 4 , using equations (34)-(39), dividing both
sides by ∥∇vh∥ and taking a supremum over Vh gives
(40)∥∥∥∥D[ϕn+1

h ]

∆t

∥∥∥∥
X∗

h

≤ C
[
∆t−

1
2 ∥ηt∥L2(tn,tn+1;L2(Ω))∥

+ ∥∇I[en+1
u ]∥(∥∇I[u(tn+1)]∥+ ∥∇(I[un+1

h ])∥+ 1)

+ ∥p(tn+1)− λn+1
h ∥+∆t

3
2

(
∥uttt∥L2(tn−1,tn+1;L2(Ω)) + ∥∇utt∥L2(tn−1,tn+1;L2(Ω))

+ ∥∇u∥2L4(tn−1,tn+1;L2(Ω)) + ∥∇utt∥2L4(tn−1,tn+1;L2(Ω))

)]
.

Reconsidering (33), we separate the pressure error term en+1
p = (p(tn+1)−λn+1

h )−
(pn+1

h − λn+1
h ) and rearrange, which yields for all vh ∈ Xh
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(
pn+1
h − λn+1

h ,∇ · vh
)
= −

(
D[ηn+1]

∆t
, vh

)
−
(
D[ϕn+1]

∆t
, vh

)
−b(I[en+1

u ], I[u(tn+1)], vh)− b(I[un+1
h ], I[en+1

u ], vh)− ν
(
∇I[en+1

u ],∇vh
)

+
(
p(tn+1)− λn+1

h ,∇ · vh
)
+ τn+1(u, p; vh).

Consider the estimates in (34)-(40). Divide by ∥∇vh∥, take the supremum over
vh ∈ Xh and use the discrete inf-sup condition to obtain,
(41)

β∥pn+1
h − λn+1

h ∥ ≤ C
[
∆t−

1
2 ∥ηt∥L2(tn,tn+1;L2(Ω))

+ ∥∇I[en+1
u ]∥

(
∥∇I[u(tn+1)]∥+ ∥∇(I[un+1

h ])∥+ 1
)

+ ∥p(tn+1)− λn+1
h ∥+∆t

3
2

(
∥uttt∥L2(tn−1,tn+1;L2(Ω)) + ∥∇utt∥L2(tn−1,tn+1;L2(Ω))

+ ∥∇u∥2L4(tn−1,tn+1;L2(Ω)) + ∥∇utt∥2L4(tn−1,tn+1;L2(Ω))

)]
.

We multiply by ∆t, sum from n = 1 to n = N − 1 and apply triangle inequality.
This yields

(42)

β∆t
N−1∑
n=1

∥en+1
p ∥ ≤ C

[
∆t−

1
2 ∥ηt∥L2(0,T ;L2(Ω))

+ ∥|p− λh∥|2,0 + ∥|∇I[en+1
u ]∥|2,0

+∆t
5
2

(
∥uttt∥2,0 + ∥∇utt∥2,0 + ∥|∇u∥|24,0 + ∥∇utt∥24,0

)]
.

Results from the equations (A.21) and (A.24) give the bounds for the first two
terms. Using error estimates of the velocity on the third term and taking infimum
over Xh and Qh yield the result. �

6. Numerical tests

We verify second order convergence for the new method through an exact solution
in Section 6.1. Visualizations of the flow and benchmark quantities gives additional
support to the increased accuracy of the new method in Section 6.3. The tests used
P2/P1 and P3/P2 elements. All computations were performed with FEniCS [1].

6.1. Taylor-Green vortex . We apply the backward Euler and the backward
Euler plus filter for the 2D Taylor-Green vortex. This test problem is historically
used to assess accuracy and convergence rates in CFD [7]. The exact solution is
given by

u = e−2νt(cosx sin y,− sinx cos y) and p = −1

4
e−4νt(cos 2x+ cos 2y).

To test time accuracy, we solve using P3/P2 elements on a uniform mesh of 250×250
squares divided into 2 triangle per square. We take a series of time steps for which
the total error is expected to be dominated by the temporal error. Since the true
solution decays exponentially, we tabulate and display relative errors. Figure 2
displays the relative errors for backward Euler, backward Euler plus filtering only
the velocity (Algorithm 1.1A), and backward Euler plus filtering both the velocity
and pressure (Algorithm 1.1B). Filtering the pressure does not affect the velocity
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Figure 2. Convergence rates for the filtered quantities are second
order as predicted. Filtering only the velocity produces the best
pressure.

solution, so the velocity error plot only shows two lines. The velocity error is
O(∆t2), as predicted, and significantly smaller than the backward Euler error.
Thus, adding the filter step (1.3) reduces the velocity error substantially, Figure 2,
at negligible cost, Figure 1b. The pressure error is O(∆t2) when either both u and
p are filtered, or only u is filtered, which is consistent with our theoretical analysis.
Filtering only u has smaller pressure error since the pressure filter introduces an
extra consistency error term, see (17).

6.2. Adaptive Test. We test the time/order adaptive algorithm on a problem
that showcases the superiority of the VSVO method over the constant stepsize,
constant order method.

The Taylor-Green problem can be modified by replacing F with any differentiable
function of t. With velocity and pressure defined as before, the required body force
is

f(x, y, t) = (2νF (t) + F ′(t))⟨cosx sin y,− cos y sinx⟩.
For F (t), we construct a sharp transition function between 0 and 1. First, let

g(t) =

{
0 if t ≤, 0

exp
(
− 1

(10t)10

)
if t > 0.

This is a differentiable function, and g(5) ≡ 1 in double precision. Therefore, a
differentiable (up to machine precision) function can be constructed with shifts
and reflections of this function. This creates sections of flatness, and sections that
rapidly change which require adaptivity to resolve efficiently. See Figure 3 for the
evolution of ∥u∥ with time. All tests were initialized at rest spaced at a constant
interval of ∆t = 0.1, 100 nodes per side of the square using P2/P1 elements, and
with final time of 45.

Figure 3 compares two numerical solutions. One is from Algorithm 1.1 (second
order - nonadaptive), and the other is from Algorithm 2.1 (VSVO-12). With TOL =
10−3, the VSVO-12 method takes 342 steps, which comprises 254 accepted steps,
and 88 rejected steps. The constant stepsize method which took 535 steps does not
accurately capture the energetic jumps.
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Figure 4 shows the relative l2L2 velocity errors versus steps taken of VSVO-12
for seven different TOLs, starting at 10−1, and dividing by ten down to 10−7. This
is compared with nonadaptive method (which has no rejected steps) sampled at
several stepsizes. Both methods show second order convergence, but for smaller
tolerances, VSVO-12 performs about 103 better than the nonadaptive method for
the same amount of work.

0 5 10 15 20 25 30 35 40 45
1

2

Or
de

r

VSVO versus Constant Stepsize Constant Order

0 5 10 15 20 25 30 35 40 45
t

0

2

4

6

8

10

||u
||

VSVO-12, TOL= 10−3, 342 steps
second order - nonadaptive, 535 steps
Exact ||u||

Figure 3. The nonadaptive second order method results in large
overshoots and undershoots while requiring more work than the
adaptive method.

6.3. Flow around a cylinder. We now use the benchmark problem of flow
around a cylinder, originally proposed in [31], to test the improvement obtained
using filters on flow quantities (drag, lift, and pressure drop) using values obtained
via a DNS in [24] as a reference. This problem has also been used as a benchmark
in [28],[27],[5],[6] and others. Let ν = 10−3, f ≡ 0, Tfinal = 8, and

Ω = {(x, y) | 0 < x < 2.2, 0 < y < 0.41 and (x− 0.2)2 + (y − 0.2)2 > 0.052},

i.e., a channel with a cylindrical cutout. A parabolic velocity of u = 0.41−2 sin(πt/8)
×(6y(0.41− y), 0) is prescribed at the left and right boundaries. We used a spatial
discretization with 479026 degrees of freedom with 1000 vertices on the boundary
of the cylinder. The mesh used P2/P1 elements, and was obtained by adaptive
refinement from solving the steady solution with u = 0.41−2(6y(0.41 − y), 0) as
inflow and outflow boundary conditions.
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Figure 4. The VSVO-12 method performs three orders of mag-
nitude better for the same amount of work compared to the non-
adaptive 2nd order method for the test problem in Section 6.2.
Each circle represents a different tolerance from TOL = 10−1 to
10−7.

(a) Backward Euler (b) Backward Euler Plus Filter

Figure 5. Flow snapshots at t = 6 with ∆t = 0.04 (top), and
∆t halving until ∆t = 0.0025 (bottom). Backward Euler (left)
destroys energy and suppresses oscillations, meaning that it can
predict nearly steady state solutions when a time dependent one
exists. The time filter (right) corrects this.

The correct behavior for this problem is that vortices shed off the cylinder as the
inlet and outlet velocities increase. Figure 5 shows snapshots of the flow at t = 6 for
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five successively halved ∆t’s. The Backward Euler approximation shows no vortex
shedding for ∆t = 0.04, 0.02, and 0.01. The filtered method of Algorithm 1.1 shows
the qualitatively correct behavior from ∆t = 0.02 on. Clearly, higher order and less
dissipative methods are necessary to see dynamics for modestly large ∆t.

It was demonstrated in [24] that the backward Euler time discretization greatly
under predicts lift except for very small step sizes. Figure 6 demonstrates that
the time filter in Algorithm 1.1 corrects both the amplitude and phase error in the
backward Euler approximation. Other quantities that were compared to reference
values were the maximum drag cd,max, the time of max drag t(cd,max), time of
maximum lift t(cl,max), and pressure drop across the cylinder at t = 8 are shown in
Table 1.

The choice of whether or not to filter the pressure does not affect the velocity
solution, the snapshots shown Figure 5 are the same for both choices. Table 1 shows
that filtering u greatly improves the calculated flow quantities whether or not p is
filtered.
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Figure 6. Lift of the Backward Euler solution and the filtered
solution for ∆t = 0.0025. The filtered solution correctly predicts
both the time and magnitude of the maximum lift.

7. Conclusion

Accurate and stable time discretization is important for obtaining correct flow
predictions. The backward Euler time discretization is a stable but inaccurate
method. We have shown that for minimum extra programming effort, computation-
al complexity, and storage, second order accuracy and unconditional stability can
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Table 1. Lift, drag, and pressure drop for cylinder problem.

Backward Euler
∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)
0.04 3.92 2.95112558 0.88 0.00113655 -0.12675521
0.02 3.94 2.95064522 0.92 0.00117592 -0.12647232
0.01 3.93 2.95041574 7.17 0.02489640 -0.12433915
0.005 3.93 2.95031983 6.28 0.17588270 -0.10051423
0.0025 3.9325 2.95038901 6.215 0.30323034 -0.10699361

Backward Euler Plus Filter

0.04 3.92 2.95021463 7.56 0.00438111 -0.12628328
0.02 3.94 2.95026781 6.14 0.20559211 -0.11146505
0.01 3.93 2.95060684 5.81 0.40244197 -0.09943203
0.005 3.935 2.95082513 5.72 0.46074771 -0.11111586
0.0025 3.935 2.95089028 5.7 0.47414096 -0.11193754

Backward Euler Plus Filter u and p
0.04 3.92 2.95073993 7.52 0.00439864 -0.12642684
0.02 3.94 2.95039973 6.14 0.21101313 -0.11153593
0.01 3.93 2.95063962 5.81 0.40624697 -0.09945143
0.005 3.935 2.95083296 5.72 0.46192306 -0.11112049
0.0025 3.935 2.95089220 5.7 0.47444753 -0.11193859

Reference Values
— 3.93625 2.950921575 5.693125 0.47795 −0.1116

be obtained by adding a time filter. Due to the embedded and modular structure of
the algorithm, both adaptive time-step and adaptive order are easily implemented
in a code based on a backward Euler time discretization. Extension of the method
and analysis to yet higher order time discretization is important as is exploring the
effect of time filters on other methods possible for Step 1 of Algorithm 1.1. Analysis
of the effect of time filters with moving and time dependent boundary conditions
would also be a significant extension.
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Appendix A. Velocity Error Analysis

A.1. Proof of Lemma 9.

Proof. By Taylor’s theorem with the integral remainder,

D[u(tn+1)]−∆tut(t
n+1) =

3

2
u(tn+1)−∆tut(t

n+1)

−2

(
u(tn+1)−∆tut(t

n+1) +
∆t2

2
utt(t

n+1)) +
1

2

∫ tn

tn+1

uttt(t)(t
n − t)2dt

)

+
1

2

(
u(tn+1)− 2∆tut(t

n+1) + 2∆t2utt(t
n+1)) +

1

2

∫ tn−1

tn+1

uttt(t)(t
n−1 − t)2dt

)

=

∫ tn+1

tn
uttt(t

n − t)2dt− 1

4

∫ tn+1

tn−1

uttt(t
n−1 − t)2dt.

These terms are first estimated by Cauchy-Schwarz.(∫ tn+1

tn
uttt(t)(t

n − t)2dt

)2

≤
∫ tn+1

tn
u2
tttdt

∫ tn+1

tn
(tn − t)4dt =

∆t5

5

∫ tn+1

tn
u2
tttdt.

1

16

(∫ tn+1

tn−1

uttt(t)(t
n−1 − t)2dt

)2

≤ 1

16

∫ tn+1

tn−1

u2
tttdt

∫ tn+1

tn−1

(tn−1 − t)4dt

=
2∆t5

5

∫ tn+1

tn−1

u2
tttdt.(A.1)

Thus, (
D[u(tn+1)]

∆t
− ut(t

n+1)

)2

≤ 6

5
∆t3

∫ tn+1

tn−1

u2
tttdt.

Integrating with respect to x yields the first inequality. Next,

I[u(tn+1)]− u(tn+1) =
1

2
u(tn+1)− u(tn) +

1

2
u(tn−1)

=
1

2

∫ tn+1

tn
utt(t)(t

n+1 − t)dt+
1

2

∫ tn−1

tn
utt(t)(t

n−1 − t)dt.
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By similar steps,(∫ tn+1

tn
utt(t)(t

n+1 − t)dt

)2

≤ ∆t3

3

∫ tn+1

tn
u2
ttdt.(∫ tn

tn−1

utt(t)(t
n−1 − t)dt

)2

≤ ∆t3

3

∫ tn

tn−1

u2
ttdt.

Therefore,

(A.2)
(
I[u(tn+1)]− u(tn+1)

)2 ≤ ∆t3

6

∫ tn+1

tn−1

u2
ttdt.

The last inequality can be proved using the same strategy. �

A.2. Proof of Theorem 10.

Proof. We prove this for Option A. A parallel proof exists for Option B. At tn+1 =
(n+ 1)∆t, the true solution of (1) satisfies,

(A.3)

(
D[u(tn+1)]

∆t
, vh

)
+ b

(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

Subtracting (12) from (A.3) yields

(A.4)

(
D[en+1

u ]

∆t
, vh

)
+ b

(
I[en+1

u ], I[u(tn+1)], vh
)

+ b
(
I[un+1

h ], I[en+1
u ], vh

)
+ ν

(
∇I[en+1

u ],∇vh
)

−
(
en+1
p ,∇ · vh

)
= τn+1(u, p; vh).

Decompose the error equation for velocity

(A.5) u(tn+1)− un+1
h = (un+1 − ũn+1

h ) + (ũn+1
h − un+1

h ) = ηn+1 + ϕn+1
h .

where ũn+1
h ∈ Vh is the best approximation of u(tn+1) in Vh. Similarly, we let

λn+1
h ∈ Qh be the best approximation of p(tn+1) in Qh. That is, they minimize

∥u(tn+1)− v∥X and ∥p(tn+1)− q∥, respectively.
Set vh = I[ϕn+1

h ]. Using the identity (10) with a = ϕn+1
h , b = ϕn

h, c = ϕn−1
h ,

(A.5), and applying (λh,∇ ·ϕh) = 0 for all λh ∈ Qh, equation (A.4) can be written

(A.6)

1

4∆t
(∥ϕn+1

h ∥2 + ∥2ϕn+1
h − ϕn

h∥2 + ∥ϕn+1
h − ϕn

h∥2)

− 1

4∆t
(∥ϕn

h∥2 + ∥2ϕn
h − ϕn−1

h ∥2 + ∥ϕn
h − ϕn−1

h ∥2)

+
3

4∆t
∥ϕn+1

h − 2ϕn
h + ϕn−1

h ∥2 + ν∥∇I[ϕn+1
h ]∥2

= −
(
D[ηn+1]

∆t
, I[ϕn+1

h ]

)
− b

(
I[ϕn+1

h ], I[u(tn+1)], I[ϕn+1
h ]

)
− b

(
I[un+1

h ], I[ηn+1], I[ϕn+1
h ]

)
− b

(
I[ηn+1], I[u(tn+1)], I[ϕn+1

h ]
)

+
(
p(tn+1)− λn+1

h ,∇ · I[ϕn+1
h ]

)
− ν

(
∇I[ηn+1],∇I[ϕn+1

h ]
)

+ τn+1(u, p; I[ϕn+1
h ]).
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The next step in the proof is to bound all the terms on the right hand side of
(A.6) and absorb terms into the left hand side. For arbitrary ε > 0, the first term
on the right hand side of (A.6) is bounded in the following way,

(A.7) −
(
D[ηn+1]

∆t
, I[ϕn+1

h ]

)
≤ 1

4ε

∥∥∥∥D[ηn+1]

∆t

∥∥∥∥2
−1

+ ε∥∇I[ϕn+1
h ]∥2.

The first nonlinear term can be bounded as

(A.8)

− b
(
I[ϕn+1

h ], I[u(tn+1)], I[ϕn+1
h ]

)
≤ C∥I[ϕn+1

h ]∥∥I[u(tn+1)]∥2∥∇I[ϕn+1
h ]∥

≤ C2

4ε
∥I[ϕn+1

h ]∥2∥I[u(tn+1)]∥22 + ε∥∇I[ϕn+1
h ]∥2.

The second nonlinear term is estimated by rewriting it using (A.5) as follows

(A.9)
− b

(
I[un+1

h ], I[ηn+1], I[ϕn+1
h ]

)
= −b

(
I[u(tn+1)], I[ηn+1], I[ϕn+1

h ]
)

+ b
(
I[ηn+1], I[ηn+1], I[ϕn+1

h ]
)
+ b

(
I[ϕn+1

h ], I[ηn+1], I[ϕn+1
h ]

)
.

then find bounds for all terms on the right hand side of (A.9). We bound the
third nonlinear term in (A.6) the same way as the first nonlinear term in (A.9).

(A.10)

− b
(
I[u(tn+1)], I[ηn+1], I[ϕn+1

h ]
)

≤ C∥∇I[u(tn+1)]∥∥∇I[ηn+1]∥∥∇I[ϕn+1
h ]∥

≤ C2

4ε
∥u∥2∞,1∥∇I[ηn+1]∥2 + ε∥∇I[ϕn+1

h ]∥2,

and

(A.11) b
(
I[ηn+1], I[ηn+1], I[ϕn+1

h ]
)
≤ C2

4ε
∥∇I[ηn+1]∥4 + ε∥∇I[ϕn+1

h ]∥2.

Next, by the inverse inequality, approximation assumptions, and Lemma 3,

(A.12)

b
(
I[ϕn+1

h ], I[ηn+1], I[ϕn+1
h ]

)
≤ C∥∇I[ϕn+1

h ]∥∥∇I[ηn+1]∥∥∇I[ϕn+1
h ]∥

≤ Ch−1∥I[ϕn+1
h ]∥∥∇I[ηn+1]∥∥∇I[ϕn+1

h ]∥

≤ C∥I[ϕn+1
h ]∥∥I[u(tn+1)]∥2∥∇I[ϕn+1

h ]∥

≤ C2

4ε
∥I[ϕn+1

h ]∥2∥I[u(tn+1)]∥22 + ε∥∇I[ϕn+1
h ]∥2.

The pressure can be bounded as follows
(A.13)(

p(tn+1)− λn+1
h ,∇ · I[ϕn+1

h ]
)
≤ C2

4ε
∥p(tn+1)− λn+1

h ∥2 + ε∥∇I[ϕn+1
h ]∥2.

Then we can bound the term after the pressure,

(A.14) − ν
(
∇I[ηn+1],∇(I[ϕn+1

h ])
)
≤ ν

2
∥∇I[ηn+1]∥2 + ν

2
∥∇I[ϕn+1

h ]∥2.
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Next we will bound all components of the consistency error τn+1(u, p; I[ϕn+1
h ]).

(A.15)

(
D[u(tn+1)]

∆t
− ut(t

n+1), I[ϕn+1
h ]

)
≤ C∥D[u(tn+1)]

∆t
− ut(t

n+1)∥∥∇I[ϕn+1
h ]∥

≤ C2

4ε
∥D[u(tn+1)]

∆t
− ut(t

n+1)∥2 + ε∥∇I[ϕn+1
h ]∥2.

(A.16)

ν
(
∇(I[u(tn+1)]− u(tn+1)),∇I[ϕn+1

h ]
)

≤ C2

4ε
∥∇(I[u(tn+1)]− u(tn+1))∥2 + ε∥∇I[ϕn+1

h ]∥2.

The nonlinear term in τn+1(u, p; I[ϕn+1
h ]) is then estimated as follows,

(A.17)

b
(
I[u(tn+1)], I[u(tn+1)], I[ϕn+1

h ]
)
− b(u(tn+1), u(tn+1), I[ϕn+1

h ])

=b
(
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h ]
)
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h ])

≤C∥∇(I[u(tn+1)]− u(tn+1))∥∥∇I[ϕn+1
h ]∥

(
∥∇I[u(tn+1)]∥+ ∥∇u(tn+1)∥

)
≤C2

4ε
∥∇(I[u(tn+1)]− u(tn+1))∥2

(
∥∇I[u(tn+1)]∥2 + ∥∇u(tn+1)∥2

)
+ ε∥∇I[ϕn+1

h ]∥2.

Set ε = ν
40 . Using (A.7) to (A.14) in (A.6) yields

(A.18)
1

4∆t
(∥ϕn+1

h ∥2 + ∥2ϕn+1
h − ϕn

h∥2 + ∥ϕn+1
h − ϕn

h∥2) +
ν

4
∥∇I[ϕn+1

h ]∥2

− 1

4∆t
(∥ϕn

h∥2 + ∥2ϕn
h − ϕn−1

h ∥2 + ∥ϕn
h − ϕn−1

h ∥2) + 3

4∆t
∥ϕn+1

h − 2ϕn
h + ϕn−1

h ∥2

≤ Cν−1
(
∥D[ηn+1]

∆t
∥2−1 + ∥I[ϕn+1

h ]∥2∥I[u(tn+1)]∥22

+ |||u|||∞,1∥∇I[ηn+1]∥2 + ∥∇I[ηn+1]∥4 + ∥p(tn+1)− λn+1
h ∥2

+ ν2∥∇I[ηn+1]∥2 + ∥D[u(tn+1)]

∆t
− ut(t

n+1)∥2

+ ∥∇(I[u(tn+1)]− u(tn+1))∥2

+ ∥∇(I[u(tn+1)]− u(tn+1))∥2(∥∇I[u(tn+1)]∥2 + ∥∇u(tn+1)∥2)
)
.
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Let κ = C
∥u∥2

∞,2

ν . Assume ∆t < 1
κ , summing from n = 1 to n = N−1 and applying

the discrete Gronwall lemma we obtain
(A.19)

∥ϕN
h ∥2 + ∥2ϕN

h − ϕN−1
h ∥2 + ∥ϕN

h − ϕN−1
h ∥2

+

N−1∑
n=1

3∥ϕn+1
h − 2ϕn

h + ϕn−1
h ∥2 + ν∆t

N−1∑
n=1

∥∇I[ϕn+1
h ]∥2

≤ e

(
∆tκ(N−1)

1−∆tκ

)(
∥ϕ1

h∥2 + ∥2ϕ1
h − ϕ0

h∥2 + ∥ϕ1
h − ϕ0

h∥2 + C∆t

N−1∑
n=1

∥D[ηn+1]

∆t
∥2−1

+ C∆t(∥u∥2∞,1 + ν2)
N−1∑
n=1

∥∇I[ηn+1]∥2 + C∆t
N−1∑
n=1

∥∇I[ηn+1]∥4

+ C∆t
N−1∑
n=1

∥p(tn+1)− λn+1
h ∥2 + C∆t

N−1∑
n=1

∥D[u(tn+1)]

∆t
− ut(t

n+1)∥2

+ C∆t
N−1∑
n=1

∥∇(I[u(tn+1)]− u(tn+1))∥2

+ C∆t
N−1∑
n=1

∥∇(I[u(tn+1)]− u(tn+1))∥2(∥∇I[u(tn+1)]∥2 + ∥∇u(tn+1)∥2)
)
.

The first three terms can be bounded as

(A.20)
∥ϕ1

h∥2 + ∥2ϕ1
h − ϕ0

h∥2 + ∥ϕ1
h − ϕ0

h∥2

≤ C
(
∥u(t1)− u1

h∥2 + ∥(u(t0)− u0
h)∥2

)
+ Ch2k+2|||u|||∞,k+1.

We bound the fourth term in (A.19) as follows

(A.21)

∆t

N−1∑
n=1

∥D[ηn+1]

∆t
∥2−1 = ∆t

N−1∑
n=1

∥
3
2 (η

n+1 − ηn)− 1
2 (η

n − ηn−1)

∆t
∥2−1

≤ C
N∑

n=0

∫ tn+1

tn−1

∥ηt∥2ds ≤ Ch2k∥ut∥22,k+1,

and
(A.22)

∆t(∥u∥2∞,1 + ν2)
N−1∑
n=1

∥∇I[ηn+1]∥2

≤ C∆t(∥u∥2∞,1 + ν2)max

{
9

4
, 1,

1

4

}N−1∑
n=1

3
(
∥∇ηn+1∥2 + ∥∇ηn∥2 + ∥∇ηn−1∥2

)
≤ C∆t

N∑
n=0

h2k∥un+1∥2k+1 = Ch2k∥|u∥|22,k+1.

Similarly to (A.22), we also have

(A.23) ∆t
N−1∑
n=1

∥∇I[ηn+1]∥4 ≤ C∆t
N∑

n=0

h4k∥u(tn+1)∥4k+1 = Ch4k∥|u∥|44,k+1.
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Observe that

(A.24) ∆t

N∑
n=1

∥p(tn+1)− λn+1
h ∥2 ≤ Ch2s+2∥|p∥|22,s+1.

The terms from consistency error are bounded using Lemma 9.

∆t

N−1∑
n=1

∥D[u(tn+1)]

∆t
− ut(t

n+1)∥2 ≤C∆t4
N−1∑
n=0

∫ tn+1

tn−1

∥uttt∥2dt

≤C∆t4∥uttt∥22,0.(A.25)

∆t
N−1∑
n=1

∥∇(I[u(tn+1)]− u(tn+1))∥2 ≤C∆t4
N−1∑
n=1

∫ tn+1

tn−1

∥∇utt∥2dt

≤C∆t4∥∇utt∥22,0.(A.26)

(A.27)

∆t
N−1∑
n=1

∥∇(I[u(tn+1)]− u(tn+1))∥2(∥∇I[u(tn+1)]∥2 + ∥∇u(tn+1)∥2)

≤ C∆t
N−1∑
n=1

(∥∇I[u(tn+1)]∥2 + ∥∇u(tn+1)∥2)∆t3
∫ tn+1

tn−1

∥∇utt∥2dt

≤ C∆t4∥∇u∥∞,0

N−1∑
n=1

∥∇utt∥2dt = C∆t4|||utt|||22,1.

Combining (A.20) - (A.27) gives

(A.28)

∥ϕN
h ∥2 + ∥2ϕN

h − ϕN−1
h ∥2 + ∥ϕN

h − ϕN−1
h ∥2

+
N−1∑
n=1

3∥ϕn+1
h − 2ϕn

h + ϕn−1
h ∥2 + ν∆t

N−1∑
n=1

∥∇I[ϕn+1
h ]∥2

≤C
(
∥u(t1)− u1

h∥2 + ∥(u(t0)− u0
h)∥2 + h2k+2∥|u∥|2∞,k+1

+ h2k+2∥ut∥22,k+1 + h2k∥|u∥|22,k+1 + h4k∥|u∥|44,k+1 + h2s+2∥|p∥|22,s+1

+∆t4(∥uttt∥22,0 + ∥∇utt∥22,0
)
.

We add both sides of (A.28) with

(A.29)

∥ηN∥2 + ∥2ηN − ηN−1∥2 + ∥ηN − ηN−1∥2 +
N−1∑
n=1

3∥ηn+1 − 2ηn + ηn−1∥2

+ ν∆t
N−1∑
n=1

∥∇(
3

2
ηn+1 − ηn +

1

2
ηn−1)∥2.

and apply triangle inequality to get (21). �
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Appendix B. Second Order Error Estimator

This section justifies the use of EST2 as an error estimator for the second order
approximation. A Taylor series calculation shows that the second order approxi-
mation yn+1

(2) in Algorithm 2.1 has the local truncation error (LTE) (for constant

stepsize)

LTE = −∆t3
(
1

3
y′′′ +

1

2
fyy

′′
)
+O(∆t4).

Consider the addition of a second time filter,

(A.30)

Step 1 :
y
(1)
n+1−yn

∆t = f(tn+1, y
n+1
(1) ),

Step 2 : yn+1
(2) = yn+1

(1) − 1
3

{
yn+1
(1) − 2yn + yn−1

}
Step 3 : yn+1 = yn+1

(2) − 2
11

{
yn+1
(2) − 3yn + 3yn−1 − yn−2

}
.

Another Taylor series calculation shows that the induced method has the LTE of

LTE = −∆t3
1

2
fyy

′′ +O(∆t4),

thus, yn+1 yields a more accurate (still second order) approximation, and

EST2 = yn+1
(2) − yn+1 =

2

11

{
y
(2)
n+1 − 3yn + 3yn−1 − yn−2

}
gives an estimate for the error of yn+1. This is extended to variable stepsize using
Newton interpolation, and written with stepsize ratios in Algorithm 2.1.

This is a nonstandard approach since one would normally use a higher order
approximation to estimate the error. However, this is simple since it requires no
additional function evaluations or Jacobians, and does not require solving a system
of equations. Interestingly, (A.30) remains energy stable, and could be useful as a
standalone constant stepsize method.
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