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CONFORMING HARMONIC FINITE ELEMENTS ON THE
HSIEH-CLOUGH-TOCHER SPLIT OF A TRIANGLE

TATYANA SOROKINA AND SHANGYOU ZHANG

Abstract. We construct a family of conforming piecewise harmonic finite elements on triangu-
lations. Because the dimension of harmonic polynomial spaces of degree < k is much smaller
than the one of the full polynomial space, the triangles in the partition must be refined in or-
der to achieve optimal order of approximation power. We use the Hsieh-Clough-Tocher split: the
barycenter of each original triangle is connected to its three vertices. Depending on the polynomial
degree k, the original triangles have some minor restrictions which can be easily fulfilled by small
perturbations of some vertices of the original triangulation. The optimal order of convergence is
proved for the conforming harmonic finite elements, and confirmed by numerical computations.
Numerical comparisons with the standard finite elements are presented, showing advantages and
disadvantages of the harmonic finite element method.

Key words. Harmonic polynomial, conforming finite element, triangular grid, Hsieh-Clough-
Tocher, Laplace equation.

1. Introduction

Standard finite element methods use the full space Py of polynomials of total
degree < k, or its enrichment by the so-called bubble functions, on each element
(e.g. triangle or tetrahedron) for solving partial differential equations. That is, to
reach the optimal order of approximation, the traditional finite element space must
contain the full space Py locally, cf. [2, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17].

Instead of using the full polynomial space Py, in this work we use the harmonic
polynomials Py harm to construct conforming finite elements of optimal order for
approximating only harmonic solutions. A harmonic polynomial p in two variables
is a harmonic function, i.e., Ap = pga + pyy = 0. For each k > 0, there are only
two harmonic polynomials of exact degree k in two variables. They are the real
and the imaginary part of the analytic polynomial z¥ = (z + iy)*. The dimension
of Py harm is 2k + 1 as opposite to (k + 1)(k + 2)/2 for the dimension of P,. But
the order of convergence of the corresponding finite elements is the same.

We solve the following boundary value problem that has a harmonic solution:

(1) —Au=0, in Q,
u=f, on 09,

where Q is a bounded polygonal domain in R2. If the equation (1) has a non-zero
function g on the right-hand side, i.e., —Awu = g, then the Fourier transform method
can be used to find a solution u; such that —Awu; = g without any boundary con-
dition. Next the problem is reduced to a homogeneous problem with the boundary
condition f in (1) replaced by f —wu;. The solution to the original problem is given
by u + ug.

The projection of Py harm on a line in R? is the full space of univariate polynomials
of degree < k. Thus, to construct a harmonic finite element, we need k + 1 degrees
of freedom on each edge in the triangulation in order to have a continuous finite

Received by the editors April 16, 2019.
2000 Mathematics Subject Classification. 65N30, 65N15.

54



CONFORMING HARMONIC FINITE ELEMENTS 55

element space (conforming finite element). This would lead at least 3k degrees of
freedom in each triangle, see Fig. 1. But the dimension of P narm is only 2k + 1.
Thus, to construct 2D conforming harmonic finite elements on a triangulation, one
has to split the original triangles. In this work, we construct P parm conforming
finite elements on Hsieh-Clough-Tocher (H-C-T) refinements of triangulations. An
H-C-T refinement is obtained by connecting the barycenter of each triangle to its
three vertices. Thus, each macro-triangle in the original triangulation is split into
three subtriangles, and we have to work with three harmonic polynomials on one
H-C-T macro-triangle. There are 3(2k + 1) = 6k + 3 polynomial coefficients to be
determined. For the continuity along three internal edges, we impose 3(k+1)—1 =
3k + 2 linear equations. By specifying the nodal values on the boundary and at the
barycenter we obtain 3k+1 equations. The total number of equations, 3k+2+43k+1,
is equal to the number of polynomial coefficients to be determined.

FIGURE 1. In K, e denotes a degree of freedom of Ps parm finite
element; o denotes a continuity constraints.

However, these equations may not have (unique) solutions. We show that, in
general, this depends on the geometry of macro-triangles. In particular, for k£ = 2,
there are no geometric constraints. For k = 3, only isosceles triangles are not al-
lowed. For each k afterward, there is an an additional restriction that a certain
polynomial function of the three angles does not vanish. Nevertheless, the prohib-
ited combinations of the angles form a zero measure subset of the domain of the
angles. So, in computation, we simply perturb one of the three vertices of a triangle
if the computer fails to generate basis functions on this macro-triangle.

We prove a special case of the Bramble-Hilbert lemma [3] for approximating
harmonic functions by harmonic polynomials. Using the lemma, we show that the
harmonic finite elements converge at the optimal order, when solving (1). In the last
section, we numerically test the harmonic finite elements of degree 2 to 6, confirming
the theoretical results. In addition, numerical comparisons with the standard finite
elements are presented. In an earlier work [12], we constructed a Ps parm conforming
finite element on macro-rectangles, and a P» harm nonconforming finite element on
general non-refined triangulations.

2. Definition of harmonic finite elements

Let Mj, = UkeT, K be a quasi-uniform triangulation of size h on the polygonal
domain 2 C R2. Depending on the harmonic polynomial degree k, cf. Theorem
2.1 below, we may need to perturb some internal vertices a little to form a new
triangulation My, in the computation. Each triangle K in My, is subdivided into



56 T. SOROKINA AND S. ZHANG

three triangles by connecting its barycenter with the three vertices: KM K2
and K@), see Fig. 1. We call this refinement of the original triangulation a Hsieh-
Clough-Tocher split: Th = Uge g, U, KO,

The P}, harmonic finite element space or Py harm finite element space is defined
by
(2) Vii={vn € HY ()| wvnlxw € Prharm for all KO € T, },
where Py harm is the space of harmonic polynomials of degree < k in two variables.
We give a constructive definition of (2) next by specifying a nodal basis of the linear

vector space. As in Fig. 1, on a single triangle K := AxixX5X3, the interpolation
nodes are

3 . .
. 1 (k—ji)xi + jxip1 .
IK:{g?_lxl, ! J= 1k 1=1,2,3,

where x;43 := x;. Let

I= U Tk.

KeTn
With zero boundary value, the interior finite element space is defined as

V¥ ={vn € Vi |vn(y) =0forally € Zn oS }.
The harmonic finite element problem for solving (1) reads: Find uj, € V3, such that
up(y) = u(y) at all boundary nodes y € Z, and
(3) ap(up,vp) =0, Yo, € V2,
where the discrete bilinear form

ap(up,vp) = Z / Vuy, - Vuy, dx.
K

KeTh

Theorem 2.1. Let {2, }>**! be arbitrary real numbers, let K be a triangle with
three angles 81 > 02 > 0s. There exists a unique up € Vy, satisfying the interpolation
conditions
(4) uh(yi) =2Zm, YV Ym €Ik,
if the three angles of K satisfy the constraints
DP2j+1 (—2 cot 91 — cot 92, 1) D2j+1 (—2 cot 92 — cot 93, 1)
tj (91, 92) = .
paj+1(cotBy +2cot e, 1) pojyi(cot by +2cotbs,1)
DP2j+1 (—2 cot 93 — cot 91, 1)
paj+1(cotfs + 2 cotbq,1)

(5) k

where

#17 j:2""’ )

poj+1(z,y) =Im ((z +iy)?).

Proof. On the three triangles KV, | = 1,2,3, in the H-C-T split of K, three har-
monic polynomials uﬁl = up| g of degree < k have a total of 6k + 3 coefficients
to be determined. By the interpolation conditions (4), we obtain 3k + 1 linear
equations for the above unknown coefficients. Then, by the continuity along the
three internal edges (E; in Fig. 2), we get 3(k + 1) — 1 = 3k + 2 linear equations
(one redundant constraint at the barycenter.) This yields a square system of lin-
ear equations. The uniqueness of its solution would provide the existence of the
solution. Therefore, we need to show that wj; vanishes on K if z,, = 0 for all
m=1,...,3k+ 1.
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Because being harmonic is invariant under rigid motion transformations, we may
assume the triangle K is located as in Fig. 2, where [y, l5 and I3 are the lengths
of the three edges opposite to the vertices x1, X2, and X3, respectively, and E7, Es

and Fj3 are the internal edges. Since ugl) is identically zero on the edge [x2,x3],

ie., uzl)(x, 0) =0, we can write ug)(:z:, y) = yqr—1(x,y) where gx_1 is a polynomial
of degree < k — 1. Therefore, if we write uzl)(x, y) as a linear combination of the
harmonic basis polynomials, we only have the imaginary part left:

k
= Za§1)pzj+1(:v, y), where paji1(z,y) =Im ((z +iy)?).

I3

Xz(—Cl,O) XB(ll - C1,0)

FIGURE 2. Shifted and rotated version of K.

Parametric equations for the line segments Fs and E3 are:

E2 . I‘Q(t) = <—Clt702(1 - t)>; 0 S t S 1,
E3 : rg(t): <(ll —Cl)t,CQ(l—t)>, OStS 1.
Next we rotate and shift K so that the edge [3 is horizontal, and the first coordinate

of the split point is zero. We denote this version of K by K, see Fig. 3. Since
~(3)(96 0) =0, we can write

Ead

Z p2g+1 x,y), where pojyi(z,y) =Im ((z +iy)’).

Note that the old parameters ¢ and cy become c3 and ¢4 after the rotation, and the
parametric equations of Fy and Ej, under the rotated coordinate system in Fig. 3
are

EQ : f‘z(t) = <(13—C3)t,04(1—t)>, OStS 1,
El : f‘l(t) = <—Cgt,C4(1—t)>, 0 StS 1.
By the continuity conditions along the interior edges we have

u g, = uy) |, = ut), and ay’|p = al|5 = alt).
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X3(2c3 — 3, 3c4)

=

lo

5(1(—03,0) 5(2(13 _6370)

FIGURE 3. K, a rotated and shifted version of K in Fig. 2.

Note that since K is a rotated version of K, the univariate polynomials u(t) and
@(t) are identical. Therefore, we obtain

(6) P ((Is — ea)t,ea(1 = 1)) = ulV (—est, co(1 — 1)), 0<t <1,

Finally, we rotate and shift K one more time to align l> with the y-axis as in
Fig. 4. We denote this version of K by K. Then Hﬁf) (,0) =0, and, we can write

k
ﬂgf) ((E, y) = 265-2)]?2]’-}-1 ((E, y)7 where DP2j+1 ((E, y) =Im ((‘T + zy)J) .
7=1

Using continuity along the remaining edges, and omitting some details for brevity,
we arrive at two more continuity conditions:

(7) i\ (—est,ca(1 = 1) =17 ((Ia — )t cg(1— 1)), 0<t<1,
(8) V(1 = ety ea(1 = 1) =17 (—est, cq(1 — 1)), 0<t<1
iQ (205 — lQ, 366)
K:
l
Es
§3(—C5,0) il(lg —C5,0)

FIGURE 4. K, a rotated and shifted version of K in Fig. 2.
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Comparing the coefficients of t* in (6), (7) and (8) we obtain

9) a\"por i1 (—c1, —ca) =a\ pogr1(ls — 3, —ca),
61(63)292/@+1(—C3, —cy) 26;(62)]92/#1(12 — 5, —Cg),

61(62)]92/#1(—05, —cp) =a;(€1)]92k+1(ll —c1, —C2).

Since ca, ¢4, and cg are not zeros, we can use the homogeneity of pory1 to obtain

(10) a,ﬁl)cikpzm(cl/@, 1) Zd;(f)clkpzkﬂ((cs —13)/ca, 1),

d](gg)czkp2k+l (e3/cq, 1) 25;(62)
)

a?

¢ "pars1((cs — 12)/cq, 1),

cg *parsr (cs/ce. 1) =a 3 parsa (e — 1) fe2, 1),

To solve (10), we need to invoke the geometry of K. Let 6; be the angle at x;,
i = 1,2,3. Using the lengths of the edges of K, and the fact that (0,cq) is the
barycenter of K, see Fig. 2, we compute

Bl +13-13 33 +13-13

l — =
C1 611 ) 1 4] 6[1 )
o VBB B+ 1317) — 1 - 15— 15 _ 4|K]
2 6l T o6l
211 (1 03 + 21 0
a _ 1(l2 cos 34,— 3 €08 2):cot93+2cot92,
Co 211[3 s1n6‘2
1 — 211 (21 03 +1 0
1~ _ 1(21 cos 3.+ 5 €05 02) = 2cot 3 + cot b,
Co 2[1[3 sm@g

with similar expressions for cs3/cq, (I3 — ¢3)/ca, c5/ce, and (o — ¢5)/ce. Using (5)
in (10) we obtain

CL](Cl) = ag)tk (91, 92)

Therefore, a,(cl) =0if tx(01,02) # 1 or t;1(91,92) # 1. We continue by induction on

J: assuming that az(-l) = 0 for all ¢ > j, and comparing the polynomial coefficients

of /=1 in (6) and (7), we obtain

a;_l) = a;l)tj(el,eg), 7=2,...k.

Therefore, ag.l) = 01if ¢;(01,02) # 1 for j = 2,...,k. Note that the coefficients
in front of t° in both 1123)((13 —c3)t,ca(1 —t)) and u;ll)(—01t,c2(1 — t)) must be
zero, because of the interpolating condition at the split point of the H-C-T split.
This yields agl)
agl) = 653) = 0. Comparing the remaining coefficients in front of ¢, we obtain

~(3 .
Ccy = ag )04 = 0. Since ¢y and ¢4 are both non-zero, we have

—agl)CQ = —d§3)04 =0,

which explains why ¢;(61,62) # 1 does not need to hold for j = 1. Thus, if
t;j(61,02) # 1, for j = 2,...,k, holds then all ag-l) =0, ug) =0, and up = 0. This
completes the proof. 1
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Remark 2.1. In Theorem 2.1, if k = 2, then ps = zy, and

(—2cotfy —cotfy) (—2cot by — cotbs)
(cot By +2cotfz)  (cot Bz + 2cotbs)
(—2cot O3 — cot 91) l1+ i3 . lo +121 I3+ 132

(COt 93 + 2 cot 91) B ll + 112 ZQ + 123 ZQ + 131 ’

where L1, is the signed projection of I, on the edge ;. If all angles are non-obtuse,
all L+, > 0 and t2(01,02) <0, i.e., (5) holds. If the largest angle 61 > 7/2 and ls
(the edge opposite 03) is much larger than ls, only one term, l3+1s2 = I3+ 12 cos by,
will be negative while the other 5 terms are non-negative. For this fized 61 > 7/2,
the function to(01,02) is an increasing function of 02 (by checking the derivative.) It
is easy to see that t2(01, (mr—01)/2) = —1 when 02 = 03, and t3(61,7—01) = 1 when
03 = 0. Thus, for any non-degenerate triangle K, t2(01,62) < 1. (5) always holds
for k = 2, independent on the geometry of K. That is, for quadratic harmonic finite
elements, there is no restriction on the triangles in My,. Additionally, in [13], we
show that even if the split point of the H-C-T split is not a barycenter, for quadratic
harmonic finite elements, there is still no restriction on the geometry. This is in
striking contrast to higher degree harmonic splines.

t2(61,02) =

Remark 2.2. In Theorem 2.1, if k = 3, we need, in addition to t2(61,02) < 1 in
Remark 2.1, to consider p; = 3x%y — y3, i.e.,
1501 02) :3(2 cot 01 + cot f2)% — 1 ~3(2cot b3 + cot 03)% — 1

’ 3(cot B +2coth2)2 —1  3(cot s + 2cot3)2 — 1
3(2cot b3 + cot 61)? —1 41
3(cot B3 + 2coth1)? — 1 '

Clearly, if the triangle is isosceles, the above fraction is simplified to 1. In the
Appendiz, we show directly that in this case the cubic harmonic finite element is
not uni-solvent.

Remark 2.3. [t is interesting to note, that on the standard triangle, no matter how
we choose the split point in the H-C-T split, the quartic harmonic finite element is
not uni-solvent, see the Appendiz.

Lemma 2.1. If every K € Ty, satisfies (5), the finite element problem (3) has a
unique solution.

Proof. The problem (3) is a square system of linear equations. The uniqueness of
its solution implies existence. Let up be a solution of (3) with zero boundary value
up, = 0 at the boundary nodes in Z. Then ap (up,up) = 0 implies Vuy, = 0 on each
triangle. So uy, is a constant function on each triangle. Because uy, is continuous, uy,
is a global Py function on the whole domain. By the boundary condition, uy = 0. g

3. Convergence theory

We start by proving a version of Bramble-Hilbert lemma [3] for the harmonic
polynomial space.

Lemma 3.1. For any harmonic function u € H**'(K) on a triangle K, there is
a harmonic polynomial qy of degree < k such that

1
(11) > b lu— qilla ) < CRE s i)

Jj=0
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Proof. Let K be an arbitrary shape-regular triangle of size h, and let B be its
inscribed circle. For any harmonic function u € H**1(K) on K, let Q*u be the
Taylor polynomial of degree k of u averaged over B. Then from Bramble-Hilbert
Lemma 4.3.8 in [4], it follows that

1
(12) > W llu = Q ull ey < CHF M ful s i)

Jj=0

In order to prove our result, we need to show that ¢z := Q*u is a harmonic poly-
nomial. Indeed, from Proposition 4.1.17 in [4], it follows that

A(Q ) = Q¥ *(Au) = 0,
and the proof is complete. 1

Theorem 3.1. Let u and uy, be the exact solution of (1) and the finite element
solution of (3), respectively. Then

(13) Ju— unlls < Ch*|Jullsa.

Proof. Let I be the Scott-Zhang interpolation operator of [11] to the space V},.
Then up = Iju on the boundary, and

lu—Twul? <2 > llu—aulld x + [1Tn(e — a) 13 &
KeTh

<C Z |u— qk”iK < Chzk”“”iﬂa
KeTy,

where ¢, is the harmonic polynomial from (11) on each triangle K in Mj. Next
we define an auxiliary solution: uy|gq = I f and

(14) aluy,v) =0 Yo € HH(Q).
Assuming the domain is regular enough, we obtain
(15) [u—uplly < Cllu = Infll g2 (00

< Chk||u||Hk+1/2(8£2) < Ch¥||ullg1-

Note that, on the boundary the harmonic interpolation is the full univariate Pj-
polynomial interpolation. Let the solution uy, of (3) be decomposed into two parts
as follows: wuj, = u1p, + uo n, where ug, € Vi, N HE(Q) and g p, is equal to up on
the domain boundary, and has zero nodal values at all internal nodes of V},. Then
we can define ug := up — uy . By (3) and (14), we obtain

a(ug — uo.n,vn) = alup — up,vp) =0, Yop € Vi, N H(Q).
Therefore,
(16) luo — wo,n|7 = aluo — wo,n, uo — Inuo) < |uo — uonl1|uo — Inuols.
Using (16) and (15) we complete the proof as follows
lu = unlly < flu—uslly + [lup — unlly = llu— wsll + lluo — uo,nllx

< u—=wplly + lluo — Tnuolly = [lu — uslly + [lus — Inus|lx

< 20w —wplly + [lu = Thully + [[a (v — w2

< COllu—wplly + [lu = Inully < CR*|lulliss.
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4. Numerical tests

Let the domain of the boundary value problem (1) be Q = (0,1)2. The exact
solution is u(z,y) = e® siny. We chose a family of perturbed uniform grids, shown
in Figure 5, for all harmonic finite element methods and for the P} finite element
methods.

FI1GURE 5. The first two level grids.

We solve problem (1) first by the harmonic P» finite element method and by the
P, Lagrange finite element method. The errors and the orders of convergence are
listed in Table 1. On the last level, the P, harmonic element space has about half
degrees of freedom of that of the P, Lagrange finite element space. The comput-
ing time is about 1/20 of that of the P, Lagrange element. But the accuracy is
much higher (about 1/2 error). In theory, if the boundary condition is interpolated
appropriately, by Ced’s lemma, the semi-H?! error, |u — up|1 (not the |Inu — uply
here), of the P, Lagrange element would be smaller than that of the P, harmonic
element, as the latter is a subspace.

TABLE 1. The error e, = Ipu — up and the order of convergence,
by the P, harmonic finite element and by the P, Lagrange finite

element.
grid lenllo A" lenh A" leallo A" [ lenls A"
P, harmonic element P, Lagrange element
1 10.680e-03 0.0 | 0.834e-02 0.0 | 0.109e-02 0.0 | 0.270e-01 0.0
2 [ 0.715e-04 3.3 | 0.202¢-02 2.0 | 0.124e-03 3.1 | 0.653e-02 2.0
3 [0.837e-05 3.1|0.499¢-03 2.0 | 0.149¢-04 3.1 | 0.160e-02 2.0
4 10.103e-05 3.0 | 0.125e-03 2.0 | 0.183e-05 3.0 | 0.395e-03 2.0
5 10.128¢-06 3.0 | 0.312e-04 2.0 | 0.227e-06 3.0 | 0.982e-04 2.0
6 | 0.160e-07 3.0 | 0.779e-05 2.0 | 0.283e-07 3.0 | 0.245e-04 2.0
7 10.200e-08 3.0 | 0.195e-05 2.0 | 0.353e-08 3.0 | 0.611e-05 2.0
8 10.250e-09 3.0 | 0.488e-06 2.0 | 0.440e-09 3.0 | 0.153e-05 2.0
Last cpu: 32; dof=394241 Last cpu: 541; dof=787457

Next we solve problem (1) again, by the harmonic Ps finite element method and
by the P5; Lagrange finite element method. The errors and the orders of convergence
are listed in Table 2. Again, both methods converge in the optimal order. But
unlike the P» case, the P3 harmonic finite element method is less accurate than the
standard Ps finite element method.



CONFORMING HARMONIC FINITE ELEMENTS

TABLE 2.

The error e;, = Iu — up and the order of convergence,

by the P; harmonic finite element and by the P; Lagrange finite

element.

gid | Jenllo 7]

lenls A"

lenllo A" |

lenlt A"

P3; harmonic element

P5; Lagrange element

0.110E-02
0.677E-04
0.416E-05
0.256E-06
0.159E-07
0.989E-09
0.623E-10

0.0
4.0
4.0
4.0
4.0
4.0
4.0

N O U W N

0.273E-01
0.360E-02
0.456E-03
0.571E-04
0.716E-05
0.895E-06
0.112E-06

0.0
2.9
3.0
3.0
3.0
3.0
3.0

0.363E-04
0.220E-05
0.134E-06
0.828E-08
0.514E-09
0.319E-10
0.196E-11

0.0
4.0
4.0
4.0
4.0
4.0
4.0

0.954E-03
0.124E-03
0.155E-04
0.195E-05
0.243E-06
0.304E-07
0.380E-08

0.0
2.9
3.0
3.0
3.0
3.0
3.0

Last cpu: 163; dof=148225

Last cpu: 285; dof=443137

TABLE 3. The error e, = Ipu — up, and the order of convergence,
by the P4/Ps/Ps harmonic finite elements and by the P,/Ps/Ps
Lagrange finite elements.

gid]  Teale W[ Jealk B[ Tenlo "] Jeal "
P, harmonic element P, Lagrange element
1 | 0.586E-02 0.0 | 0.198E+00 0.0 | 0.151E-05 0.0 | 0.541E-04 0.0
2 | 0.176E-03 5.1 | 0.120E-01 4.0 | 0.447E-07 5.1 | 0.327E-05 4.0
3 | 0.534E-05 5.0| 0.727E-03 4.0 | 0.134E-08 5.1 | 0.199E-06 4.0
4 |0.164E-06 5.0 | 0.446E-04 4.0 | 0.406E-10 5.0 | 0.122E-07 4.0
5 | 0.507E-08 5.0 | 0.276E-05 4.0 | 0.130E-11 5.0 | 0.759E-09 4.0
Last cpu: 761; dof=12545 Last cpu: 15; dof=49409
P5 harmonic element P5; Lagrange element
1 | 0.155E-02 0.0 | 0.523E-01 0.0 | 0.755E-07 0.0 | 0.365E-05 0.0
2 | 0.193E-04 6.3 | 0.131E-02 5.3 | 0.109E-08 6.1 | 0.108E-06 5.1
3 | 0.279E-06 6.1 | 0.381E-04 5.1 ]| 0.162E-10 6.1 | 0.326E-08 5.0
4 |0.358E-07 3.0| 0.117E-05 5.0 | 0.271E-12 5.9 | 0.100E-09 5.0
Last cpu: 703; dof=4001 Last cpu: 7; dof=19361
Ps harmonic element Ps Lagrange element
1 | 0.110E-03 0.0 | 0.371E-02 0.0 | 0.174E-08 0.0 | 0.115E-06 0.0
2 | 0.702E-06 7.3 | 0.475E-04 6.3 | 0.131E-10 7.1 | 0.173E-08 6.1
3 | 0.185E-06 1.9| 0.153E-05 5.0 | 0.108E-12 6.9 | 0.264E-10 6.0
Last cpu: 447; dof=1249 Last cpu: 3; dof=7009

63

We then solve problem (1) by the harmonic P;/Ps/Ps finite element methods
and by the P,/Ps;/Ps; Lagrange finite element methods. The errors and the or-
ders of convergence are listed in Table 3. The harmonic P;/Ps/Fs finite element
method converges in the optimal order only at the first few levels. Surprisingly, the
errors of high order harmonic finite element method are much bigger than those of
the standard Lagrange finite element method. This is due to very oscillatory basis
functions in the high order harmonic finite element method. The current double-
precision computers cannot evaluate such basis functions to the required accuracy.
The other problem is to find a better, projected boundary condition, instead of
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current nodal interpolated boundary condition. The harmonic finite element solu-
tion is sensitive to the boundary condition, while the full polynomial finite element
solution is not. Further, the global condition number of high order harmonic finite
element systems is so big that the number of iterations for the conjugate gradient
method for solving the linear system of high order harmonic element equations is
way beyond the number of unknowns. This can be seen from the cpu(computing)
time comparing to that of the Lagrange elements, see Table 3. It is a further re-
search topic to find relatively well conditioned basis for the harmonic finite element,
i.e., to precondition the local and the global stiffness matrix.
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Appendix A. Properties of the vector spherical harmonics

A.1. Bernstein-Bézier techniques. We recall some basic Bernstein-Bézier tech-
niques first. Let

b = b;(x) where i=1,2,3,
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denote the barycentric coordinates of a point x = (z!,2?%) relative to a triangle

T = [x1, X2, %3] in R?, where x; = (z},2?). The barycentric coordinates are defined

by the equation

1,1 1
3:% x% I% b1 a:2
x7 x5 25| |b2| = |2

1 1 1 b3 1

Every polynomial p of degree < k can be written uniquely in its Bernstein-Bézier
(BB-form) as

MO
(A1) p(x) = iﬂzﬂ:_k cijiBiji, where By = W%bébé-

The coefficients c¢;; are called the BB-coefficients of p. Each such coefficient is
uniquely associated with its domain point &, = (ix1 + jxo +Ix3)/k, i+ j+1 =
k, located in T'. The points (&1, ciji) are called the control points of p. If p is
harmonic, an additional condition is imposed on the BB-coefficients, see [1]: for all
i+i+l=k—2,

Cirajilxs = Xol|* + 2¢ip1 jr1a(x1 — x3) - (x3 — X2)
+2¢i41,5041 (X2 — X1) - (X3 — X2) + Cijt2,]|x1 — X3||2+

(A.2) + 2¢i j1041(X1 — X3) - (X2 — X1) + cijigallxa — x> = 0.

A.2. Cubic harmonic spline on the H-C-T split of an isosceles triangle.
Let Acr(T) be the H-C-T split of T into three subtriangles 77,75, and T5 as in
Fig. 6(left). On each triangle T;, i = 1,2,3, we define a cubic polynomial p;, i =
1,2, 3, in two variables. Each p; has ten domain points depicted as either black dots
or empty circles in Figure 6(left). Note that the three BB-coefficients associated
with the domain points on the interior edges are the same for the neighboring
polynomials. Thus, the piecewise polynomial is continuous on 7. The black dots
correspond to the BB-coefficients that will be set to arbitrary values. For simplicity,
we introduce the following notation: v; = x; — X9, ¢ = 1,2,3, uy = wvg — v3,
ug = v3—wv1 and ug = v; —vy. Then the condition (A.2) gives rise to a linear system
of 9 equations with 9 unknowns corresponding to the open dots in Figure 6(left).
The matrix associated with this system is:

u3-u3 —2u3»v2 2u3-1)1 0 0 0 0 0 0
U2-U2 2U2"U3 0 0 0 0 0 0 —2’[1,2'1)1
0 0 —2U3 U2 2U3 U1 u3-u3 0 0 0 0
0 0 0 —2u1»v3 U1-uU1 2u1»v2 0 0 0
0 0 0 0 0 7271,1"03 2u1-v2 u-uU1 0
0 0 0 0 0 0 —2u2-v1  U2-U2 2uso-v3
—2usz-vy  va-v2  —2v1-v2  V1UL 2us3-v1 0 0 0
0 0 v3-U3 72’U.1"U3 72’02"[}3 V2-V2 271,1"02 0
2ug-1)3 V3:V3 0 0 0 0 V1V —2ug"U1 —21}1"[}3

By rotating and scaling any isosceles triangle, we can place the barycenter (the split
point) at the origin and assume that v; = (—a, —1), v2 = (a,—1), and v3 = (0, 2).
Direct computation shows that the determinant of the matrix above vanishes. Thus,
a cubic harmonic finite element on the H-C-T split (coning off the barycenter) of an
isosceles triangle is not uni-solvent, see also Remark 2.2. However, by shifting the
split point it is possible to find a configuration that guarantees uni-solvency. This
is in striking contrast with out next example, where no matter which split point is
chosen, the finite element is not uni-solvent.
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X3

X0

FIGURE 6. Domain points for the cubic (left) and the quartic
(right) harmonic splines.

A.3. Quartic harmonic spline on the H-C-T split of a standard triangle.
Let Acr(T) be the H-C-T split of T into three subtriangles T1,T5, and T3 as in
Fig. 6(right). On each triangle T;, i = 1,2,3, we define a quartic polynomial p;,
i =1,2,3, in two variables. In this case, each p; has 15 domain points depicted as
either black dots or empty circles in Figure 6(right). The black dots correspond to
the BB-coefficients that will be set to arbitrary values. Then the condition (A.2)
gives rise to a linear system of 18 equations with 18 unknowns corresponding to
the open dots in Figure 6(right). With the same notation as in the cubic case for
u; and v;, 1 = 1,2, 3, the first nine columns of the associated 18 by 18 matrix are:

- usz-uz —2u3z-ve 2u3-vi 0 0 0 0 0 0 B
U2-U2 2U2"U3 0 0 0 0 0 0 —2’[1,2'1)1
0 0 —2U3'U2 211,3»111 u3-u3 0 0 0 0
0 0 0 —2u1»v3 U1-U 2u1»v2 0 0 0
0 0 0 0 0 —2u1»v3 2U1'U2 U1-UL 0
0 0 0 0 0 0 —2u2:v1  U2-U2 2uo-v3
—2ugz-vy  V2-v2 —2v1-V2 V1-U1 2us3-v1 0 0 0 0
0 0 0 v3:v3  —2u1-v3 —2V3-V3  V2-V2 2uy -v2 0
271,2-1)3 v3-U3 0 0 0 0 V1-V1 7271,2"01 721}1"03
0 u3-u3 0 0 0 0 0 0 0
0 0 u3-u3 0 0 0 0 0 0
0 0 0 U3 u3 0 0 0 0 0
0 0 0 uy Ul 0 0 0 0 0
0 0 0 0 0 uy Ul 0 0 0
0 0 0 0 0 0 uy-ul 0 0
0 0 0 0 0 0 U2-U2 0 0
0 0 0 0 0 0 0 U2-U2
- 0 U2 U 0 0 0 0 0 0 0 -
And the last nine columns of the associated 18 by 18 matrix are:
V2 V2 —2v1 V2 U1 U1 0 0 0 0 0 0 T
v3:U3 0 0 0 0 0 0 V1V1 —21}1"[}3
0 V2:V2 —21}1"[}2 V1V1 0 0 0 0 0
0 0 0 V3:V3 —21}2"[}3 V2:V2 0 0 0
0 0 0 0 v3:V3 —2’[}2-1}3 v2-V2 0 0
0 0 0 0 0 0 v1-v1  —2v1-v3  v3-U3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
7271,3-1)2 2’u.3~’L)1 0 0 0 0 0 0 0
0 7271,3"02 271,3-1)1 0 0 0 0 0 0
0 0 72’U.3"U2 2'u.3~’01 0 0 0 0 0
0 0 0 —2ui-v3 2u1-v2 0 0 0 0
0 0 0 0 —2u1 vy 2u1-v2 0 0 0
0 0 0 0 0 —2u1»v3 2U1'U2 0 0
0 0 0 0 0 0 —2’[1,2'1)1 2ug"U3 0
0 0 0 0 0 0 0 —2ug"U1 2U2'U3
L 2ug-1)3 0 0 0 0 0 0 0 —2’[1,2'1)1 -

Let (x,y) be the split point inside the standard triangle. Direct computation with
vy = (—z,—y), v2 = (1 — x,—y), v3 = (—x,1 — y) shows that the determinant of
the matrix above vanishes. Thus, it is impossible to construct a quartic harmonic
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finite element on the H-C-T split of a standard triangle no matter what the split
point is.
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