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Abstract. Following the scalar auxiliary variable strategy, a linear semi-discrete scheme

in time for the hydrodynamic Q-tensor model of liquid crystal polymers is developed. It

is shown that the scheme is unconditionally energy stable and uniquely solvable. Nu-

merical simulations show the decreasing energy and the second-order convergence.
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1. Introduction

Liquid crystals represent an intermediate state of matter between crystalline solids and

isotropic fluids. Nematic liquid crystals usually have molecular orientational order but not

a positional order. The most popular mathematical model for the flow of low molecular

weight nematic liquid crystals is the Ericksen-Leslie model [10], where the orientation of

molecules is expressed by a unit vector d ∈ S 2. The distortional elasticity is described by

the Oseen-Frank energy but in this case, only uniaxial liquid crystals can be modeled. If

the orientational symmetry is broken, the Ericksen-Leslie theory fails to capture the asym-

metrical feature of the system. Moreover, if defects emerge, the director model is singular

and d cannot be determined. In order to model liquid crystal droplets, Diegel et al. [3]

coupled the Ericksen’s model for nematic liquid crystals and the Cahn-Hilliard interfacial

energy equation.

An alternative method to describe the orientation of nematic liquid crystal systems con-

sists in using a Q-tensor — i.e. a second-order tensor of trace zero. The reflective symmetry

of the system and biaxiality are naturally built-in into tensor-based theories and defects can

also be captured. Furthermore, the director model can be derived from Q-tensor theory for

weak flows and weak elastic limits [20]. Therefore, the Q-tensor based hydrodynamic

model is commonly used in nematic liquid crystal flows [1,5,6,18–20].
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In this work, we describe the average orientation of nematic liquid crystals with Q. Set

Λ :=
�

Q ∈ R3×3, tr (Q) = 0,Q= QT
	

and consider the general Landau-De Gennes free energy functional

E(Q) =

∫

Ω

�

K

2
|∇Q|2+ FB(Q)

�

dx, (1.1)

where the first term in the integral is the elastic energy, K a material-dependent elastic

constant, FB(Q) the bulk free energy density,

FB(Q) :=
α

2
tr (Q2) +

β

3
tr (Q3) +

γ

4
tr 2(Q2)

andα,β and γ > 0 are material-dependent and temperature-dependent constants — cf. [7].

According to [1, 20, 23], the non-dimensional governing equations of nematic liquid

crystal flows with hydrodynamics have the form

ut + u · ∇u= −∇p+η∇2u+∇ ·σ(Q,G)−G∇Q,

∇ · u= 0,

Qt + u · ∇Q− S(∇u,Q) = M1G,

(1.2)

where

S(∇u,Q) =W ·Q−Q ·W + a(Q · D+ D ·Q) +
2a

3

�

D−
∇ · uI

3

�

− 2a(D : Q)

�

Q+
I

3

�

,

σ(Q,G) = (Q ·G−G ·Q)− a(G ·Q+Q ·G)−
2a

3
G+ 2a(Q : G)

�

Q+
I

3

�

,

G= −
δE(Q)

δQ
= K∇2Q−

�

αQ+ β

�

Q2 −
tr (Q2)

3
I

�

+ γtr (Q2)Q

�

, (1.3)

and D = (∇u +∇uT )/2 and W = ∇u − ∇uT/2 are, respectively, the rate of strain and

vorticity tensors. Moreover, the first two terms in S(∇u,Q) and the material derivative of

Q define the Gordon-Schowalter derivative, G is the molecular field, σ(Q,G) the elastic

stress tensor, and a ∈ [−1,1] a geometric parameter of the nematic liquid crystal molecule

— cf. [20]. We also impose the initial condition

u(x, 0) = u0(x), Q(x, 0) = Q0(x),

and use one of the following boundary conditions:

1. u and Q are periodic on ∂Ω.

2. u|∂Ω = 0, Q|∂Ω = Q0 or ∂nQ|∂Ω = 0.
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This model is widely used in liquid crystal flows [2,7,12,17,20,22]. The well-posedness of

the Q-tensor model has been studied in [4,8,9,13] and numerical approaches are discussed

in [11, 14]. In the framework of the model (1.2), a variety of numerical codes have been

developed, yet there are no systematic efforts to analyse the variational and dissipative

nature of the method. The governing system (1.2) obeys the energy dissipation law [13]

and it is desirable to develop numerical schemes with the same property. Such numerical

schemes are called the energy-stable schemes. The main challenge in this approach to the

Q-tensor model is caused by the high nonlinearity of the bulk potential FB and the strong

coupling between the velocity field u and Q in the nonlinear stress term σ. Zhao and

Wang [23] employed a stabiliser in decoupled first-order and coupled second-order energy-

stable schemes. Their main result is based on the assumption that the Hessian matrix of

the bulk potential function FB is bounded from above. Additionally, in the decoupled first-

order scheme, there is an artificially added term of order δt. Zhao et al. [24] employed

an "IEQ" strategy in a linear second-order coupled energy-stable scheme, but the proof of

the main result has a gap. Here, a linear coupled unconditionally energy-stable scheme is

constructed by following the "SAV" strategy from [15,16].

The rest of this paper is organised as follows. In Section 2, we derive a semi-discrete

unconditionally energy-stable scheme and prove that the solution of the corresponding

system is unique. Section 3 presents numerical examples to verify analytical results from

Section 2. Our conclusions are in Section 4.

2. A Second-Order Linear Unconditionally Energy-Stable Scheme

Since the bulk energy FB(Q) is bounded from below, there is a constant C0 such that

E1 =

∫

Ω

FBdx+ C0 > 0.

Set r =
p

E1(Q) and write the Eq. (1.3) in the form

G=∇ · (K∇Q)−
r
p

E1(Q)
fB(Q), (2.1)

rt =
fB(Q)

2
p

E1(Q)
: Qt , (2.2)

fB(Q) = αQ+ β

�

Q2 −
1

3
tr (Q2)I

�

+ γ tr (Q2)Q. (2.3)

The total energy (1.1) can be rewritten as

E =

∫

Ω

�

u2

2
+

K

2
|∇Q|2
�

dx+ r2 − C0.

For the model (1.2) with (2.1)–(2.3), we now consider a second-order scheme based on the

backward differentiation formula with Adam-Bashforth explicit interpolation (BDF2) [21].
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More exactly, we set f̄ n+1 = 2 f n − f n−1 and proceed as follows.

Step 1. Determine (Qn+1, rn+1, ũn+1) from the equations

3Qn+1− 4Qn +Qn−1

2δt
+
�

ũn+1 · ∇
�

Q̄n+1 − S
�

∇ũn+1, Q̄n+1
�

= M1Gn+1, (2.4)

3ũn+1 − 4un + un−1

2δt
+
�

ūn+1 · ∇
�

ũn+1 = η△ũn+1 −∇pn

+∇ ·σ
�

Q̄n+1,Gn+1
�

−∇Q̄n+1 : Gn+1, (2.5)

where

Gn+1 =∇ ·
�

K∇Qn+1
�

−
fB(Q̄

n+1)
Æ

E1(Q̄
n+1)

rn+1, (2.6)

3rn+1 − 4rn + rn−1 =

∫

Ω

fB(Q̄
n+1)

2
Æ

E1(Q̄
n+1)

:
�

3Qn+1− 4Qn +Qn−1
�

dx. (2.7)

Step 2. Find (un+1, pn+1) from the equations

3
un+1 − ũn+1

2δt
+∇
�

pn+1 − pn
�

= 0, (2.8)

∇ · un+1 = 0 (2.9)

with boundary condition un+1 · n|∂Ω = 0.

Let us note the representation

2
�

an+1, 3an+1 − 4an + an−1
�

=|an+1|2 + |2an+1 − an|2 + |an+1 − 2an + an−1|2

− |an|2 − |2an − an−1|2 (2.10)

used in the proof of the following theorem.

Theorem 2.1. The scheme (2.4)-(2.9) is unconditionally energy stable and satisfies the semi-

discrete energy dissipation law

E n+1
DBF2 −E

n
DBF2 ≤ −δt
�

M1‖G
n+1‖2 +η‖∇ũn+1‖2

�

, (2.11)

where

E n+1
BDF2 =

1

2

�

‖un+1‖2

2
+
‖2un+1 − un‖2

2

�

+
K

2

�

‖∇Qn+1‖2

2
+
‖2∇Qn+1 −∇Qn‖2

2

�

+

�

|rn+1|2

2
+
|2rn+1− rn|2

2

�

+
δt2

3
‖∇pn‖2. (2.12)

Proof. We consider the L2-inner products of the Eq. (2.4) with 2δtGn+1 and the (2.6)

with 3Qn+1 − 4Qn +Qn−1. Multiplying (2.7) and 2rn+1, and using the identity (2.10), we

obtain
�

3Qn+1 − 4Qn +Qn−1,Gn+1
�

+ 2δt
�

(ũn+1 · ∇)Q̄n,Gn+1
�
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− 2δt
�

S(∇ũn+1, Q̄n),Gn+1
�

= 2δtM1‖G
n+1‖2,

�

Gn+1, 3Qn+1 − 4Qn+Qn−1
�

=− rn+1

∫

Ω

fB(Q̄
n+1)
Æ

E1(Q̄
n+1)

:
�

3Qn+1− 4Qn +Qn−1
�

dx

− K

�

‖∇Qn+1‖2 + ‖2∇Qn+1−∇Qn‖2 + ‖∇Qn+1 − 2∇Qn+∇Qn−1‖2

2

−
‖∇Qn‖2 + ‖2∇Qn−∇Qn−1‖2

2

�

× 2

�

|rn+1|2 + |2rn+1− rn|2 + |rn+1 − 2rn + rn−1|2

2
−
|rn|2 + |2rn− rn−1|2

2

�

=rn+1

∫

Ω

fB(Q̄
n+1)
Æ

E1(Q̄
n+1)

:
�

3Qn+1− 4Qn +Qn−1
�

dx.

In follows from the three equations above that

K

�

‖∇Qn+1‖2 + ‖2∇Qn+1−∇Qn‖2 + ‖∇Qn+1 − 2∇Qn +∇Qn−1‖2

2

−
‖∇Qn‖2 + ‖2∇Qn−∇Qn−1‖2

2

�

+ 2

�

|rn+1|2 + |2rn+1− rn|2 + |rn+1 − 2rn + rn−1|2

2
−
|rn|2 + |2rn− rn−1|2

2

�

− 2δt
�

(ũn+1 · ∇)Q̄n+1,Gn+1
�

+ 2δt
�

S(∇ũn+1, Q̄n+1),Gn+1
�

=− 2δtM1‖G
n+1‖2. (2.13)

Consider now the L2-inner products of (2.5) with 2δtũn+1 and (2.8) with un+1, i.e.

�

3ũn+1 − 4un + un−1, ũn+1
�

= −2δtη‖∇ũn+1‖2 − 2δt
�

∇pn, ũn+1
�

+ 2δt
�

∇ ·σ(Q̄n,Gn+1), ũn+1
�

− 2δt
�

∇Q̄n : Gn+1, ũn+1
�

, (2.14)

3

4δt

�

‖un+1‖2 + ‖un+1 − ũn+1‖2 − ‖ũn+1‖2
�

= 0. (2.15)

The Eq. (2.8) shows that for any divergence-free function v we have

�

un+1,v
�

=
�

ũn+1,v
�

. (2.16)

The left-hand side of (2.14) can be written as

�

3ũn+1 − 4un + un−1, ũn+1
�

=
�

3ũn+1 − 3un+1, ũn+1
�

+
�

3un+1 − 4un + un−1, ũn+1
�

=
�

3ũn+1 − 3un+1, ũn+1
�

+
�

3un+1 − 4un + un−1,un+1
�
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=
�

3ũn+1 − 3un+1, ũn+1 + un+1
�

+
�

3ũn+1 − 3un+1,un+1
�

+
�

3un+1 − 4un + un−1,un+1
�

=3
�

‖ũn+1‖2 − ‖un+1‖2
�

+
‖un+1‖2 + ‖2un+1 − un‖2 + ‖un+1 − 2un + un−1‖2

2

−
‖un‖2 + ‖2un − un−1‖2

2
. (2.17)

Besides, we represent the Eq. (2.8) in the form

3

2δt
un+1 +∇pn+1 =

3

2δt
ũn+1 +∇pn.

Squaring this equation and multiplying the result by δt/3 yields

3

4δt

�

‖un+1‖2 − ‖ũn+1‖2
�

+
δt

3

�

‖∇pn+1‖2 − ‖∇pn‖2
�

=
�

ũn+1,∇pn
�

. (2.18)

Combining the Eqs. (2.14)–(2.18), we obtain

‖un+1‖2 + ‖2un+1 − un‖2

2
−
‖un‖2 + ‖2un − un−1‖2

2

+
2δt2

3

�

‖∇pn+1‖2 − ‖∇pn‖2
�

+
3

2
‖un+1 − ũn+1‖2

+
‖un+1 − 2un + un−1‖2

2

=− 2δtη‖∇ũn+1‖2 + 2δt
�

∇ ·σ(Q̄n+1,Gn+1), ũn+1
�

− 2δt
�

∇Q̄n+1 : Gn+1, ũn+1
�

. (2.19)

The inequality (2.11) now follows from (2.12), (2.13) and (2.19).

The Eqs. (2.4)–(2.7) show that the system in Step 1 is linear with respect to unknowns

Qn+1 and ũn+1. We prove that the solution of this system is unique. Indeed, let us assume

that for given Qn,Qn−1,un and un−1 the system has two solutions (Q1, ũ1) and (Q2, ũ2).

Considering the terms Q0 = Q1 −Q2 and ũ0 = ũ1 − ũ2, we have

3Q0

2δt
+ (ũ0 · ∇)Q̄

n+1 − S
�

∇ũ0, Q̄n+1
�

= M1G0, (2.20)

3ũ0

2δt
+ (ūn+1 · ∇)ũ0 = η△ũ0 +∇ ·σ

�

Q̄n+1,G0

�

−∇Q̄n+1 : G0, (2.21)

where

G0 = K△Q0 −
fB(Q̄

n+1)
Æ

E1(Q̄
n+1)

r0, (2.22)

r0 =

∫

Ω

fB(Q̄
n+1)

2
Æ

E1(Q̄
n+1)

: Q0dx. (2.23)
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Computing the L2-inner products of (2.20) with G0, (2.22) with Q0 and (2.21) with ũ0,

and using the relationship (2.23), we obtain

3

2δt
(Q0,G0) +
�

ũ0 · ∇Q̄n+1,G0

�

−
�

S(∇ũ0, Q̄n+1),G0

�

= M1‖G0‖
2,

(G0,Q0) = −K‖∇Q0‖
2 − 2|r0|

2,

3

2δt
‖ũ0‖

2 = −η‖∇ũ0‖
2 +
�

∇ ·σ(Q̄n+1,G0), ũ0

�

−
�

∇Q̄n+1 : G0, ũ0

�

.

The three equations above yield

3‖ũ0‖
2

2δt
+ 2|r0|

2 +M1‖G0‖
2 + K‖∇Q0‖

2 + ‖ũ0‖
2 = 0,

so that Q0 = 0, ũ0 = 0.

Applying the Eq. (2.7), we eliminate the term rn+1 in (2.13), thus obtaining

�

3

2δt
−M1K△
�

Qn+1 +
M1

2
H̄n+1

∫

Ω

H̄n+1 : Qn+1dx+L1(ũ
n+1) = gn

1
, (2.24)

where

L1

�

ũn+1
�

=
�

ũn+1 · ∇
�

Q̄n+1 − S
�

∇ũn+1, Q̄n+1
�

,

H̄n+1 =
fB(Q̄

n+1)
Æ

E1(Q̄
n+1)

,

gn
1 =

4Qn−Qn−1

2δt
−

M1

�

4rn − rn−1
�

3
H̄n+1 +

M1

6
H̄n+1

∫

Ω

H̄n+1 :
�

4Qn −Qn−1
�

dx.

Introducing the notation

bn+1 =

∫

Ω

H̄n+1 : Qn+1dx,L =
�

3

2δt
−M1K△
�

,

we write the Eq. (2.24) as

Qn+1 +
M1 bn+1

2
L −1H̄n+1 =L −1

�

gn
1 −L1(ũ

n+1)
�

. (2.25)

In order to determine the term bn+1, we compute the inner product of (2.25) and H̄n+1.

This leads to the representation

bn+1 =

�∫

Ω

H̄n+1 :L −1
�

gn
1 −L1(ũ

n+1)
�

dx

�
Á
�

(1+M1/2)

∫

Ω

H̄n+1 :L −1H̄n+1dx

�

.

(2.26)

Now we set

L2

�

Gn+1
�

:=∇Q̄n+1 : Gn+1 −∇ ·σ
�

Q̄n+1,Gn+1
�

,
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gn
2 :=

4un − un−1

2δt
−∇pn,

and write the Eq. (2.5) as

3ũn+1

2δt
+
�

ūn+1 · ∇
�

ũn+1 −η△ũn+1 = gn
2 −L2

�

Gn+1
�

. (2.27)

Step 1 in the above numerical scheme is equivalent to the Eqs. (2.25)–(2.27). In order to

decouple Qn+1 and ũn+1, we now use the Gauss-Seidel type iterations, so that

Qn+1,k+1 =L −1
�

g1 −L1(ũ
n+1,k)
�

−
M1 bn+1,k

2
L −1H̄n+1,

bn+1,k =

∫

Ω
H̄n+1 :L −1
�

gn
1 −L1(ũ

n+1,k)
�

dx

(1+M1/2)
∫

Ω
H̄n+1 :L −1H̄n+1dx

,

3ũn+1,k+1

2δt
+ B
�

ūn+1, ũn+1,k+1
�

−η△ũn+1,k+1 = gn
2
−L2

�

Gn+1,k+1
�

.

3. Numerical Results

In numerical simulations below, we assume that the directors of the LCPs are imposed

in the x -y plane, so that the tensor Q is a 2×2 matrix. The unknown functions depend on

variables x and y only and the model parameters are

a = 1.0, η = 1, α= −0.2, γ= 1, K = 0.001, M1 = 1, C0 = 10.

3.1. Accuracy test

In the first example, we choose the initial and boundary conditions

u0 = 0, Q0 = n0n0
T −
‖n0‖

2

2
,

u|∂Ω = 0, Q|∂Ω = Q0|∂Ω,

where n0 = (sin(2πx) sin(2πy), 0)T . Additional data u1,Q1 can be obtained by the first-

order scheme with a small time step. Avoiding the spatial discrete error, we employ 512×
512 mesh grid on [0,1]2. The convergence order shown in Tables 1 and 2, approaches 2 if

time step δt tends to 0, consistent with theoretical analysis.

In the second example, we choose the initial and boundary conditions

u0 = 0, Q0 = n0nT
0 −

I

2
,

u|∂Ω = 0, Q|∂Ω = Q0|∂Ω,

where n0 = (cos2πx y, sin 2πx y)T and consider the same computational domain and mesh

size.



A BDF2 Energy-Stable Scheme 65

Table 1: Convergen
e of the s
hemes, t = 1.0.

Time step L − 2 error
Order

L − 2 error
Order

L − 2 error
Order

L − 2 error
Order

δt Q11 Q12 u v

0.02 2.87e-4 1.20e-4 1.94e-6 1.96e-6

0.01 8.13e-5 1.82 3.24e-5 1.89 5.71e-7 1.76 5.82e-7 1.75

5.0e-3 1.96e-5 2.05 7.74e-6 2.07 1.66e-7 1.78 1.68e-7 1.79

2.5e-3 4.88e-6 2.01 1.93e-6 2.00 4.17e-8 1.99 4.19e-8 2.00

Table 2: Convergen
e of the s
hemes, t = 1.0.

Time step L − 2 error
Order

L − 2 error
Order

L − 2 error
Order

L − 2 error
Order

δt Q11 Q12 u v

0.02 4.31e-4 6.36e-4 2.98e-5 2.79e-5

0.01 1.32e-4 1.71 1.67e-4 1.93 5.65e-6 2.40 5.59e-6 2.32

5.0e-3 4.30e-5 1.62 4.34e-5 1.94 1.35e-6 2.07 1.38e-6 2.02

2.5e-3 1.24e-5 1.80 1.13e-5 1.94 3.36e-7 2.01 3.42e-7 2.01

1.25e-3 2.89e-6 2.10 2.85e-6 1.99 8.40e-8 2.00 8.55e-8 2.00

3.2. Development of the defects

The next examples deal with the defect development. We start with the defect at the

point +1 subject to the Dirichlet boundary condition on Q. For the domain [0, Lx]×[0, L y ],

Lx = L y = 2, we consider a no-slip boundary condition for u,u|∂Ω = 0 and a Dirichlet

boundary condition for Q, viz.

Q|∂Ω =
ñ0ñT

0

‖ñ0‖2
−

I

2
, ñ0 = (x − 0.5Lx , y − 0.5L y)

T

and the initial value

Q0 =
n0nT

0

‖n0‖2
−

I

2
, n0 = (x − 0.25Lx , y − 0.25L y)

T .

Fig. 2(a) shows an initial +1 type defect at the point (0.25,0.25). The boundary condition

breaks the initial defect into two +1/2 type defects moving away from each other and

reaching a stable state. In Figs. 2(b)-2(e), the line segments indicate the director of the LC

and the colors show the parameter orders. The order parameters at the defects are almost

zero — cf. blue points in Figs. 2(b)-2(e). Fig. 1 shows that the system energy decreases with

time, consistent with our analysis. The velocity at t = 50,100,200 is shown in Figs. 2(f)-

2(h).

In this example, we use the initial data

Q0 =
n0nT

0

‖n0‖2
−

I

2
, n0 =

¨

(1,0)T ,
p

(x − 1)2 + (y − 1)2 < 0.4,

(0,1)T , otherwise,
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Energy Zoomed energy

Figure 1: Energy versus time.

a) b) c)

d) e) f)

g) h)

Figure 2: (a) shows the dire
tor of initial data Q0; (b)-(e) show the dire
tor and order parameters (in


olor) for t = 50, 100, 150, 200, respe
tively; (f)-(h) show the velo
ity at t = 50, 100, 200, respe
tively.
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and the boundary conditions

Q|∂Ω =
ñ0ñT

0

‖ñ0‖2
−

I

2
, ñ0 = (0,1)T ,u|∂Ω = 0.

We also consider the liquid crystal dynamics in situations with and without hydrodynamic

effects for the same set of parameters and present the corresponding results in Figs. 3 and

4, respectively.

There is a mismatch in orientation in the circular region initially. In Fig. 3, we use

the line segment to indicate the directors and the colors to indicate the order parameters.

The graphs show that the order parameters are close to 0 near the defect points (the blue

points). The mismatch produces two +1/2 type defects (left and right) and two −1/2

type defects (top and bottom). Defects approach each other and disappear. The directors

become homogeneous perpendicular to the y-boundary.

Fig. 4 shows that the radius of mismatch ring reduces as time developed — cf. Figs. 4(a)-

4(c)). Finally, the mismatch disappears — Fig. 4(d).

Fig. 5 demonstrates energy dissipation in both cases. It agrees with the analysis in

Section 3. System with hydrodynamic effects admits easier development into homogeneous

nematic state.

a) b)

c) d)

Figure 3: Dire
tor and order parameters (in 
olor). Figures (a), (b),(
) and (d) respe
tively 
orrespond

t = 10, t = 25, t = 50 and t − 100.
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a) b)

c) d)

Figure 4: Dire
tor and order parameters (in 
olor). Figures (a), (b),(
) and (d) respe
tively 
orrespond

t = 10, t = 25, t = 50 and t − 100.

a) under hydrodynamic effect b) without hydrodynamic effect

Figure 5: Total energy versus time under di�erent hydrodynami
 e�e
ts.

In the last example, we examine the impact of anchoring boundary conditions on the

liquid crystal dynamics. The initial conditions are the same as before but the boundary

conditions are changed. The computational domain is [0, Lx] × [0, L y ], Lx = 2, L y = 1

and there is an initial defect of +1 type at the point (1.0,0.5). The forces on the x - and

y-axes exerted on point (1.0,0.5) are different and the initial defect is unstable. The strong
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anchoring boundary condition for Q in situation considered in Fig. 6 has the form

Q|∂Ω =
ñ0ñT

0

‖ñ0‖2
−

I

2
, ñ0 = (x − 0.5Lx , y − 0.5L y)

T .

The initial defect breaks into two +1/2 type defects. The y-axis boundary is closer to the

defect than the x -axis and anchoring is strong. Therefore, the break is easier in the x -axis

a) b)

c) d)

Figure 6: The dire
tor and order parameters under strong an
horing, t = 5, 50, 100, 150.

a) b)

c) d)

Figure 7: The dire
tor and order parameters under weak an
horing, t = 5, 50, 100, 200 .
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direction. In situation considered in Fig. 7, the weak anchoring boundary condition for Q

has the form
∂Q

∂ n
= 0.

This defect also breaks up into two +1/2 type defects. However, because of the weak

anchoring on the boundary, the defect breaks easier in the y-axis direction. Fig. 8 shows

the energy dissipation of the systems under weak and strong anchoring effects. The results

are consistent with the analysis of Section 3.

a) Weak anchoring b) Strong anchoring

Figure 8: Energy versus time for di�erent an
horing 
onditions.

4. Conclusion

We construct a BDF2 linear energy-stable numerical scheme for a general tensor-based

model of liquid crystals and test it on several examples. Numerical results show the second-

order convergence and energy dissipations, consistent with the theoretical analysis. We also

compare the dynamics of the defects with different hydrodynamic effects and anchoring

conditions.
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