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Abstract. The paper considers an optimal asset allocation problem for a defined con-

tribution pension plan during the accumulation phase. The salary follows a stochastic

process, which combines a compound Poisson jump with Brownian uncertainty. The

plan aims to minimise the quadratic loss function over finite time horizon by investing

in the market of risky assets and bank account. The risky assets are subjected to Poisson

jump and Brownian motion. The closed-form optimal investment decision is derived

from the corresponding Hamilton-Jacobi-Bellman equation.
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1. Introduction

Pension is an important financial instrument for individuals to reallocate their wealth

from working life to retirement. Generally, there are two kinds of pension arrangements

— viz. defined contribution (DC) and defined benefit (DB) plans. In the former case, the

contributions are fixed in advance by the pension sponsor and the benefits depend on the

investment earnings, so that the majority of risks are borne by the individual itself. In

the other pension plan, the benefits are fixed in the contract, while the contributions are

designed by the sponsor to keep the fund in balance. Thus the sponsor bears the majority

of risks and the individual does not experience any losses.

Generally, a pension plan consists of accumulation and decumulation phases. In the first

phase, also called the contribution phase, the pensioner pays contributions to the pension
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trustee during the employment period. In the other one, a pension annuity or a lump sum

is received and can be converted to a whole life assurance with a death benefit.

There are a variety of works concentrating on the optimal investment and the man-

agement of DC pension scheme. For instance, Haberman and Vigna [12] used a dynamic

programming approach to derive a formula for the optimal investment allocation in the

DC pension scheme whose funds are invested in an n asset market. For general multi-asset

financial markets with stochastic investment opportunities and stochastic contributions,

Menoncin and Vigna [15] solved a mean-variance optimisation problem in the accumula-

tion phase of DC pension schemes. Under the requirement of inflation protected guarantee,

Tang et al. [19] obtained an optimal asset allocation decision for economic environment

with risks arising from real and nominal interest rates. Other optimal management and

investment problems for DC pension funds have been recently studied by Wang et al. [21]

and Josa-Fombellida et al. [8].

In order to model the dynamics of risky assets, a geometric Brownian motion is widely

used. However, it does not properly match the market prices, so that the jump diffusion

model seems to be more appropriate. Considering the optimal consumption and portfo-

lio rules, Merton [16] studied the Poisson jumps in a dynamic portfolio problem. Ngwira

and Gerrard [17] investigated DB pension management problems and developed an op-

timal contribution and investment strategy incorporating jumps into the risky asset price

process. Delong et al. [5] and Liang et al. [14] considered mean-variance problems un-

der the assumption that the dynamics of the stock price is driven by a Lévy noise. On the

other hand, the jump diffusion stock price model for the DC pension management remains

little studied. In particular, Sun et al. [18] analysed the precommitment and equilibrium

investment strategies under the assumption that the stock prices follow a jump diffusion

process.

However, using the approach of Sun et al. [18], one can show that the investment

strategy is only optimal at time 0, and the pension trustee is assumed to be precommitted

to the target determined at the initial time. This problem motivated us to use the dynamic

programming approach to consider a closed-form investment strategy for DC type pension

plans. The stock price is stochastic and driven by a Brownian motion and a compound

Poisson jump. In contrast to [18], investment strategy in our work is optimal not only at

the initial time but also in what follows.

It is worth well to use the jump diffusion processes to study the salary dynamics, since

salary may not raise gradually and continuously. It can have a positive jump when the

employee is promoted from a lower to a higher position or if another company proposes

a higher salary. In fact, such models are already used in the salary studies — e.g. assuming

that salary follows a jump diffusion process, Bian et al. [1] developed an optimal retirement

strategy of a DB type pension plan. The model is also employed by Calvo-Garrido and

Vázquez [4] in pricing pension plans.

We also note that in DB pension scheme, the benefits are partially or totally determined

by salaries. In particular, a shock in salary can produce shocks in the evolution of benefits.

Therefore, Josa-Fombellida and Rincón-Zapatero [9] consider jumps in the evolution of

benefits in a DB pension plan. This is another reason for using the jump diffusion processes
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in the description of salary evolution. These examples motivate us to use the jump diffusion

salary model in optimisation of the DC pension scheme. Moreover, since the salary has

a close connection to contribution rate, we consider contribution rate as a jump diffusion

process in a DC pension optimal management problem.

The rest of the paper is structured as follows. Section 2 describes the financial market

with stochastic interest rate and two tradeable assets, which are of interest to our pension

management. Section 3 introduces stochastic salary processes and considers a stochastic

optimal control problem in DC pension scheme. This allows to minimise the quadratic loss

function over a finite horizon. A closed form solution of this stochastic control problem is

obtained from a related HJB equation. Section 4 is devoted to sensitivity analysis of the

previous results. Finally, our conclusions are Section 5.

2. Notations and Assumptions

We consider a probability space (Ω,F ,P) with a probability measure P on Ω and F =
F B ∨ F N . The filtration F B = {F B

t }t≥0 is generated by a three dimensional Brownian

motion (Br , BS , BL)— i.e.

F B
t = σ {(Br(s), BS(s), BL(s)); 0 ≤ s ≤ t} .

Suppose that there is an instantaneous correlation ρ(t) ∈ [−1,1] between Br and BS . For

simplicity, we assume that BS and BL are independent and fluctuations in financial market

and the future salary have little influence on each other. The filtration F N = {F N
t
}t≥0 is

generated by a two-dimensional Poisson process (NS , NL) with constant intensity (λS,λL),

λS,λL ∈ R+ — i.e.

F N
t = σ {(NS(s), NL(s)); 0 ≤ s ≤ t} .

Assuming that NS and NL are independent, we get that the corresponding Brownian motions

are independent of Poisson processes on this space.

Let r(t) denote the instantaneous interest rate. We assume that it is an Ornstein-

Uhlenbeck process — i.e. it satisfies the equation

dr(t) = (a − b r(t))d t +σr dBr(t), r(0) = r0. (2.1)

Such mean-reverting type processes have been introduced by Vasicek [20] in order to de-

scribe the dynamics of the interest rates. We note that a is the long-term mean of the

interest rate, b the mean reversion coefficient and σr the volatility associated with the

diffusion component. All parameters in the Eq. (2.1) are positive constants.

We consider a market of two tradeable underlying instruments, which are traded con-

tinuously over time, are perfectly divisible and satisfy the following conditions:

1. The money market account S0(t) follows the stochastic differential equation

dS0(t) = r(t)S0(t)d t, S0(0) = 1. (2.2)
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2. The dynamics of the risky asset is described by the equation

dS(t) = µS(r(t))S(t)d t +σSS(t)dBS(t) + S(t−)d
NS(t)
∑

i=1

Y S
i

, S(0) = S0, (2.3)

where µS(r) = r + ξ is the mean rate of the return, ξ ∈ R+ the expectation of the

excess return from investing in the risky asset, σS a constant volatility associated

with the diffusion component, and {Y S
i
} is a sequence of independent and identically

distributed variables with finite first and second moments µS
1 and µS

2 independent of

{NS}. Note that BS and NS do not depend on stochastic processes.

Let θ be the Sharpe ratio of risk for the portfolio — cf. [2], defined by

θ =
ξ+λSµ

S
1

q

σ2
S
+λSµ

S
2

. (2.4)

We also assume that µ + λSµ
S
1
> r or, equivalently, ξ > −λSµ

S
1

so that the risky asset is

attractive to the pension manager.

3. Optimal Portfolio

Consider the accumulation phase of a typical DC pension plan where the employee

pays the contributions during the employment period [11]. According to [13], the con-

tribution associated with the pension fund is a constant proportion κ of the participant’s

salary. However, because of possible abruptness in the salary, it is more realistic to use

the jump diffusion model in order to describe the evolution of salary. Let us suppose that

the instantaneous salary L(t) at time t is described by the following stochastic differential

equation:

d L(t) = µL L(t)d t +σL L(t)dBL(t) + L(t−)d
NL(t)
∑

i=1

Y L
i , L(0) = L0, (3.1)

where µL and σL are, respectively, the constant drift and volatility of the salary, and {Y L
i
}

is the sequence of independent and identically distributed random variables with finite first

and second moments µL
1 and µL

2 , which do not depend on {NL}. Note that BL and NL are

independent stochastic processes.

The stochastic control problem consists in finding an optimal design for the assets in

the accumulation phase of a DC pension plan from the hire date t = 0 to the retirement

t = T of the pension member. Note that for a chosen investment policy, the fund evolution

is described by the equation

dX (t) = (X (t)−π(t))dS0(t)

S0(t)
+π(t)

dS(t)

S(t−) + κL(t)d t, X (0) = X0 > 0, (3.2)
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where π(t) is the capital invested in stocks at time t and X (t) − π(t) the investment in

the bank account. Borrowing and short-selling are also possible and negative value of π(t)

means that the manager takes a short position of risky assets, while negative X (t) −π(t)
means the borrowing from the bank at the interest rate r(t) to purchase risky assets.

Substituting (2.2) and (2.3) into the Eq. (3.2) yields

dX (t) = [r(t)X (t) + (µS − r(t))π(t) + κL(t)] d t+π(t)σS dBS(t)+π(t−)d
NS(t)
∑

i=1

Y S
i . (3.3)

Suppose that the investment strategy π is an Ft -measurable function such that

E

�∫ ∞

0

π2(t)d t

�

<∞, (3.4)

and the sponsor preference is modeled by quadratic, penalising deviations from prescribed

targets with the quadratic loss function

Q(t, X (t)) = (X (t)− F(t))2 . (3.5)

The target of the pension manager is described by the function F(t). According to [10], F

is the price of the desired annuity in a DC pension plan. If the pension plan is of the DB

type, then F can be connected to the benefits provided by the pension trustee.

Any deviation from the target F are penalised so that if wealth X is different from the

target, a penalty measured by the loss function must be paid. For pension plans, there are

various applications of the quadratic loss function — cf. [3,10]. We note that the deviation

above the target is also penalised by the quadratic loss function, which is a drawback of

the model. Nevertheless, according to [10], the target is a natural limitation to the overall

risk of the portfolio and as soon as it is reached, there is no need to take a risk so that the

surplus becomes undesirable. On account of these considerations, we adopt the modified

quadratic loss function from [6], which has the form

Q(t, X (t)) = [α+ β(X (t)− F(t))]2 , (3.6)

where α > 0 and β < 0, so that under-funding is more penalised than over-funding. An

additional advantage of the quadratic loss function is that it allows to establish an explicit

solution of the stochastic optimal control problem and a closed-form investment decision.

Figs. 1 and 2 demonstrate the role of the parameters α and β in the modified loss

function (3.6) with the target F ≡ 5. If α = 0 and β = −1, function (3.6) becomes the

initial loss function (3.5). However, the pension manager may choose different α and β to

avoid the deficiencies of our model.

Let us assume that the sponsor preference is to minimise the expected value of the

terminal quadratic loss. We consider objective function J(t, X , L, r) defined by

J(t, X , L, r) = Et[Q(T, X (T ))],
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Figure 1: Impa
t of α. Figure 2: Impa
t of β .

where Et is the conditional expectation given all the information up to time t. In order

to solve the stochastic optimisation problem, we use a dynamic programming approach.

Consider the value function

V (t, X , L, r) = min
{π∈AX ,L,r}
�

J(t, X , L, r) : subject to (3.3), (3.1), (2.1)
	

,

and letAX ,L,r denote the class of all admissible controls — i.e. it is the set of all measurable

processes {π(t)}t≥0 such that π satisfies the Eq. (3.4) and X , L and r satisfy the Eqs. (3.3),

(3.1) and (2.1), respectively.

In stochastic optimal control theory, the HJB equation provides the connection between

the value function and optimal control [7, 23]. We consider the function v(T, X , L, r) =

[α+β(X (T )−F(T ))]2 and let vt , vX , vL, vr , vX X , vL L, vr r , and vX ,r be the partial derivatives

of first and second order of the function v with respect to t, X , L and r.

Theorem 3.1. Assume that v(t, X , L, r) ∈ C1,2,2,2([0, T ] ×R ×R × (0,+∞)) ∩ C([0, T ] ×
R×R× (0,+∞)) and satisfies the equation

vt + [rX + (µS − r)π+ κL]vX +µL LvL + (a − b r)vr

+
1

2
π2σ2

S vX X +
1

2
σ2

L L2vL L +
1

2
σ2

r vr r +πσSσrρvX ,r

+λS

�

Ev
�

t, X +πY S
1 , L, r
�− v(t, X , L, r)
�

+λL

�

Ev
�

t, X , L(1+ Y L
1
), r
�− v(t, X , L, r)
�

≡G(v;π) ≥ 0

for any π ∈AX ,L,r and any (t, X , L, r) ∈ ([0, T ]×R×R× (0,+∞)). Then

v(t, X , L, r) ≥ V (t, X , L, r)
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for any π ∈ AX ,L,r . Moreover, if there exists an admissible strategy π∗ ∈ AX ,L,r such that

G(v;π) = 0 for all (t, X , L, r) ∈ ([0, T ]×R×R× (0,+∞)), then

v(t, X , L, r) = V (t, X , L, r)

and this strategy is optimal.

The proof of this result is standard and omitted here.

We set

̟ := θ2, ϑ(t) :=
σSσrρ(t)(ξ+λSµ

S
1
)

σ2
S
+λSµ

S
2

, ς(t) :=
σ2

Sσ
2
rρ

2(t)

σ2
S
+λSµ

S
2

,

where θ is the Sharpe ratio (2.4). An explicit optimal investment strategy is given by the

following theorem.

Theorem 3.2. Choose τ ≤ T and let

γ(t) =
2

b

�

1− e−b(T−t)
�

,

δ(t) = β2e
∫ T

t
h(s)ds,

h(t) = (a− 2ϑ)γ(t) +

�

1

2
σ2

r − ς
�

γ2(t)−̟,

g(t) =
1

b

�

1− e−b(T−t)
�

,

f (t) = 2
�

αβ − β2F(T )
�

e
∫ T

t
l(s)ds,

l(t) = (a− ϑ− ςγ(t)) g(t) +
1

2
σ2

r g2(t)−̟− ϑγ(t),

ω(t;τ) = γ(τ)e−b(τ−t) +
1

b

�

1− e−b(τ−t)
�

,

ǫ(t;τ) = 2κδ(τ)e
∫ τ

t
y(s)ds,

y(t) = µL +λLµ
L
1 −̟− ϑγ(t) + (a − ϑ− ςγ(t))ω(t;τ) +

1

2
σ2

rω
2(t;τ).

(3.7)

Then the investment strategy

π∗(t) =− ξ+λSµ
S
1

σ2
S
+λSµ

S
2

�

X +

�

1

2δ(t)

∫ T

t

ǫ(t;τ)e(ω(t;τ)−γ(t))r dτ

�

L +
f (t)

2δ(t)
e(g(t)−γ(t))r
�

− σSσrρ

σ2
S
+λSµ

S
2

�

γ(t)X +

�

1

2δ(t)

∫ T

t

ǫ(t;τ)ω(t;τ)e(ω(t;τ)−γ(t))r dτ

�

L

+
f (t)g(t)

2δ(t)
e(g(t)−γ(t))r
�

(3.8)
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is optimal and the optimal quadratic loss function has the form

V (t, X , L, r) = δ(t)eγ(t)r X 2 + f (t)eg(t)r X

+

�
∫ T

t

∫ +∞

−∞
fC(τ,ζ)

e−((n−ζ)
2)/4m

2
p
πm

e(2µL+σ
2
L+λL(µ

L
2+2µL

1 ))(τ−t)dζdτ

�

L2

+

�
∫ T

t

∫ +∞

−∞
fD(τ,ζ)

e−((n−ζ)
2)/4m

2
p
πm

e(µL+λLµ
L
1)(τ−t) dζdτ

�

L

+

�
∫ T

t

ǫ(t;τ)eω(t;τ)r dτ

�

X L

+ (α− βF)2 −
∫ T

t

1

2
̟

f 2(t)

2δ(t)
+ ϑ

f 2(t)g(t)

2δ(t)
+

1

2
ς

f 2(t)g2(t)

2δ(t)
ds,

where

fC (t, r) =− 1

4
δ−1(t)e−γ(t)r
�

θ

∫ T

t

ǫ(t;τ)eω(t;τ)r dτ

+
σSσrρ(t)
q

σ2
S +λSµ

S
2

∫ T

t

ǫ(t;τ)ω(t;τ)eω(t;τ)r dτ





2

+ κ

∫ T

t

ǫ(t;τ)eω(t;τ)r dτ,

fD(t, r) =− 1

2
f (t)δ−1(t)e−g(t)r

�

(̟+ ϑg(t))

∫ T

t

ǫ(t;τ)eω(t;τ)r dτ

+ (ςg(t) + ϑ)

∫ T

t

ǫ(t;τ)ω(t;τ)eω(t;τ)r dτ

�

+ κ f (t)eg(t)r ,

and

m=
σ2

r

4b

�

1− e−2b(τ−t)
�

, n= re−b(τ−t)+
a

b

�

1− e−b(τ−t)
�

.

The proof of this result is given in Appendix.

Figs. 3 and 4 show possible paths for the optimal strategy π∗ and the optimal fund X ∗.

4. Sensitivity Analysis

In order to investigate the influence of parameters on the optimal investment decision,

we provide a sensitivity analysis. Unless otherwise stated, the relevant parameters are

chosen as follows: ξ = 0.01, σS = 0.5, µS
1
= 0.1, µS

2
= 0.8, λS = 0.3, µL = 0.2, σL = 0.5,
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Figure 3: Possible path of optimal strategy.
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Figure 4: Possible path of optimal fund.

Figure 5: Impa
t of λS with positive µS
1
. Figure 6: Impa
t of λS with negative µS

1
.

µL
1 = 0.3, µL

2 = 0.8, λL = 0.1, σr = 0.1, a = 0.1, b = 1, t = 0, T = 30, X0 = 1, L0 = 1,

F = 5, r0 = 0.05, ρ = 0, κ = 0.1, α = 0.1 and β = −0.1.

Fig. 5 shows the connection between the intensity of the Poisson jump of the risky asset

and the optimal investment amount at the initial time for the positive mean of the jump size

µS
1
. Note that the investment in stock grows along with the increase of λS . Moreover, the

risky assets become more attractive if the probability of positive jumps is high. Fig. 6 shows

the connection between λS andπ∗ for µS
1
= −0.1. For negative jump size, the investor holds

a short position of the stock, and the absolute value ofπ∗ becomes higher when the intensity

of jump becomes higher. Fig. 6 also shows that for the same λS, the investment π∗ admits

lower values with higher interest rates. The manager transfers a part of the fund from the

stock into the bank account, since the later has higher return and lower risk as is shown in

Fig. 13.

High volatility of jump size of the stocks leads to a higher risk. In order to avoid risk,

the optimal investment in the risky asset decreases with the grows of µS
2 and positive mean

jump size as Fig. 7 shows. The absolute value of the optimal investment also diminishes

if the mean jump size µS
1

is negative and µS
2

grows — cf. Fig. 8. Similar to the role of µS
2
,
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a higher volatility constant σS indicates the high risk of stocks. Figs. 9 and 10 demonstrate

the influence ofσS on the optimal decision for µS
1
= 0.1 and µS

1
= −0.1, respectively. Figs. 9

and 10 also show that for the same σS, the investment π∗ has a lower (absolute) value

with a longer terminal time T . An explanation of this phenomenon is that the investment

becomes more risky over a longer time. Therefore, it got smaller in order to avoid risk,

as demonstrated in Fig. 14. Fig. 11 shows that the pension trustee holds a lower amount

of risky assets with a higher initial earning. Since the target F(T ) remains unchanged, it

might be easier to reach the target with a higher L0, without investing a large amount of

money into stocks. Fig. 12 demonstrates the impact of the target F(T ). For higher targets,

the manager has to invest more into risky assets to obtain a higher return. Figs. 15 and 16

show the influence of salary parameters on the optimal investment strategy. In particular, if

a higher jump scale µL
1

or a higher jump intensity λL is expected, pensioners take less risky

assets. Similar to the discussions concerning Fig. 11, it is easier to reach the same target

with a higher µL
1 or λL. Therefore, it is not necessary to make large investment into risky

assets. Note that Figs. 17 and 18 show the impact of µL
1 and λL along [0, T ].

Figure 7: Impa
t of µS
2
with positive µS

1
. Figure 8: Impa
t of µS

2
, µS

1
= −0.1.

Figure 9: Impa
t of σS with positive µS
1
. Figure 10: Impa
t of σS with negative µS

1
.
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Figure 11: Impa
t of L0. Figure 12: Impa
t of F (T ).

Figure 13: Impa
t of r0. Figure 14: Impa
t of T .
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Figure 16: Impa
t of λL.
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Figure 17: Impa
t of µL
1
and t.
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Figure 18: Impa
t of λL and t.

5. Conclusion

This work studies the accumulation phase of typical DC pension plans when the con-

tributions are paid during the employment period. The contributions constitute a fixed

fraction κ of the participant’s salary. At the same time, the pension manager invests contri-

butions into financial market of risky assets and bank accounts. The manager determines

the optimal investment strategy to keep the fund to the target prescribed and minimise

the quadratic loss function. In order to avoid the deficiencies of the general loss function,

a modified loss function is adopted — cf. Eq.(3.6), so that the pension manager can operate

with different parameters α and β .

In the DC type pension plans, the salary and risky assets follow the jump diffusion pro-

cesses. In order to determine an investment strategy, the dynamic programming technique

is used and an explicit solution of the optimal problem is derived from the corresponding

HJB equation. Analytic solutions of these equations are presented in Appendix.

In Section 3 we show that the first summand of the optimal investment strategy in the

Eq. (3.8) is proportional to (ξ+ λSµ
S
1
)/(σ2

S
+ λSµ

S
2
). This corresponds to ξ/σ2

S
, which is

called "the optimal growth portfolio strategy" in the model without jumps in the risky assets

— i.e. if µS
1
= µS

2
≡ 0.

In Section 4 we show that risky assets become more attractive in the case of the higher

probability of positive jumps and lower volatility. It also indicates that stocks become less

attractive for a higher initial value, expected rate and the probability of positive jumps of

the salary.

Appendix A

Proof of Theorem 3.2. We assume that the value function V has the form

V (t, X , L, r) = A(t, r)X 2 + B(t, r)X + C(t, r)L2 + D(t, r)L + E(t, r)X L + G(t, r), (A.1)

where functions A, B, C , D, E and G satisfy the conditions

A(T, r) = β2, B(T, r) = 2(αβ − β2F(T )),
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G(T, r) = (α− βF(T ))2, C(T, r) = D(T, r) = E(T, r) = 0.

Moreover, we also assume that V ∈ C1,2 and VX X > 0.

Substituting the representation (A.1) into the HJB equation and using the first order

condition, we arrive at the optimal investment decision

π∗ = −µs − r +λSµ
S
1

σ2
S
+λSµ

S
2

�

X +
E

2A
L +

B

2A

�

− σSσrρ

σ2
S
+λSµ

S
2

�

Ar

A
X +

Er

2A
L +

Br

2A

�

, (A.2)

where Ar , Br and Er are respectively partial derivatives of A, B and E with respect to r.

Other partial derivatives are denoted analogously.

Substituting the Eq. (A.2) into the HJB equation and rearranging it, we obtain

�

At + (2r −̟)A+ ((a − b r)− 2ϑ)Ar +
1

2
σ2

r Ar r − ς
A2

r

A

�

X 2

+

�

Bt +

�

r −̟− ϑAr

A

�

B +

�

(a − b r)− ϑ− ςAr

A

�

Br +
1

2
σ2

r
Br r

�

X

+

�

Ct +
�

2µL +σ
2
L +λL

�

µL
2 + 2µL

1

��

C + (a− b r)Cr +
1

2
σ2

r Cr r

− 1

4
̟

E2

A
− 1

2
ϑ

EEr

A
− 1

4
ς

E2
r

A
+ κE

�

L2

+

�

Dt +
�

µL +λLµ
L
1

�

D+ (a − b r)Dr +
1

2
σ2

r
Dr r −

1

2
̟

BE

A
− 1

2
ς

Br Er

A

− ϑBr E + BEr

2A
+ κB

�

L

+

�

Et +

�

r +µL +λLµ
L
1
−̟− ϑAr

A

�

E +

�

(a − b r)− ϑ− ςAr

A

�

Er

+
1

2
σ2

r Er r + 2κA

�

X L

+

�

Gt + (a − b r)Gr +
1

2
σ2

r Gr r −
1

2
̟

B2

2A
− ϑBr B

2A
− 1

2
ς

B2
r

2A

�

= 0. (A.3)

The Eq. (A.3) is a bivariate polynomial of X and L. It is valid for all X and L. Therefore,

this equation is equivalent to the following six PDEs:

At + (2r −̟)A+ ((a − b r)− 2ϑ)Ar +
1

2
σ2

r
Ar r − ς

A2
r

A
= 0,

A(T, r) = β2,

(A.4)

Bt +

�

r −̟− ϑAr

A

�

B +

�

(a − b r)− ϑ− ςAr

A

�

Br +
1

2
σ2

r Br r = 0,

B(T, r) = 2(αβ − β2F),

(A.5)
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Gt + (a − b r)Gr +
1

2
σ2

r
Gr r −

1

2
̟

B2

2A
− ϑBr B

2A
− 1

2
ς

B2
r

2A
= 0,

G(T ) = (α− βF)2,

(A.6)

Et +

�

r + µL +λLµ
L
1 −̟− ϑ

Ar

A

�

E +

�

(a − b r)− ϑ− ςAr

A

�

Er

+
1

2
σ2

r Er r + 2κA= 0,

E(T, r) = 0,

(A.7)

Ct +
�

2µL +σ
2
L +λL

�

µL
2 + 2µL

1

��

C + (a− b r)Cr +
1

2
σ2

r Cr r −
1

4
̟

E2

A

− 1

2
ϑ

EEr

A
− 1

4
ς

E2
r

A
+ κE = 0,

C(T, r) = 0,

(A.8)

Dt +
�

µL +λLµ
L
1

�

D+ (a − b r)Dr +
1

2
σ2

r Dr r −
1

2
̟

BE

A
− 1

2
ς

Br Er

A

− ϑBr E + BEr

2A
+ κB = 0,

D(T, r) = 0,

(A.9)

where F = F(T ), A = A(t, r), B = B(t, r), C = C(t, r), D = D(t, r), E = E(t, r) and

G = G(t, r).

The solution of the Eq. (A.4) is sought the form A(t, r) = δ(t)eγ(t)r with δ and γ satis-

fying the condition δ(T ) = β2 and γ(T ) = 0. Simplifying the corresponding expressions,

we obtain

δ′(t)
δ(t)

+ γ′(t)r + 2r −̟+ ((a − b r)− 2ϑ)γ(t) +

�

1

2
σ2

r − ς
�

γ2(t) = 0.

Functions γ and δ can be now chosen to satisfy the equations

γ′(t)− bγ(t) + 2= 0, δ′(t) + h(t)δ(t) = 0. (A.10)

The solutions of (A.10) are easily found, namely,

γ(t) =
2

b

�

1− e−b(T−t)
�

, δ(t) = β2e
∫ T

t
h(s)ds,

where h(t) is defined in (3.7).

The solution of the Eq. (A.5) is sought the form B(t, r) = f (t)eg(t)r under the conditions

f (T ) = 2(αβ−β2F) and g(T ) = 0. Proceeding analogously to the previous considerations,

we determine the functions f (t) and g(t) in (3.7).

Consider now the Eq. (A.6). Substituting A(t, r) and B(t, r) by they representations

obtained from the Eqs. (A.4) and (A.5) yields

Gt + (a− b r)Gr +
1

2
σ2

r Gr r −
1

2
̟

f 2(t)

2δ(t)
− ϑ f 2(t)g(t)

2δ(t)
− 1

2
ς

f 2(t)g2(t)

2δ(t)
= 0,

G(T ) = (α− βF)2.

(A.11)
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Since the nonhomogeneous term in (A.11) is independent of r, we assume that G(t, r)

does not depend on r. It follows that Gr = Gr r = 0 and writing G(t) for G(t, r), we have

G(t) = (α− βF)2 −
∫ T

t

1

2
̟

f 2(t)

2δ(t)
+ ϑ

f 2(t)g(t)

2δ(t)
+

1

2
ς

f 2(t)g2(t)

2δ(t)
ds.

Considering the Eq. (A.7), we replace A(t, r) by it expression obtained from the

Eq. (A.4), so that

Et +
�

r +µL +λLµ
L
1
−̟− ϑγ(t)� E + ((a− b r)− ϑ− ςγ(t)) Er

+
1

2
σ2

r Er r + 2κδ(t)eγ(t)r = 0,

E(T, r) = 0.

(A.12)

This is a nonhomogeneous equation because of the term 2κδ(t)eγ(t)r , which also depends

on the stochastic interest rate. According to [22, Proposition 2], the solution of Eq. (A.12)

can be determined by solving the following homogeneous PDE with τ(τ ≤ T ):

υt(t, r;τ) +
�

r +µL +λLµ
L
1
−̟− ϑγ(t)�υ(t, r;τ)

+ ((a − b r)− ϑ− ςγ(t))υr (t, r;τ) +
1

2
σ2

rυr r (t, r;τ) = 0,

υ(τ, r;τ) = 2κδ(τ)eγ(τ)r .

(A.13)

The solution of the Eq. (A.12) is given by the formula

E(t, r) =

∫ T

t

υ(t, r;τ)dτ. (A.14)

The solution of the Eq. (A.13) is sought in the form υ(t, r;τ) = ǫ(t;τ)eω(t;τ)r under the

conditions ǫ(τ;τ) = 2κδ(τ) and ω(τ;τ) = γ(τ). Simple calculations show that ǫ and ω

have the form (3.7).

Considering the Eqs. (A.8) and (A.9), we set

fC (t, r) = −1

4
̟

E2

A
− 1

2
ϑ

EEr

A
− 1

4
ς

E2
r

A
+ κE,

fD(t, r) = −1

2
̟

BE

A
− 1

2
ς

Br Er

A
− ϑBr E + BEr

2A
+ κB,

(A.15)

and rewrite them as

Ct +
�

2µL +σ
2
L
+λL

�

µL
2
+ 2µL

1

��

C + (a− b r)Cr +
1

2
σ2

r
Cr r + fC (t, r) = 0,

C(T, r) = 0,

(A.16)

and

Dt +
�

µL +λLµ
L
1

�

D+ (a − b r)Dr +
1

2
σ2

r
Dr r + fD(t, r) = 0,

D(T, r) = 0.

(A.17)
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The unknown function C(t, r) in (A.16) can be found analogously to E(t, r) in (A.14). Thus

C(t, r) =

∫ T

t

ϕ(t, r;τ)dτ, (A.18)

where ϕ is the solution of the homogeneous parabolic equation

ϕt(t, r;τ) +
�

2µL +σ
2
L
+λL

�

µL
2
+ 2µL

1

��

ϕ(t, r;τ) + (a − b r)ϕr(t, r;τ)

+
1

2
σ2

rϕr r(t, r;τ) = 0,

ϕ(τ, r;τ) = fC (τ, r), τ≤ T.

(A.19)

The function fC(τ, r) in the boundary condition of (A.19) cannot be expressed in exponen-

tial form and it is difficult to use the previous approach to the solution of PDEs. Instead,

we apply the variable transformation method. Set

q(m, n;τ) := ϕ(t, r;τ)e−(2µL+σ
2
L+λL(µ

L
2+2µL

1 ))(τ−t),

m :=
σ2

r

4b

�

1− e−2b(τ−t)
�

,

n := re−b(τ−t) +
a

b

�

1− e−b(τ−t)
�

,

(A.20)

and choose t = τ. Then m = 0, n= r and the boundary condition in (A.19) yields

q(0, n;τ) = ϕ(τ, r;τ) = fC (τ, r) = fC (τ, n).

On the other hand, calculating the partial derivatives of ϕ in (A.20), we obtain

ϕt =

��

−σ
2
r

2
e−2b(τ−t)qm − (a − b r)e−b(τ−t)qn

�

− q(m, n;τ)
�

2µL +σ
2
L
+λL

�

µL
2
+ 2µL

1

��

�

× exp
��

2µL +σ
2
L
+ λL

�

µL
2
+ 2µL

1

��

(τ− t)
�

,

ϕr = exp
��

2µL +σ
2
L +λL

�

µL
2 + 2µL

1

�− b
�

(τ− t)
�

qn,

ϕr r = exp
��

2µL +σ
2
L +λL

�

µL
2 + 2µL

1

�− 2b
�

(τ− t)
�

qnn,

(A.21)

where qm, qn and qnn are the partial derivatives of q with respect to m and n. Substituting

(A.21) into (A.19) and using the initial value of q(m, n;τ) leads to the heat equation

qm(m, n;τ)− qnn(m, n;τ) = 0,

q(0, n;τ) = fC (τ, n).
(A.22)

The solution of (A.22) is well-known — viz.

q(m, n;τ) =

∫ +∞

−∞
fC (τ,ζ)

e(−(n−ζ)
2/4m)

2
p
πm

dζ.
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Substituting the above q(m, n;τ) in the first equation of (A.20), we obtain correlation be-

tween ϕ and q. Taking into account the Eq. (A.18), we write the solution of the Eqs. (A.16)

in the form

C(t, r) =

∫ T

t

ϕ(t, r;τ)dτ

=

∫ T

t

∫ +∞

−∞
fC(τ,ζ)

e−((n−ζ)
2/4m)

2
p
πm

e(2µL+σ
2
L+λL(µ

L
2+2µL

1 ))(τ−t) dζ dτ

with fC defined in (A.15).

The solutions of (A.16) and (A.17) can be found analogously — e.g. (A.17) has the

solution

D(t, r) =

∫ T

t

∫ +∞

−∞
fD(τ,ζ)

e−((n−ζ)
2/4m)

2
p
πm

e(µL+λLµ
L
1 )(τ−t) dζ dτ,

where fD, m and n are defined by (A.15) and Eqs. (A.20).

It is easily seen that

VX X = 2A(t, r) = 2δ(t)eγ(t)r > 0.

Replacing A, B and E in (A.2) by the corresponding expressions, we arrive at the optimal

investment strategy (3.8).
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