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Abstract. This study proposes a new formulation of singular boundary method
(SBM) to solve the 2D potential problems, while retaining its original merits being
free of integration and mesh, easy-to-program, accurate and mathematically simple
without the requirement of a fictitious boundary as in the method of fundamental
solutions (MFS). The key idea of the SBM is to introduce the concept of the ori-
gin intensity factor to isolate the singularity of fundamental solution so that the
source points can be placed directly on the physical boundary. This paper presents
a new approach to derive the analytical solution of the origin intensity factor based
on the proposed subtracting and adding-back techniques. And the troublesome
sample nodes in the ordinary SBM are avoided and the sample solution is also not
necessary for the Neumann boundary condition. Three benchmark problems are
tested to demonstrate the feasibility and accuracy of the new formulation through
detailed comparisons with the boundary element method (BEM), MFS, regularized
meshless method (RMM) and boundary distributed source (BDS) method.

AMS subject classifications: 65N15, 65N38

Key words: Singular boundary method, fundamental solution, singularity, desingularization
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1 Introduction

The method of fundamental solution (MFS) [1–3] is one of the collocation based bound-
ary type meshless methods with the merit of easy programming, high accuracy and
fast convergence. In order to avoid the singularity of fundamental solutions with a
strong-form collocation formulation, the MFS, however, places the source points on a
fictitious boundary outside or inside the physical domain, respectively, corresponding
to interior or exterior problems. Despite many years of hard research, the placement
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of this fictitious boundary for complex-shaped or multi-connected domain problems
remains a tricky art and is determined largely based on a trial-error approach [4–6].

Great efforts have since been made to remove the perplexing issue of fictitious
boundary encountered in the MFS. For this purpose, the boundary knot method (BKM)
was proposed by Chen et al. [7–10], in which the nonsingular general solution is
employed instead of using the singular fundamental solutions. Consequently, this
method can place source knots on the physical boundary while being meshless and
integration-free. However, similar to the MFS, the condition number of its discretiza-
tion matrix worsens quickly with an increasing number of boundary nodes. The BKM
is also mostly applied to interior Helmholtz and diffusion problems since the nonsin-
gular general solution is not available in some cases such as Laplace equation.

Based on the double-layer potential theory, an alternative collocation strong-form
technique, called the regularized meshless method (RMM), was proposed by Young
and his coworkers [11, 12]. This method used a subtracting and adding-back tech-
niques widely used in the BEM-based method [13, 14] to regularize the singularities
of the kernel functions, so that the source points can be directly located on the phys-
ical boundary. The kernel function in the RMM is the double-layer potential because
Young et al. [11] consider the desingularization of subtracting and adding-back tech-
nique will fail with the single-layer potential. Numerical studies show that the RMM
keeps the merit of the MFS and is efficient in the solution of Laplace problem [11], ex-
terior acoustics problem [12] and anti-plane shear problem [15]. However, the double-
layer fundamental solution used in the RMM requires the regularization of super-
singularities and jeopardizes its solution accuracy as compared with using a single-
layer fundamental solution.

Unlike the RMM, Sarler [16] simply uses the single-layer fundamental solution as
in the MFS, but unlike the MFS, the method does not require the fictitious boundary
and avoids the singularity by using an integral evaluation of its diagonal elements
of interpolation matrix. This approach is called the modified method of fundamental
solution (MMFS) and has been tested to potential flow problems with modest success.
It is noted that the integral calculation makes MMFS more complex and less efficient
than the MFS, the BKM and the RMM.

Liu [17] proposed a boundary distributed source (BDS) method, in which the sin-
gular fundamental solution is integrated over small areas covering the source points
so that the fictitious boundary is circumvented and the coefficients in the system of
equations can analytically be evaluated. However, the analytical expression of the
diagonal coefficients for equations with the Neumann boundary condition has to be
indirectly determined. And thus this method is still immature.

In this study, we focus on a recent boundary-type meshless method, called singu-
lar boundary method (SBM), proposed by Chen and his collaborators [18–21]. The
SBM overcomes the artificial boundary in the traditional MFS by allowing the source
point to coincide with the collocation points on the physical boundary. Its key idea
is to introduce the concept of the origin intensity factor to isolate the singularity of
the fundamental solution. And an inverse interpolation technique was proposed to
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evaluate the origin intensity factor. However, in order to carry out this technique, the
SBM has to place a cluster of sample nodes inside or outside the physical domain for
either interior or exterior (infinite) problems. Our numerical experiments indicate that
the solution accuracy of this SBM formulation may be, to a certain degree, sensitive to
the placement of such sample nodes.

The purpose of this paper is to develop a novel formulation of the SBM to avoid the
above-mentioned sample nodes in the ordinary SBM formulation, based on the sub-
tracting and adding-back technique as well as the inverse interpolation technique. The
new formulation remedies the major shortcomings in the ordinary SBM while retain-
ing all its merits being mathematically simple, easy-to-program, accurate, truly mesh-
less, and integration-free. Compared with the RMM, the proposed method makes a
breakthrough on the traditional view that the subtracting and adding-back technique
can not be used to single-layer potential theory, as claimed in [11]. In addition, the
present SBM formulation avoids the expensive calculation of diagonal elements in
both the MMFS and the BDS.

A brief outline of the rest of this paper is as follows. Section 2 introduces the im-
proved formulation of the SBM. In Section 3, the accuracy and stability of the proposed
method are tested to three benchmark 2D potential examples in which SBM solutions
are compared with the results obtained by using the MFS, the RMM, the BDS and the
BEM. Finally, the conclusions and remarks are provided in Section 4.

2 Improved formulation of SBM

Without loss of generality, we introduce the SBM formulation of Laplace equation
governing potential problems in a 2D domain Ω

∇2u(x) = 0, x ∈ Ω (2.1)

subjected to the following boundary conditions

u(x) = ū(x), x ∈ ΓD (Dirichlet boundary condition), (2.2a)

q(x) =
∂u
∂n

(x) = q̄(x), x ∈ ΓN (Neumann boundary condition), (2.2b)

where u is the potential field, Ω is a bounded domain in R2 with boundary Γ = ΓD +
ΓN which we shall assume to be piecewise smooth, n presents the outward normal
and the barred quantities indicate the given values on the boundary.

The MFS solution u(x) and ∂u(x)/∂n of the Laplace problem can be approximated
by a linear combination of fundamental solutions with respect to different source
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points sj as follows:

u(xi) =
N

∑
j=1

αju∗(xi, sj), (2.3a)

q(xi) =
∂u(xi)

∂nxi

=
N

∑
j=1

αj
∂u∗(xi, sj)

∂nxi

, (2.3b)

where xi is the i th collocation point, sj the j th source point located on a fictitious
boundary, αj the j th unknown intensity of the distributed source at sj, N the numbers
of source points and

u∗(xi, sj) = − 1
2π

ln ∥xi − sj∥2 (2.4)

is the fundamental solution of two-dimensional Laplace equation.
In the traditional MFS, a fictitious boundary outside the problem domain is re-

quired for the placement of the source points to avoid the singularity of fundamental
solutions. However, despite great effort of past 40 years, the determination of the
fictitious boundary remains a perplexing issue when dealing with complex-shaped
boundary or multiply-connected domain problems [21–26].

Similar to the MFS, the SBM also uses the fundamental solution as the kernel func-
tion of its approximation. In contrast to the MFS, the collocation and source points
of the SBM are coincident and are placed on the physical boundary without using a
fictitious boundary. The SBM interpolation formula is given by [19]

u(xi) =
N

∑
j=1,i ̸=j

αju∗(xi, sj) + αiuii, xi ∈ ΓD, sj ∈ Γ, (2.5a)

q(xi) =
∂u(xi)

∂nxi

=
N

∑
j=1,i ̸=j

αj
∂u∗(xi, sj)

∂nxi

+ αiqii, xi ∈ ΓN , sj ∈ Γ, (2.5b)

where uii and qii are defined as the origin intensity factor, namely, the diagonal el-
ements of the SBM interpolation matrix. The fundamental assumption of the SBM
is the existence of the origin intensity factor upon the singularity of the coincident
source-collocation nodes for mathematically well-posed problems. Our numerical ex-
periments [19–21] show that the origin intensity factors do exist and have finite values,
only depending on the fundamental solution, the boundary nodes and their respective
boundary conditions.

The ordinary SBM formulation employs an inverse interpolation technique [19,21]
to determine the origin intensity factor for both the Dirichlet and Neumann boundary
equations. However, in order to carry out this technique, the SBM has to place a cluster
of sample nodes inside or outside the physical domain for either interior or exterior
(infinite) problems. Our numerical experiments illustrate that the solution accuracy of
this SBM formulation is, to a certain degree, sensitive to the location of such sample
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nodes in some cases. In the following Sections 2.1 and 2.2, a new SBM formulation will
be given to extract out the finite values of the origin intensity factors, respectively, for
Neumann and Dirichlet boundary condition equations without using the troublesome
sample nodes.

2.1 Origin intensity factor on Neumann boundary

When the collocation point xi approaches to the source point sj, the distance between
these two boundary nodes trends to zero. This would cause boundary equations (2.5a)
and (2.5b) present various orders of singularities. By adopting the subtracting and
adding-back technique, the regularized expressions for the Neumann boundary equa-
tion (2.5b) can be expressed as:

q(xi) =
N

∑
j=1

(αj − αi)
∂u∗(xi, sj)

∂nxi

+ αi

N

∑
j=1

∂u∗(xi, sj)

∂nxi

. (2.6)

Note that

(αj − αi)
∂u∗(xi, sj)

∂nxi

= 0,

when i is equal to j, so there is no singularity in the first right hand side term. To
remove the singularity of the second right hand side term, we rewritten Eq. (2.6) as
follows:

q(xi) =
N

∑
j=1,i ̸=j

(αj − αi)
∂u∗(xi, sj)

∂nxi

+ αi

N

∑
j=1

(∂u∗(xi, sj)

∂nxi

+
∂u∗C(xi, sj)

∂nsj

)
, (2.7)

in which

N

∑
j=1

∂u∗C(xi, sj)

∂nsj

= 0 (2.8)

and u∗C(xi, sj) denotes the fundamental solution of the exterior problems. The detail
derivations of Eq. (2.8) are given in Appendix.

According to the dependency of the outward normal vectors on the two kernel
functions of interior and exterior problems, we can obtain the following relation-
ships [11]: 

∂u∗(xi, sj)

∂nsj

= −
∂u∗C(xi, sj)

∂nsj

, i ̸= j,

∂u∗(xi, sj)

∂nsj

=
∂u∗C(xi, sj)

∂nsj

, i = j.

(2.9)
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Note that

∂u∗(xi, sj)

∂nxi

+
∂u∗(xi, sj)

∂nsj

=
∂u∗(xi, sj)

∂x1

(
n1(xi)− n1(sj)

)
+

∂u∗(xi, sj)

∂x2

(
n2(xi)− n2(sj)

)
, (2.10)

where the indicial notation for the coordinates of points xi, i.e., (x1, x2) is employed.
For a straight line boundary, the above equation is explicitly equal to zero since ni(xi) =
ni(sj) at any points. For arbitrarily smooth boundary, we assume that the source point
sj moves gradually close to the collocation point xi along a line segment and thus we
have

lim
sj→xi

∂u∗(xi, sj)

∂nxi

+
∂u∗(xi, sj)

∂nsj

= 0. (2.11)

With the help of Eqs. (2.9) and (2.11), Eq. (2.7) can be rewritten as

q(xi) =
N

∑
j=1,i ̸=j

(αj − αi)
∂u∗(xi, sj)

∂nxi

+ αi

N

∑
j=1,i ̸=j

(∂u∗(xi, sj)

∂nxi

−
∂u∗(xi, sj)

∂nsj

)
=

N

∑
j=1,i ̸=j

αj
∂u∗(xi, sj)

∂nxi

− αi

N

∑
j=1,i ̸=j

∂u∗(xi, sj)

∂nsj

. (2.12)

It can be seen from the above Eq. (2.12) that the original singular term ∂u∗(xi, sj)/∂nxi

in Eq. (2.6) under i = j has been transformed into the following regular terms

qii = −
N

∑
j=1,i ̸=j

∂u∗(xi, sj)

∂nsj

, (2.13)

which is the aforementioned formula to calculate the origin intensity factor qii on the
Neumann boundary condition. The matrix form expression of discretization equa-
tions (2.12) can be written as

{q(xi)} =



−
N

∑
j=2

∂u∗(x1, sj)

∂nsj

∂u∗(x1, s2)

∂nx1

· · · ∂u∗(x1, sN)

∂nx1

∂u∗(x2, s1)

∂nx2

−
N

∑
j=1,j ̸=2

∂u∗(x2, sj)

∂nsj

· · · ∂u∗(x2, sN)

∂nx2

...
...

. . .
...

∂u∗(xN , s1)

∂nxN

∂u∗(xN , s2)

∂nxN

· · · −
N−1

∑
j=1

∂u∗(xN , sj)

∂nsj


{αj}. (2.14)

It can be seen from the above Eq. (2.14) that the diagonal terms of the influence matrix,
i.e., the origin intensity factor qii have been extracted out buy using the proposed
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subtracting and adding-back technique (Eqs. (2.6)-(2.13)), which can be calculated in a
straightforward manner.

It should be noted that similar to the RMM, the basic theory of this study is also
inspired by the desingularization of subtracting and adding-back technique [13, 14]
widely used in the BEM-based method. However, the kernel functions in the RMM are
the double-layer potentials because the desingularization of subtracting and adding-
back technique is considered to fail if the single-layer potential is used in the RMM [11].
The regularization of super-singularities in the double-layer potentials, however, jeop-
ardizes the overall accuracy of the RMM. In contrast, the proposed SBM makes a
breakthrough in that the subtracting and adding-back technique is used to single-
layer potential problem in the strong-form collocaton discretization methods. And
to the authors’ best knowledge, no similar work has been found in available reports
of the BEM, the MFS and the RMM.

2.2 Origin intensity factor on Dirichlet boundary

The regularized expressions for the Dirichlet boundary equation (2.5a) can be per-
formed by using the strategy proposed by Sarler [16], in which the singular value of
u(x) is set as an average of the fundamental solution over a portion of the boundary.
However, the integral calculation makes this strategy more complex and less efficient.
In this paper, the regularized expressions of the Dirichlet boundary equation can be
carried out in a new indirect way, namely an improved inverse interpolation technique
(IIT), which is different from the original IIT in that it does not require the sampling
nodes.

First, let us assume a pure Neumann problem with all the boundary values set as

q̄(x) =
∂ū(x)

∂n
,

where ū(x) (named as sample solution in this paper) is an arbitrary known particular
solution, such as

ū(x) = x1 − x2 (2.15)

for interior potential problems and (x1, x2) denote the coordinates of collocation point
x.

Then, from the regularized Neumann boundary equation (2.12), we obtain:

q̄(xi) =
N

∑
j=1,i ̸=j

α
′
j
∂u∗(xi, sj)

∂nxi

− α
′
i

N

∑
j=1,i ̸=j

∂u∗(xi, sj)

∂nsj

, i = 1, 2, · · · , N, (2.16)

where {α
′
j}N

j=1 are unknown coefficients and can be calculated directly by solving the
above equation.
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Finally, substituting the calculated {α
′
j}N

j=1 into the Dirichlet boundary equation
(2.5a), we can get the following algebraic equations:

ū(xi) =
N

∑
j=1,i ̸=j

α
′
ju

∗(xi, sj) + α
′
iuii + c, i = 1, 2, · · · , N, (2.17)

where c is a constant and can be solved by using an arbitrary field point inside the
domain. For example, suppose xo = (xo

1, xo
2) is an arbitrary point inside the domain of

interest, then the constant c can be calculated by

c = ū(xo)−
N

∑
j=1

α
′
ju

∗(xo, sj) = xo
1 − xo

2 −
N

∑
j=1

α
′
ju

∗(xo, sj). (2.18)

Since the interior collocation point xo will never coincide with the boundary source
point sj, the kernel function u∗(xo, sj) can be calculated in a straightforward manner.

It is noted that only the diagonal term u∗
ii, i.e., origin intensity factor uii in the SBM

interpolation formula (2.5a) for the Dirichelt boundary condition, are unknown in the
above Eq. (2.17). Thus, the origin intensity factor uii for Dirichlet boundary equation
can be calculated as:

uii =
1
α
′
i

[
ū(xi)− c −

N

∑
j=1,i ̸=j

α
′
ju

∗(xi, sj)
]
, i = 1, 2, · · · , N. (2.19)

It is noted that the ordinary SBM needs to place a cluster of sample nodes inside the
domain to indirectly evaluate the unknown coefficient α

′
j. In contrast, the proposed

new method directly uses the regularized Neumann boundary equation (2.12) to cal-
culate these unknown coefficients α

′
j without a need of sampling nodes on the Dirichlet

boundary.
It is also stressed that the origin intensity factor depends merely on the distribution

of the source points and therefore, the origin intensity factor remain unchanged with
different simple solution (2.15) used in the inverse interpolation technique.

2.3 SBM discretization algebraic equations

Using the procedure described above, the origin intensity factors for both Neumann
and Dirichlet boundary Eqs. (2.5a) and (2.5b) have been extracted out. And the result-
ing algebraic system of discretization equations can then be formed as:

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN




α1
α2
...

αN

 =


b1
b2
...

bN

 or Aα = b, (2.20)



W. Chen and Y. Gu / Adv. Appl. Math. Mech., 4 (2012), pp. 543-558 551

where A is the coefficient matrix, α the unknown density vector, and b the right-hand
side vector. Once all the values of αj are determined by solving Eq. (2.20), the potential
and its derivative can easily be evaluated at any point inside the domain or on the
boundary.

3 Numerical examples and discussions

To verify the feasibility of the above proposed SBM formulation, three examples are
tested in which the improved SBM is compared with the ordinary SBM, MFS, RMM,
BDS and BEM. Unless otherwise specified, the BEM results are obtained using the
direct formulation developed in [27]. The relative error is defined by

Relative Error =
[ 1

M

M

∑
k=1

( Ik
numerical − Ik

exact

Ik
exact

)2] 1
2

, (3.1)

where Ik
numerical and Ik

exact denote the numerical and analytical solutions at the k th
calculated point, respectively. Unless otherwise specified, the particular solution used
in this paper is taken to be ū(x) = x1 − x2.

3.1 A square domain with Dirichlet boundary condition

Fig. 1 shows the configuration of the generalized Laplace equation in a square domain
(0, 1)× (0, 1) subject to the following Dirichlet boundary conditions:

u(x1, 0) = x1 + 2, u(x1, 1) = u(0, x2) = u(1, x2) = 2. (3.2)

Its corresponding exact solution is

u(x1, x2) = 2 +
∞

∑
n=1

2(−1)n+1

nπ sinh(nπ)
sinh(nπ(1 − x2)) sin(nπx1). (3.3)

The number of boundary nodes N used varies from 40 to 400. The boundary nodes are
uniformly distributed along the boundary, except for four corner points. The interior
point (0.5, 0.5) is chosen for the calculation of the constant c used in the inverse inter-
polation technique, as shown in Eq. (2.18). We here give the values of c for N = 100
and 200 in order to allow for checking of the possible recalculations by the interested
readers (c = −0.2186 for N = 100 and c = −0.3923 for N = 200).

Fig. 2 displays the relative error curve of the improved SBM at M = 120 field
points uniformly distributed along the line x2 = 0.5 with 0.1 ≤ x1 ≤ 0.9, compared
with those by using the ordinary SBM, RMM, MFS and BEM. For the MFS simulation,
the distance d of he fictitious boundary away from the physical boundary is quan-
tified by the unit s which is the interval spacing of nodes on the physical boundary.
The BEM solutions are obtained using linear discontinuous boundary elements. A lin-
ear boundary element is adequate in this case because it can represent a straight line
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boundary exactly. It is stressed that the number of boundary nodes is all the same in
the SBMs, RMM, BEM and MFS.

It can be observed from Fig. 2 that the convergence trend of the improved SBM
is better than those of using other methods. Particularly, when using 400 boundary
nodes, the improved SBM is more accurate than the BEM by one order of magnitude,
the ordinary SBM by two orders of magnitude and the RMM almost by three orders
of magnitude. Namely, the present SBM formulation has the most fast convergence
rate compared with other tested methods. In addition, we also note that the ordi-
nary SBM has an oscillatory curve of relative errors and loses the stability when the
boundary node number is larger than 200. In sharp contrast to the ordinary SBM,
the improved SBM is of stably monotonic convergence with an increasing number
of boundary nodes. In the MFS, the solution accuracy with the fictitious boundary
d = s/2 deteriorates, while the MFS with d = 3s fictitious boundary gets more fast
convergence rate in this case. This shows that the appropriate or optimal placement
of the fictitious boundary in the MFS can result in a very accurate solution. However,
unfortunately, it remains an open issue to find the appropriate fictitious boundary for
complex problems.

3.2 A circular domain with Dirichlet boundary condition

As shown in Fig. 3, a circular domain of radius r = 2 is considered, which is an
example used in [17]. Dirichlet boundary condition is imposed on the edge of the
circle using the following analytical solution:

u(r, θ) = r6 cos(6θ) (3.4)

in the polar coordinates (r, θ).
The number of boundary nodes N used varies from 100 to 1400. The boundary

nodes are uniformly distributed along the boundary. The interior point (0.5, 0.5) is
chosen for the calculation of the constant c used in the inverse interpolation technique.
Again, we here give the values of c for N = 100 and 200 in order to allow for checking

Figure 1: A square domain with Dirichlet boundary condition.
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Figure 2: Relative error curves for the square domain, respectively, by using the improved and ordinary
SBMs, the RMM, the BEM and the MFS.

Figure 3: A circle domain with Dirichlet boundary condition.

of the possible recalculations by the interested readers (c = 0.2380 for N = 100 and
c = −0.9209 for N = 200).

The numerical evaluation of the relative error is performed using M = 120 calcu-
lation points uniformly distributed on a circle with radius r = 1 and center at the ori-
gin. With the number of boundary nodes increases, Fig. 4 illustrates the relative error
curves for different methods. Here, the BEM solutions are obtained using discontinu-
ous quadratic elements since the quadratic element is ideal as it can approximate the
geometry of curvilinear boundary with sufficient accuracy. Also, it is stressed that the
number of boundary nodes is the same in the tested numerical methods.

It can be observed from Fig. 4 that the improved SBM method performs better
than other tested methods with an increasing number of boundary nodes. Particu-
larly, when using 1400 boundary nodes, the improved SBM is more accurate than the
ordinary SBM by one order of magnitude, the RMM and BDS by four orders of mag-
nitude. In this case, we find that the solution accuracy and convergence rate of the
improved SBM and the BEM are very close. But it is worthy noting that the SBM is
inherently free of integration and mesh and far more computationally efficient, easier
to program, and mathematically simple than the BEM.
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Figure 4: Relative error curves for the circle domain, respectively, by using the improved and ordinary SBMs,
the RMM, the BDS and the BEM.

Figure 5: A multiply-connected domain with mixed boundary conditions.

3.3 A multiply-connected domain with mixed boundary conditions

Finally, the potential problem with multiply-connected domain subjected to the mixed-
type boundary conditions is considered. A square domain (0, 3)× (0, 3) with a regular
triangle hole is shown in Fig. 5 and the analytical solution is

u(x1, x2) = x2
1 − x2

2 + x1x2. (3.5)

In this example, we suppose that the Dirichlet conditions are prescribed on the
boundary of the square domain and the Neumann boundary conditions are prescribed
on the boundary of the triangle domain. The number of boundary nodes N used varies
from 150 to 3000. The boundary nodes are uniformly distributed along the boundary,
except for seven corner points. The interior point (0.2, 0.2) is chosen for the calculation
of the constant c used in the inverse interpolation technique. Again, we here give
the values of c for N = 150 and 300 in order to allow for checking of the possible
recalculations by the interested readers (c = −0.1882 for N = 150 and c = −0.1189
for N = 300).

Fig. 6 displays the relative error curve of the improved SBM at M = 240 field points
uniformly distributed along the square (0, 2.5)× (0, 2.5), compared with those by us-
ing the ordinary SBM, RMM, BEM and MFS. Again, the BEM solutions are obtained
using liner discontinuous boundary elements. For the MFS solution, our experiments
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Figure 6: Relative error curves for the multiply-connected domain, respectively, by using the improved and
ordinary SBMs, the RMM, the BEM and the MFS.

find that the fictitious boundaries having the same geometrical shape of the corre-
sponding boundary are optimal. As in the first example, the distance d of the fictitious
boundary away from the physical boundary is quantified by the unit s which is the
interval spacing of nodes on the physical boundary.

It can be observed from Fig. 6 that when the number of boundary nodes less than
2100, the BEM converges slightly faster than the improved SBM. However, the im-
proved SBM outperforms the BEM as the number of boundary nodes increases, i.e.,
after 2100 boundary nodes. We can observe that the ordinary SBM has an oscillatory
convergence curve of relative errors with the increase of the boundary node number.
The present SBM remedies this drawback and performs stably with a fast conver-
gent rate, indicating that the method works well with complicated domain problems.
Compared with the RMM, the improved SBM is more accurate by about two orders
of magnitude. In addition, we can see that when the number of boundary nodes less
than 750, the MFS with d = s has the faster convergence rate than the improved SBM.
However, with the increasing boundary nodes, the relative error curve of the MFS
(d = s) oscillates severely, while the improved SBM remains steady and ultimately
is more accurate than the MFS by one order of magnitude. It was also found that
the MFS solution accuracy with the fictitious boundary d = s/2 dramatically deterio-
rates compared with the fictitious boundary d = s. This illustrates that the location of
source nodes is vital to the accuracy and stability of the MFS solution.

4 Conclusions

This paper proposed an improved formulation of singular boundary method to solve
the Laplace problems subjected to Dirichlet, Neumann or mixed-type boundary con-
ditions. The finite values of the origin intensity factors on the Neumann boundary
condition have been extracted out and accurately evaluated by using the proposed
desingularization technique without using sampling nodes and solution. The origin
intensity factors on the Dirichlet boundary condition is calculated in a modified in-
verse interpolation technique without using sampling nodes. It is worthy of stress-
ing that the new formulation circumvents troublesome sampling points, one of major
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problems, in the ordinary SBM formulation, while retaining all its merits being math-
ematically simple, easy-to-program, accurate, truly meshless and integration-free. In
addition, the proposed new method avoids the controversy of the fictitious boundary
in the MFS, the double-layer potentials used in the RMM and the expensive calcula-
tion of diagonal elements in both the MMFS and the BDS. In a summary of overall
performances of our three numerical experiments, the present SBM is superior over
the RMM, the BEM, the BDS and also the MFS in terms of accuracy and stability.

The opening issues with the proposed improved SBM formulation are as follows.
We need to examine the SBM with more complicated cases. The origin intensity fac-
tors on the Dirichlet boundary condition still need to be indirectly determined by the
inverse interpolation technique via sample solution of problem of interest. A novel
approach tackling this issue is now under intense study and the further results will be
reported in a subsequent paper.

The proposed improved SBM for 2D Laplace problems also offers great promise
in the analysis of many other problems, including elasticity or Stokes flow problems.
Some work along this line is already underway and will be reported in a subsequent
paper.

Appendix: The detail derivations of Eq. (2.8)

The null-fields of the boundary integral equations based on the direct method is [11,
28]:

0 =
∫

Γ

[
u∗C(xi, s)

∂u(s)
∂ns

− ∂u∗C(xi, s)
∂ns

u(s)
]
dΓ(s), xi ∈ ΩC, (A.1)

where the superscript (C) denotes the exterior domain, s is the source point located on
the physical boundary, xi is the field point. Substituting the simple solution u(s) = 1,
∂u(s)/∂ns = 0 into the Eq. (A.1), we can obtain the following equation:

∫
Γ

∂u∗C(xi, s)
∂ns

dΓ(s) = 0, xi ∈ ΩC. (A.2)

When the field point xi approaches the boundary, we can discretize the Eq. (A.2) as
follows:

∫
Γ

∂u∗C(xi, s)
∂ns

dΓ(s) =
N

∑
j=1

∫
Γj

∂u∗C(xi, s)
∂ns

dΓj(s)

≈
N

∑
j=1

∂u∗C(xi, sj)

∂nsj

lj = 0, xi, sj ∈ Γ, (A.3)
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where lj is half distance of the source nodes sj−1 and sj+1. When the distribution of
boundary nodes is uniform, we are able to reduce the Eq. (A.3) to the following form:

N

∑
j=1

∂u∗C(xi, sj)

∂nsj

= 0, xi ∈ Γ, (A.4)

which is the Eq. (2.8) in the text of Section 2.1.
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