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Abstract. We develop a novel numerical method for solving the nonlinear filtering
problem of jump diffusion processes. The methodology is based on numerical approx-
imation of backward stochastic differential equation systems driven by jump diffusion
processes and we apply adaptive meshfree approximation to improve the efficiency of
numerical algorithms. We then use the developed method to solve atom tracking prob-
lems in material science applications. Numerical experiments are carried out for both
classic nonlinear filtering of jump diffusion processes and the application of nonlinear
filtering problems in tracking atoms in material science problems.
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1 Introduction

The nonlinear filtering problem is one of the key missions in data assimilation, in which
observations of a system are incorporated into the state of a numerical model of that
system. Mathematically, the nonlinear filtering problem is to obtain, recursively in time,
the best estimate of the state of unobservable stochastic dynamics S= {St : t≥ 0}, based
on an associated observation process, M = {Mt : t≥ 0}, whose values are a function of
S after corruption by noises. This suggests the optimal filtering problem of obtaining
the conditional distribution of the state St from the observations up until time t, which
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achieves the best estimate of this distribution, in the squared error sense, based on the
available observations.

The nonlinear filtering theory finds its applications in numerous scientific and engi-
neering research areas, such as target tracking [17, 34], signal processing [26, 38], image
processing [51, 52], biology [16, 37, 53], or mathematical finance [10, 19, 21]. Some of the
pioneer contributions to the development of nonlinear filters are due to Kushner [36] and
Stratonovich [54]. Later, Zakai [59] introduced an alternative approach to the computa-
tion of the nonlinear filter by developing the so-called Zakai equation, which is a stochas-
tic partial differential equation (SPDE), and the best estimate of the nonlinear filter, i.e. the
conditional distribution, is represented by the solution of the Zakai equation. Although
the Zakai’s approach produces the “exact” solution of the nonlinear filtering problem in
theory, solving the SPDEs numerically can be extraordinarily difficult, especially when
the state processes are in high dimensions [5,23,32,60]. A more widely accepted method
by practitioners to solve the nonlinear filtering problem is the sequential Monte Carlo
approach, which is also known as the particle filter method [4, 11, 13, 18, 24, 33, 40, 41].
The particle filter method uses a number of independent random variables, called parti-
cles, sampled directly from the state space to represent the prior probability, and updates
the prior by including the new observation to get the posterior. This particle system is
properly located, weighted and propagated recursively according to Bayes’ theorem. As
a Monte Carlo approach, with sufficient large number of samples the particle filter pro-
vides an accurate representation of the state probability density function (pdf) as desired
in the nonlinear filtering problem. Convergence of a particle filter to the optimal filter
was shown under certain conditions [14, 15, 27]. In addition to the Zakai’s approach and
Monte Carlo type approach, the authors have developed an alternative method, which
solves the nonlinear filtering problem through a forward backward doubly stochastic
differential equations (BDSDEs) system. The theoretical basis of the BDSDEs approach is
the fact that the BDSDEs system is equivalent to a parabolic type SPDE and the solution
of that system is the conditional distribution of the state as required in the nonlinear fil-
tering problem [3,6–8]. In this connection, it produces the exact solution of the nonlinear
filtering problem, just like the Zakai’s approach. In the meantime, as a stochastic ordinary
differential equation (SDE) approach, it also relies on stochastic sampling, just like the
particle filter method. Therefore, the BDSDEs approach builds the bridge between the
Zakai’s approach and the Monte Carlo type approach.

In this paper, we consider a more general nonlinear filtering problem – the nonlinear
filtering problem for jump diffusion processes, in which the state process St is a jump
diffusion process and the state dynamic is perturbed by both traditional Gaussian noises
and other kinds of Lévy type noises. Different from classical nonlinear filtering problems,
numerical methods to solve the nonlinear filtering problem for jump diffusion processes
are not well developed. The existing methods for solving this type of problems focus
on numerical approximation for its corresponding Zakai equation [43, 49, 50]. However,
due to the nonlocal behavior of the state dynamics as a jump diffusion process, the corre-
sponding Zakai equation contains fractional derivatives in spatial dimension, which is a
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stochastic partial-integral differential equation (PIDE). The current numerical approaches
to solve this type of stochastic PIDEs are extensions of existing methods for local partial
differential equations, such like finite element, finite difference, etc.. It is well known that
the partial-integral operator is a nonlocal operator, which may result in severe computa-
tional difficulties coming from the dramatic deterioration of the sparsity of the stiffness
matrices required by the underlying linear systems. Although the particle filter frame-
work could be extended to solve the nonlinear filtering problem for jump diffusion pro-
cesses, as a typical drawback of Monte Carlo type approach, the particle filter method
has very poor tail approximation for the state distribution especially when the state is
perturbed by Lévy type noises, which causes severe degeneracy problem for long term
simulations [12, 18].

In this work, we aim to develop an efficient numerical method to solve the nonlin-
ear filtering problem for jump diffusion processes. The main theme of our approach is
established on numerical approximations for a special kind of SDEs system, which is
combined by a forward SDE and a backward SDE. We call this SDEs system a backward
SDEs system, and name the general backward SDEs approach for solving nonlinear filter-
ing problems the Backward SDE filter [8]. Instead of using the equivalent relation between
BDSDEs and the standard Zakai equation as introduced in [8], in our novel approach for
the nonlinear filtering problem for jump diffusion processes, we derive a backward SDEs
system driven by jump diffusion processes to describe the time evolution of the state dy-
namics St. The theoretical validation of this effort is based on the probabilistic interpreta-
tion for PIDEs, which is discussed in [2, 9], and our methodology in this paper simplifies
the BDSDEs approach by avoiding simulations of the doubly stochastic term in BDSDEs.
When receiving the observation measurements, we incorporate the data with the back-
ward SDEs system by using the Bayes’ theorem. In this connection, our method also
produces a representation of the conditional state distribution as required in the nonlin-
ear filtering problem and it maintains the accuracy property of the Zakai’s approach. On
the other hand, different from the Zakai’s approach, the Backward SDE filter for jump-
diffusion processes is still an SDE based approach and it allows us to approximate the
solution of nonlinear filtering problem on any selection of space points. Taking this ad-
vantage, we introduce a stochastic space points generation algorithm which generates
meshfree space points adaptively according to the state dynamics and the observations.
The central idea of this meshfree space points generation is to build dynamic random
space points according to the approximate state distribution. Specifically, we generate a
set of random samples from the initial distribution of the state and choose these samples
as our random space points. Then, we propagate these space points through the dynamic
system of the state. In this way, the space points move randomly according to the state
model and are more concentrated around the state of the dynamic model in the nonlin-
ear filtering problem. It is important to point out that the numerical approximation of
the backward SDEs system for different selection of space points is independent. There-
fore the Backward SDE filter has the same scalability as the Monte Carlo type approach.
However, there is an essential difference with respect to the selection of random space
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points in the Backward SDE filter and the generation of random samples in the Monte
Carlo type approaches. In the Backward SDE filter we approximate the value of state
pdf on each space point instead of using the number of samples to describe the empiri-
cal distribution. In this way, the backward SDE filter requires much fewer space points
compared to the sample-size in the Monte Carlo method. With the numerical approxi-
mation of the solution of the backward SDE on the dynamic space points, we apply the
Shepard’s method which is an effective meshfree interpolation method to construct the
approximation of the entire conditional pdf in the state space. To prevent space points
degeneracy for long term simulations, we introduce a Markov Chain Monte Carlo based
resampling method to update the space points according to the observation information.
In order to distinguish the Backward SDE filter introduced in [8], in this paper, we name
the Backward SDE filter for jump diffusion processes as the “Lévy Backward SDE filter”.
It is also worthy to mention that although the original Backward SDE filter would solve
the classic nonlinear filtering problem effectively and efficiently, since its lack of the as-
sumption for the jumps in the state model, it is not suitable for estimating the state of
stochastic dynamics in the form of jump diffusion processes. With the appropriate Lévy
terms introduced in the backward SDE system, to our best knowledge, the Lévy Back-
ward SDE filter discussed in this paper is the first attempt to use backward SDE systems
to solve the nonlinear filtering problem for jump diffusion processes.

Taking the aforementioned advantages of the Lévy Backward SDE filter, we then ap-
ply our developed method in solving problems in material science applications. Specifi-
cally, we study the application of Lévy Backward SDE filter in tracking atom trajectories
moving on material surfaces. The so-called atom-tracking method provides a general ap-
proach to study diffusion of single atoms and molecules on a flat surface (typically a no-
ble metal), and it also underlies the mechanism of single-atom manipulation [29, 31, 44].
In both cases an atomically sharp probe (made from a sharp metal needle) is scanned
over the surface with sub-angstrom accuracy, typically producing the images of atomic-
scale corrugation of the electronic density of states (in the case of scanning tunneling
microscopy) or total electron density (in the case of atomic force microscopy [22]). The
regimes of observation and manipulation are delineated in these methods of scanning
probe microscopy by the strength of probe-atom (or probe-molecule) interaction, which
in turn can be controlled by the degree of proximity between the probe and the observed
atom [39,44]. Many interesting examples of this method have been demonstrated – from
creation of artificial atomic structures (such as quantum corrals [29]) to non-trivial dif-
fusion mechanisms, including quantum tunneling of hydrogen. The tracking efficiency
translates into both success and relative speed of manipulation, and is therefore of utmost
importance. The frequency of both manipulation and diffusion of single atoms generally
follow Poisson statistics, which makes the analysis of corresponding time-series a great
fit to our Lévy Backward SDE filter.

The major contribution of this paper is in twofolds: to develop an efficient Lévy Back-
ward SDE filter for jump diffusion processes, and to introduce the potential application
of the developed algorithms in material sciences. The rest of this paper is organized as
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following. In Section 2, we introduce some preliminary theories for the nonlinear filter-
ing problem and the backward SDEs system. In Section 3, we develop the methodology
and numerical algorithms for our Lévy Backward SDE filter. Numerical experiments are
carried out in this section to examine the performance of our algorithms. In Section 4, we
discuss the application of the Lévy Backward SDE filter in material sciences and demon-
strate the effectiveness of the Lévy Backward SDE filter in tracking atom trajectories on
two different material surfaces.

2 Preliminaries

In this section, we introduce preliminary theories for the methodology of this paper. We
first give a brief discussion to nonlinear filtering problems for jump diffusion processes.
Then we introduce the backward SDEs system for jump diffusion processes and it’s rela-
tion to integral-partial differential equations.

2.1 Nonlinear filtering problems for jump diffusion processes

Let (Ω,F ,P) be a probability space and denote {Ft}0≤t≤T to be a filtration possesses right
continuity, i.e. Ft=Ft+, and F0 is the σ-algebra contains all the P zero measure zero sets.
In this paper, the filtration {Ft}0≤t≤T is assumed to be generated by two mutually inde-
pendent processes: a d-dimensional Brownian motion Wt and a d-dimensional Poisson
random measure µ(t,A) on [0,T]×E where E=R

k\{0} is equipped with its Borel field
E , with compensator ν(dt,de)=dtλ(de), such that {µ̃([0,t]×A)=(µ−ν)([0,t]×A)}t≥0 is a
martingale for all A∈E satisfying λ(A)<∞ and λ(de) is assumed to be a σ-finite measure
on (E,E) satisfying

∫

E

(1∧|e|2)λ(de)<+∞,

where |·| denotes the standard Euclidean norm in Euclidean spaces.
In this paper, we consider the nonlinear filtering problem of jump diffusion processes

in its state-space form on the probability space (Ω,F ,P) and introduce the following
stochastic processes

dSt =b(St)dt+σtdWt+
∫

E

βt(e)µ̃(dt,de),

Mt=h(St,Bt),
(2.1)

where b:Rd→R
d and h:Rd×R

l→R
l are nonlinear functions, βt :E→R

d is a d-dimensional
process on E, Wt∈R

d and Bt∈R
l are two independent Brownian motions, µ̃ is the com-

pensated Poisson random measure describes jumps in the model, σt∈R
d×d is the coeffi-

cient matrix for Brownian motion Wt. The given initial value S0 of (2.1) is independent of
Wt, µ̃ and Bt, and has a probability distribution with density function Pr. The stochastic
process {St}t≥0 defined by the stochastic differential equation (SDE) describes the dy-
namics of a jump diffusion process, which is named the state process, and {Mt}t≥0 is the
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noise perturbed measurement of the state {St}t≥0 with observation function h(St,Bt).
When the coefficient β≡ 0 in the state process, the state-space form (2.1) gives a nonlin-
ear filtering problem of standard Brownian motion driven diffusion processes. In most
applications, the measurement Mt is received at discrete time and the noise from mea-
surement can be assumed to be additive. In this way, the measurement is formulated in
a discrete manner as

Mtn =h(Stn)+RḂtn , n=1,2,··· , (2.2)

where R∈R
l×R

l is the covariance matrix of the noise. The goal of the nonlinear filtering
problem is to derive the least squares estimate of a functional ψ(St) of the state process
St, given all the observation information of Mt up to time t. In other words, we aim to
find the optimal filter ψ̃(St), such that

ψ̃(St) :=E[ψ(St)|Mt]= inf{E[|ψ(St)−Kt|
2]; Kt∈Kt},

whereMt :=σ{Ms, 0≤ s≤ t} is the σ-algebra containing all the observation information
up to time t, and Kt is the space of all Mt measurable and square integrable random
variables.

2.2 Backward SDEs driven by jump diffusion processes

As preliminaries for our methodology, we introduce a system of backward SDEs on prob-
ability space (Ω,F ,P) driven by the state process St defined in (2.1). Let S2 denote
the set of Ft-adapted càdlàg one dimensional processes such that for stochastic process
{Yt, 0≤ t≤T}∈S2 , we have

‖Y‖S2 =‖ sup
0≤t≤T

|Yt|‖L2(Ω)<∞.

Let L2
W be the set of Ft- progressively measurable d-dimensional processes such that for

stochastic process {Zt, 0≤ t≤T}∈L2
W , we have

‖Z‖S2 =

(

E
∫ T

0
|Zt|

2dt

)1/2

<∞.

In addition, we use L2
µ̃ to denote the set of mappings U :Ω×[0,T]×E→R which are P⊗E

measurable, where P denotes the σ-algebra of Ft-predictable subsets of Ω×[0,T], and
such that

‖U‖L2(µ̃) :=

(

E
∫ T

0

∫

E

Ut(e)
2λ(de)dt

)1/2

<∞.

Finally, we define B2=S2×L2
W×L2

µ̃.
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We consider the following forward backward stochastic differential equations system

X̄t = X̄0+
∫ t

0
b(X̄s)ds+

∫ t

0
σsdWs+

∫ t

0

∫

E

βs(e)µ̃(ds,de), 0≤ t≤T, (2.3a)

Yt=ψ(X̄T)+
∫ T

t
f (s,X̄s,Ys,Zs)ds−

∫ T

t
ZsdWs−

∫ T

t

∫

E

Us(e)µ̃(ds,de), 0≤ t≤T, (2.3b)

where Wt∈R
d is a d-dimensional standard Brownian motion, µ̃ is a compensated Poisson

random measure, b :Rd→R
d, σt∈R

d×d, βt∈R
d and f :[0,T]×R

d×R×R
d→R is a measur-

able function. For the convenience of presentation, we call the stochastic system (2.3) a
backward SDEs system. Eq. (2.3a) in the above backward SDEs system is a forward SDE
which describes the same diffusion of the state process (2.1) and Eq. (2.3b) is a backward
SDE with a given initial condition YT =ψ(X̄T). The solution of the backward SDEs sys-
tem (2.3) is a quadruplet (X̄t,Yt,Zt,Ut) with the triple (Yt,Zt,Ut)∈B2. The existence and
uniqueness of the solution quadruplet are provided by [9]. It is known that Yt and Zt

are both functions of X̄t (see [45]) and we also known from [9] that under the condition
X̄0= x∈R

d,
Zt=σt∇Yt, Ut=Yt(X̄t−+βt(e))−Yt(X̄t−), (2.4)

where∇ is the gradient and the minus sign in Xt− is the left limit.
An important property of the backward SDEs system is its equivalence to the follow-

ing parabolic integro-partial differential equation (PIDE)

−
∂ut

∂t
(x)=Ltut(x)+ f (t,x,ut,σt∇ut(x)), (t,x)∈ [0,T]×R

d,

uT(x)=ψ(x), x∈R
d,

(2.5)

where the second order integral-differential operator L is of the form Lt =At+Kt, with

Atφ(x)=
1

2

d

∑
i,j=1

(

(σtσ
∗
t )ij

∂2φ

∂x2
(x)

)

+
d

∑
i=1

(bt)i(x)
∂φ

∂xi
(x), φ∈C2(Rd),

Ktφ(x)=
∫

E

[

φ
(

x+βt(e)
)

−φ(x)−βt(e)∇φ(x)
]

λ(de), φ∈C2(Rd).

The side condition of the above equation is given at time T and the propagation direction
is backward, i.e. from T to 0. It has been shown in [9] that the solution Y of the backward
SDEs system (2.3) is the unique viscosity solution of (2.5), i.e. for any given point x∈R

d

we have
Yt(x)=ut(x), (t,x)∈ [0,T]×R

d. (2.6)

3 Lévy Backward SDE filter for jump diffusion processes

Now, we introduce the backward SDEs approach for the nonlinear filtering problem of
jump diffusion processes. In Subsection 3.1, we first derive the methodology of solv-
ing the nonlinear filtering problem through a backward SDEs system and we name this
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methodology the Lévy Backward SDE filter. In Subsection 3.2, we develop an effective and
efficient numerical scheme to solve the Lévy Backward SDE filter. Then, we present nu-
merical examples to show the performance of our Lévy Backward SDE filter in solving
the nonlinear filtering problem (2.1) in Subsection 3.3.

3.1 Methodology

The framework of the Lévy Backward SDE filter is composed by two major tasks: (i) esti-
mate the state process without observation information; (ii) incorporate observation with
the state estimation. The second task is typically achieved by applying Bayes’ theorem,
which we also adopt in the Lévy Backward SDE filter for jump diffusion processes. To
achieve the first task, we introduce a backward SDEs system, which describes the prob-
ability density function (pdf) of the state, and solve the corresponding backward SDEs
system.

To proceed, we first consider the following special case of backward SDEs system
(2.3)

St= S0+
∫ t

0
b(Ss)ds+

∫ t

0
σsdWs+

∫ t

0

∫

E

βs(e)µ̃(ds,de), 0≤ t≤T, (3.1a)

Yt=ψ(ST)−
∫ T

t
ZsdWs−

∫ T

t

∫

E

Us(e)µ̃(ds,de), 0≤ t≤T, (3.1b)

where the forward SDE (3.1a) is a standard jump diffusion process which has the same
definition as the state process (2.1) in the nonlinear filtering problem. Taking condi-

tional expectation to both sides of (3.1b), from the martingale property of
∫ T

t
ZsdWs and

∫ T
t

∫

E
Us(e)µ̃(ds,de), we obtain

E[Yt]=E[ψ(ST)],

which is a simplified Feynman-Kac formula. From the equivalence relation between
backward SDEs systems and PIDEs, we know that the backward SDEs system (3.1) is
equivalent to the following PIDE

−
∂ut

∂t
(x)=

1

2

d

∑
i,j=1

(

(σtσ
∗
t )ij

∂2ut

∂x2
(x)

)

+
d

∑
i=1

(bt)i(x)
∂ut

∂xi
(x)

+
∫

E

[

ut

(

x+βt(e)
)

−ut(x)−βt(e)∇ut(x)
]

λ(de) (t,x)∈ [0,T]×R
d ,

uT(x)=ψ(x), x∈R
d,

(3.2)

which is also known as a Kolmogorov backward equation of jump diffusion processes.
By applying integration by parts formula and Taylor expansion, one can prove that the
Kolmogorov backward equation (3.2) is adjoint to the following Fokker Planck type equa-
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tion [50, 55]

∂pt

∂t
(x)=

d

∑
i,j=1

1

2
(σtσ

∗
t )ij

∂2 pt

∂x2
(x)−

d

∑
i=1

(

(bt)i(x)
∂pt

∂xi
(x)+

∂(bt)i

∂xi
(x)pt(x)

)

+
∫

E

(

pt(x−βt(e))−pt(x)+βt(e)∇pt

)

λ(de), (t,x)∈ [0,T]×R
d,

p0(x)=Pr(x),

(3.3)

where the initial condition p0 is the given pdf Pr of the initial state random variable S0,
and the propagation direction of the equation is forward, i.e. from 0 to T. Actually, it
is well known that the solution pt of the Fokker-Planck type equation (3.3) describes the
probability evolution of the stochastic process St defined by (2.1), i.e. pt is the pdf for St.

From the equivalence condition between backward SDEs and PIDEs, we know that
there’s a backward SDEs system corresponding to the Fokker-Planck type equation (3.3).
Since the Fokker-Planck type equation (3.3) has opposite time propagation direction to
the Kolmogorov backward equation (3.2), the backward SDEs system equivalent to (3.3)
also has opposite propagation direction to the backward SDEs system (3.1). From the gen-
eral equivalence relation between (2.3) and (2.5), and the expression of the Fokker-Planck
type equation (3.3), we obtain that the following backward SDEs system is equivalent to
equation (3.3)

X0= Xt−
∫ t

0
b(Xs)ds−

∫ t

0
σsd
←−
W s−

∫ t

0

∫

E

βs(e)µ̃(ds,de), 0≤ t≤T, (3.4a)

Pt=Pr(X0)−
∫ t

0

d

∑
i=1

∂(bs)i

∂xi
(Xs)Psds−

∫ t

0
Qsd
←−
W s−

∫ t

0

∫

E

Vs(e)µ̃(ds,de), 0≤ t≤T, (3.4b)

where
∫ t

0 ·d
←−
W t is an Itô integral integrated backwardly, i.e. from t to 0, adapted to a

backward filtration of the Brownian motion Wt and is named backward Itô integral (see [46]
for details). With any given state Xt as the side condition and the backward Itô integral
in the equation, (3.4a) can be considered as an SDE with backward propagation direction.
We also want to mention that although we have inverted the propagation direction for
the SDE (3.4a), it doesn’t matter what sign we put in front of the backward Itô integral
∫ t

0
σsd
←−
W s due to the symmetric property of Itô integrals. Similarly, we can observe that

the second equation in (3.4) is also a time inverse backward SDE with initial condition
P0=Pr and has the same structure to (2.3b). As a result, (3.4) is a time inverse backward
SDEs system with solution quadruplet (Xt,Pt,Qt,Vt). From the equivalent relation (2.6),
we know that the solution Pt of the backward SDEs system (3.4) is equivalent to the
solution pt of the Fokker-Planck type equation (3.3), i.e.

Pt(x)= pt(x). (3.5)

Therefore, the numerical approximation of the solution Pt in (3.4) is also the approxima-
tion for the pdf of state St.
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In this connection, we introduce the methodology of the Lévy Backward SDE filter,
which solves for the conditional pdf of the state process in two steps: a Prediction Step and
an Update Step. In the Prediction Step, we solve the backward SDE system (3.4) numeri-
cally, and use the approximate solution as the predicted pdf for the state without using
observation information. In the Update Step, we incorporate the observed measurement
with the predicted pdf by using the Bayes’ theorem. In what follows, we provide our
efficient numerical algorithms for the Lévy Backward SDE filter.

3.2 Numerical algorithms

To introduce a recursive discretized numerical scheme, we consider a temporal partition
over the time period [0,T] as Rt := {tn|0 = t0 < t1 < t2 < ···< tNT−1 < tNT

= T} and let
∆tn = tn+1−tn, ∆Wtn =Wtn+1

−Wtn . We also assume that the observation measurements
are received at time tn, n=1,2,··· ,NT.

Lévy Backward SDE filter framework

Prediction Step. The major task in the Prediction Step is to solve the backward SDEs
system (3.4) on time interval [tn,tn+1], n=0,1,··· ,NT−1, i.e.

Xtn =Xtn+1
−
∫ tn+1

tn

b(Xs)ds−
∫ tn+1

tn

σsd
←−
W s−

∫ t

0

∫

E

βs(e)µ̃(ds,de), (3.6a)

Ptn+1
=Ptn−

∫ tn+1

tn

d

∑
i=1

∂(bs)i

∂xi
(Xs)Psds−

∫ tn+1

tn

Qsd
←−
W s−

∫ tn+1

tn

∫

E

Vs(e)µ̃(ds,de), (3.6b)

assuming Ptn is known. It’s worthy to point out that in the nonlinear filtering problem, the
initial condition Ptn for the above backward SDEs system is chosen to be the conditional
pdf of the state Stn given observation information Mtn , i.e. Ptn = p(Stn |Mtn). In what
follows, we first derive a temporal discretization scheme for (3.6), and then discuss the
spatial discretization later in this subsection.

Consider Eq. (3.6a). We use Euler-Maruyama scheme to discretize the integrals and
approximate the solution Xtn by

Xtn =Xtn+1
−b(Xtn+1

)∆tn−σtn+1
∆Wtn−

∫

E

βtn+1
(e)µ̃(∆tn,de)+Rn

X , (3.7)

where Rn
X is the approximation error of the equation.

To derive a numerical scheme for the backward SDE in (3.6), we take conditional
expectation En+1[·] on both sides of (3.6b), where En+1[·] :=E[·

∣

∣Xtn+1
]. It follows from the

facts

En+1

[

∫ tn+1

tn

Qsd
←−
W s

]

=0,

En+1

[

∫ tn+1

tn

∫

E

Vs(e)µ̃(ds,de)

]

=0
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and En+1[Ptn+1
]=Ptn+1

that Eq. (3.6b) becomes

Ptn+1
=En+1[Ptn ]−

∫ tn+1

tn

En+1

[

d

∑
i=1

∂(bs)i

∂xi
(Xs)Ps

]

ds. (3.8)

Then, we use the left point formula to discretize the deterministic integral in (3.8) to get

Ptn+1
=En+1[Ptn ]−En+1

[

d

∑
i=1

∂(btn)i

∂xi
(Xtn)Ptn

]

∆tn+Rn
P, (3.9)

where Rn
P is the approximation error of the equation.

Next, we drop the errors terms Rn
X and Rn

P in approximations (3.7) and (3.9), respec-
tively, and obtain the numerical schemes for solving X and P as following

Xn =Xn+1−b(Xn+1)∆tn−σtn+1
∆Wtn−

∫

E

βtn+1
(e)µ̃(∆tn,de), (3.10a)

P̃n+1=En+1[Pn]−En+1

[

d

∑
i=1

∂(btn)i

∂xi
(Xn)Pn

]

∆tn, (3.10b)

where Xn is an approximation for solution Xtn and P̃n+1 is an approximation for solution
Ptn+1

. From the equivalence relation (3.5), we know that the numerical solution P̃n+1 is
an approximation for conditional pdf of the state St at time instant tn+1 before receiving
measurement data, i.e. P̃n+1≈ p(Sn+1

∣

∣Mtn).

Remark 3.1. Although the solution of the backward SDE system (3.6) is a quadruplet
(X,P,Q,V), we do not need numerical approximations for solutions Q and V in neither
the nonlinear filtering applications, nor the numerical scheme (3.10). Therefore, in this
approach, we do not discuss numerical schemes for Q and V.

Update Step. To derive an approximation for the conditional pdf p(Stn+1

∣

∣Mtn+1
) and

to incorporate the measurement data at time tn+1, we apply Bayes’ theorem to combine
the estimate pdf P̃n+1 obtained in the Prediction Step with the data Mtn+1

. Specifically, we
let

Πn+1(x) :=
P̃n+1(x)Ψn+1(x)

Cn+1
, (3.11)

where Ψn+1(x) := exp
(

− 1
2R‖Mtn+1

−ψ(x)‖2
)

is proportional to the Gaussian likelihood
function, Cn+1 is a normalization factor. Apparently, Πn+1 is an approximation for
the conditional pdf of the state given observation information Mtn+1

, i.e. Πn+1 ≈
p(Stn+1

∣

∣Mtn+1
), and we let Pn+1=Πn+1.

With the Prediction Step and the Update Step introduced above, we establish the
basic framework of our Lévy Backward SDE filter: At each recursive time stage tn→tn+1,
n= 0,1,2,··· ,NT−1, we let Pn =Πn be the initial condition of the time inverse backward
SDE system and use numerical scheme (3.10) to calculate predicted state pdf P̃n+1. Then,
we update the state pdf through (3.11) to get the approximate conditional pdf Πn+1 for
the state Stn+1

.
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Adaptive meshfree approximations

The numerical scheme (3.10) for the backward SDE system (3.6) can be considered as
a temporal discretization scheme. In order to provide an effective numerical approxi-
mation for the solution Ptn+1

as a function of the random variable Xtn+1
, we need to ap-

proximate the conditional expectation En+1[·], which is a functional of Xtn+1
. This could

also be considered as a spatial discretization method. Since Xtn+1
is a continuous random

variable in the state space R
d, it’s impossible to approximate En+1[·] on all possible val-

ues of Xtn+1
and a representation of Xtn+1

is required. In this work, we choose a set of
space points, denoted by Dn+1 := {x1

n+1,··· ,xN
n+1} ∈R

d, to be a representation of Xtn+1
,

and the corresponding conditional expectation values, i.e. {E[·|Xtn+1
= xi

n+1]}xi
n+1∈Dn+1

, is

the approximation of the conditional expectation En+1[·]. Although the standard tensor
product mesh is a straightforward option for the representation of the random variable
Xtn+1

, the numerical approximation for En+1[·] over a tensor product mesh is not feasi-
ble for two reasons. First of all, the tensor product mesh suffers the so-called “curse of
dimensionality” – the number of grid points increases exponentially as the dimension d
increases. Secondly, the pdf of the random variable Xtn+1

has unbounded support and the
domain of the tensor product mesh needs to be sufficiently large to cover the true target
state.

To address the aforementioned difficulties of tensor product mesh, we use a stochas-
tic meshfree construction of Dn+1, which could also be considered as an adaptive space
points generation method. To proceed, we first generate a set of N random samples, de-
noted by {ξ i}N

i=1, from the pdf Pr of the initial state S0. Apparently, the random samples
{ξ i}N

i=1 are more concentrated in the high density region of Pr and we letD0:={xi
0}={ξ

i},
i.e. xi

0 = ξ i for i=1,2,··· ,N. For time step n=0,1,2,··· ,NT−1, we propagate space points
{xi

n} to {xi
n+1} through the state dynamic (2.1), i.e.

xi
n+1= xi

n+b(xi
n)∆tn+σtn wi

tn
+Li

tn
(β,µ̃), i=1,2,··· ,N, (3.12)

to get our space points setDn+1 :={xi
n+1} at time stage tn+1, where wi

tn
is the i-th random

sample according to the normal distribution N(0,∆tn), and we denote Li
tn
(β,µ̃) as the

numerical approximation for the Lévy term
∫

E
βtn(e)µ̃(∆tn,de) corresponding to the i-

th sample. There are different numerical approximation schemes for Li
tn
(β,µ̃) based on

the choice of Lévy characteristic function in the problem. The discussion of numerical
approximations for Lévy processes is out of scope of this paper and we refer to [30,48,61]
for details. We can see from our construction of space points that the points in Dn+1,
n= 0,1,2,··· ,NT−1, move dynamically according to the state model (2.1) in a stochastic
manner and the points are more concentrated in the high probability density region of
the state Stn+1

.
With a set of pointsDn+1, we approximate the conditional expectation En+1[·] on each

point in Dn+1, i.e. compute {Exi

n+1[·]}
N
i=1, where Exi

n+1[·] :=E[·
∣

∣Xtn+1
]
∣

∣

Xtn+1
=xi

n+1
is the value

of conditional expectation on the space point xi
n+1. In this research, we use the Monte
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Carlo method to approximate conditional expectations [1, 42]. To be specific, for each

given space point xi
n+1, we approximate the expectation Exi

n+1[Pn] on the right hand side
of (3.10b) as

Exi

n+1[Pn]≈
1

M

M

∑
m=1

P̂n(xi,m
n ), (3.13)

where M is the number of samples in the Monte Carlo simulation, and the space point xi,m
n

is obtained by solving the forward SDE in the backward SDE system, which is given by

Eq. (3.10a) as xi,m
n =xi

n+1−b(xi
n+1)∆tn+σtn+1

w̄m
tn
− L̄m

tn+1
(β,µ̃), where w̄m

tn
is the m-th sample

of the distribution N(0,∆tn) independent from {wi
tn
} and L̄m

tn+1
is the m-th sample of the

numerical approximation for
∫

E
βtn+1

(e)µ̃(∆tn,de), which is also independent from {Li
tn
}.

The approximation term P̂n(xi,m
n ) in Eq. (3.13) is an interpolatory approximation of Pn at

xi,m
n based on values {Pn(xi

n)}xi
n∈Dn

with the scheme

P̂n(xi,m
n )= ∑

xi
n∈Dn

Pn(xi
n)Γ

i(xi,m
n ),

where {Γi}N
i=1 is a set of basis functions. The Monte Carlo approximation for the expecta-

tion En+1

[

∑
d
i=1

∂(btn)i

∂xi
(Xn)Pn

]

in (3.10b) is followed directly by a scheme similar to (3.13).

In order to approximate P̂n given values of Pn on randomly generated meshfree space
points Dn, an effective interpolation method is needed. However, the standard polyno-
mial interpolation methods are not applicable to approximate P̂n due to uncontrollable
approximation errors [57]. To overcome this challenge, we use radial basis approximation
to construct the interpolant P̂n. Specifically, in this work we apply Shepard’s method [20]
as our radial basis approximation to compute P̂n(x) for any point x∈R

d. The Shepard’s
method is also known as the “Inverse Distance Weighting” method. It uses the weighted
average of values {Pn(xi

n)}xi
n∈Dn

based on the distance between x and {xi
n} to construct

the interpolant. For a given space point x∈R
d, we reorder the points inDn by the distance

to x from short to long to get a sequence {xn(j)}N
j=1 such that ‖xn(j)−x‖≤‖xn(k)−x‖ if

j<k, where ‖·‖ is the Euclidean norm in R
d. Then, we choose a proper integer J≤N and

use the weighted average of the first J values in {Pn(xn(j))}N
j=1 to approximate P̂n(x), i.e.

P̂n(x)=
J

∑
j=1

Pn(xi
n)Γ̄

j(x),

where Γ̄j(x) is the inverse distance weight and is defined by

Γ̄j(x) :=
‖xn(j)−x‖

∑
J
j=1‖xn(j)−x‖

, xn(j)∈{xn(j)}N
j=1.
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Note that ∑
J
j=1 Γ̄j(x) = 1. As a result of our stochastic space points generation method

and the meshfree approximation in Monte Carlo simulations, we obtain numerical ap-
proximations for conditional expectations, and therefore numerical approximations for
the state pdf on adaptively selected meshfree space points.

It is worthy to point out that there are essential differences between the adaptive
meshfree approximation in the Lévy Backward SDE filter and the empirical approxima-
tion in the Monte Carlo type approaches. Although both the stochastic space points gen-
eration in the Lévy Backward SDE filter and the traditional Monte Carlo method gen-
erate random samples from a given probability distribution, the Lévy Backward SDE
filter could provide more accurate approximation for the solution of nonlinear filtering
problems with fewer sample points for the following reasons. First of all, the Lévy Back-
ward SDE filter approximates the value of the state pdf, which is the solution Pt in the
backward SDE system, at each space point instead of using the number of samples to
describe an empirical distribution in the Monte Carlo type approach. In this way, the
Lévy Backward SDE filter requires much fewer space points compare to the sample-size
of the Monte Carlo method. Secondly, in the Lévy Backward SDE filter we use mesh-
free interpolation to construct a smooth approximation of the state pdf. This is unlike
the empirical distribution obtained in the Monte Carlo method, which is equivalent to a
piece-wise constant approximation. Therefore the approximation that we obtain in the
Lévy Backward SDE filter is smoother and more accurate than the empirical distribution
simulation in the Monte Carlo method. In addition, for nonlinear filtering problems of
jump diffusion processes, the state distribution is more likely to have heavy tails due to
the nonlocal behavior of the state process. In this case, people need sufficient large num-
ber of samples in the Monte Carlo method to describe the heavy tails in a relatively large
region. On the other hand, the adaptive meshfree approximation in the Lévy Backward
SDE filter would provide smooth and more accurate tail distributions with much fewer
space points in the tails.

To demonstrate the performance of the adaptive meshfree approximation in describ-
ing heavy-tailed distributions, we approximate an α stable distribution by using adaptive
meshfree approximation and classic Monte Carlo method. To proceed, we define an α
stable distribution Φ(α,γ,β,δ) of a random variable X with characteristic function given
by

E[exp(itX)]=exp
(

−γα|t|α
[

1+iβsign(t)tan
πα

2

(

(γ|t|)1−α−1
)

]

+iδt
)

, α 6=1,

where the parameters are chosen to be α = 0.75, γ = 1, β = 0 and δ = 0. In Fig. 1, we
compare the adaptive meshfree approximation with the empirical distribution of Monte
Carlo method in approximating the α stable distribution Φ. The original α stable dis-
tribution is represented by the red curve in each subplot. For the adaptive meshfree
approximation, we approximate the distribution with 50 space points and use the black
curve and black cross marks to describe the approximated distribution and the adaptive
space points, respectively. The histogram in each subplot is the empirical distribution
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(a) (b)

(c)

Figure 1: Comparison of adaptive meshfree approximation with the empirical distribution of Monte Carlo method
in approximating the α stable distribution Φ: (a) empirical distribution with 50 samples; (b) empirical distribution
with 500 samples; (c) empirical distribution with 10,000 samples. The adaptive meshfree approximation uses
50 space points.

of Monte Carlo method and the number of samples increases from 50 to 500, and then
to 10,000 in subplots (a), (b) and (c), respectively. Since the adaptive space points in the
meshfree approximation are chosen randomly according to the target distribution, in this
demonstration we use the same 50 samples as the Monte Carlo simulation presented in
subplot (a). We can see from the figure that as the sample-size increases, the Monte Carlo
simulation becomes smoother and more accurate, and the empirical distribution with
10,000 samples is comparable to adaptive meshfree approximation with 50 space points.
Moreover, we can see from subplots (a) and (b) that with smaller sample-size in Monte
Carlo simulations, very few samples lie in the tails of distribution which makes the tail
description very unreliable. On the other hand, although only 50 space points are used to
approximate the distribution in the adaptive meshfree approximation and limited space
points lie in the tail regions, the interpolatory approximation still makes the tail distribu-
tion smooth and accurate.
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Markov Chain Monte Carlo resampling

In the stochastic space points generation method, the space points Dn move according
to the state model (2.1), which is a diffusion process. Therefore, the space points cloud
diverge for long term simulations and less space points are located in the high probability
density region of the state pdf after several simulation steps. This would make the space
points very sparse in the state space and the probability density tends to concentrate on
a few points, which dramatically reduces the meshfree interpolation accuracy.

To avoid the divergence problem of stochastic space points, inspired by the resam-
pling procedure in the particle filter method [1,24], we introduce a Markov Chain Monte
Carlo (MCMC) method based resampling step. MCMC method is a class of algorithms
for sampling from a probability distribution based on constructing an aperiodic and irre-
ducible Markov chain that has the desired distribution as its equilibrium distribution [58].
The state of the chain after sufficient large number of simulation steps can be treated as an
independent sample of the desired distribution. It is well known that MCMC method is
an effective sampling method for complicated distributions in high-dimensional spaces.
Taking the advantage of MCMC sampling, in this work we combine the solution of the
backward SDE system with the observation data and apply the MCMC method to re-
move the stochastic space points away from statistically insignificant regions of the state
pdf.

Specifically, in the Lévy Backward SDE filter framework, when we get the approxi-
mate solution Πn on Dn (n= 1,2,··· ,NT−1) and initiate the recursive stage tn→ tn+1 by
setting Pn =Πn, instead of propagating Dn to Dn+1 directly to construct the space point
set for Πn+1, we use MCMC sampling to create an observation informed intermediate
point set Dn+ 1

2
, and then propagate Dn+ 1

2
through the state model to get Dn+1. To create

the point set Dn+ 1
2
, we generate a Markov chain for each space point xi

n∈Dn to move it

away from the statistically insignificant regions. Since the interpolatory approximation
P̂n in the Lévy Backward SDE filter is a point-wise numerical approximation of the state
pdf, we use P̂n as the stationary distribution of the Markov chain for each space point. It
is worthy to point out that the Markov chain for each space point is based on the global
approximation of the state pdf which is also incorporated with the observation informa-
tion up to time level tn. In this way, our MCMC resampling procedure is incorporated
with the observation data, the data informed space points Dn+ 1

2
uses the observation in-

formation sufficiently and construct adaptive space points more effectively. There are
many sampling algorithms for the MCMC method and we use Metropolis-Hastings al-
gorithm [28] as an example to demonstrate our MCMC resampling method.

Algorithm summary

We summarize the recursive algorithms for Lévy Backward SDE filter for Jump Diffusion
Processes as follows:

Define a pdf Pr as the initial guess for the state S0 by setting Π0 =Pr, generate space
points D0∼Π0, and choose parameters N as number of space points, M as number of
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Monte Carlo samples, J as number of meshfree interpolation points, L as MCMC iteration
number. The space point setD1 is propagated from D0 directly without resampling since
there’s no observation information at time t=0.

For the recursive stage tn−1→ tn, n=1,2,··· ,NT, we implement

- Prediction Step: Solve the backward SDEs system with scheme (3.10) to get the pre-
dict state pdf P̃n;

- Update Step: Update the state pdf with scheme (3.11) to get Πn;

- Adaptive Meshfree Approximation: Let Pn =Πn and expand Pn on Dn to P̂n through
meshfree interpolation;

- Resampling Step: Use MCMC resampling procedure to construct observation in-
formed space points Dn+ 1

2
. Then propagate Dn+ 1

2
to Dn+1 through the state model

(2.1).

3.3 Numerical examples

We present two numerical examples to demonstrate the performance of the Lévy Back-
ward SDE filter in solving the nonlinear filtering problem (2.1). Both examples that we
discuss in this subsection are benchmark problems with Lévy noise added to the state
equation as indicated in (2.1). In the first example, we estimate the trajectory of a tar-
get moves along a one dimensional periodic potential curve. In Example 2, we solve a
two dimensional bearing-only tracking problem [60]. We examine the performance of
the Lévy Backward SDE filter by comparing our Lévy Backward SDE filter with auxiliary
particle filter [47], which is one of the most widely accepted nonlinear filtering methods
by practitioners. The numerical experiments are carried out on an Intel Core i5 2.7 GHz
CPU.

Example 1

We first consider a periodic energy potential, denoted by U with U =− 10
3 cos

(

3x
10

)

, and
assume that there’s a target moves along the potential curve U. The curve is plotted in
Fig. 2. We can see from this figure that the potential U has some wells. If a particle moves
on this potential curve U and the potential difference forms the force to move the particle,
the trajectory of the particle satisfies the ordinary differential equation dSt = sin

(

3St
10

)

dt.
Without the external perturbation, the particle wanders around the bottom of one of the
wells. In this example, we assume that the particle is influenced by a Lévy noise, which
is the external perturbation to excite the particle from one potential well to another. The
derived state process of the nonlinear filtering problem is given as follows,

dSt =sin
(3St

10

)

dt+4dWt+
∫

E

10eµ̃(dt,de),

where Wt is a standard Brownian motion and µ̃ is the compensated Poisson measure. The
dynamic system of this example is similar to the classic double well potential problem.
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Figure 2: One dimensional periodic potential curve U
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Figure 3: Comparison for one dimensional potential tracking.

But instead of two wells, it has multiple wells that allows a particle switch between. The
transitions of the particle and the evolution of the system is observed via data given by
the following observation process

Mtn =Stn+RḂtn , n=1··· ,Nt

where Bt is a standard Brownian motion independent from Wt. In this problem, we track
the particle as the target from time t = 0 to t = 2 with uniform time step ∆t = 0.02, i.e.
Nt = 100, and use a compound Poisson process to generate jumps in the state. For the
observation, we choose R = 0.1. In Fig. 3, we compare the performance of our Lévy
Backward SDE filter with Auxiliary Particle filter (APF). In the Lévy Backward SDE filter,
we use 200 space points and in the APF, we use 800 particles. We can see from Fig. 3 that
the Lévy Backward SDE filter could capture the change of state very accurately while
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Table 1: Example 1: Efficiency comparison.

Numerical methods CPU time (seconds) errG

Lévy Backward SDE filter (200 space points) 9.01 0.3302

Auxiliary particle filter (400 particles) 10.97 34.1392

Auxiliary particle filter (800 particles) 23.07 27.5474

Auxiliary particle filter (1600 particles) 50.49 16.7304

Auxiliary particle filter (3200 particles) 95.40 10.8136

the auxiliary particle filter takes many more steps to capture the changes. To further
compare the performance of the Lévy Backward SDE filter and the APF, we repeat the
above experiment 50 times and compute overall root mean square errors (RMSE). In Table
1, we present the RMSE of the Lévy Backward SDE filter with 200 space points as well as
APF with 400, 800, 1600 and 3200 particles. From this table, we can see that with 200 space
points, the Lévy Backward SDE filter takes 9 seconds to tack the target trajectory and the
RMSE is 0.3302. Although the APF with 400 particle could track the target with similar
CPU time to the Lévy Backward SDE filter, the RMSE of APF is 34.1392, which is much
higher than RMSE of the Lévy Backward SDE filter. When using more and more particles
in APF, the RMSE reduces and the computing cost increases significantly. However, even
using 3200 particles to track the target in the APF, which consumes more than 10 times
of CPU time of the Lévy Backward SDE filter, the RMSE of APF is still much higher than
the Lévy Backward SDE filter.

Example 2

In this example, we solve a bearing-range tracking problem, in which a target is moving
one a two dimensional plane with a near constant velocity and the state of the target is
perturbed by Lévy noise. The state equation is given as follows

dSt=AStdt+σdWt+
∫

E

β(e)µ̃(dt,de), (3.14)

where St =(Xt,Yt,Ẋt,Ẏt)T is a 4 dimensional vector, (Xt,Ẋt) and (Yt,Ẏt) are the position
and velocity of the target at time t corresponding to X and Y co-ordinate, respectively. Wt

is a 4 dimensional standard Brownian motion and µ̃ is the compensated Poisson measure.
The matrices A, σ and β are given by

A=

(

I2 I2

0 I2

)

, σ=diag(0.1,0.1,0.05,0.05), β(e)= e(2,2,0.2,0.2)T ,
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Figure 4: Comparison of target tracking for α=1.

where I2 is 2×2 identity matrix. The target is observed by a bearing-range director located
at (Xobs,Yobs), i.e. the measurement Mt is given by

Yt =





arctan

(

Yt−Yobs

Xt−Xobs

)

√

(Xtn−Xobs)2+(Yt−Yobs)2



+RḂt, n=1,2,··· ,Nt,

where Bt is a standard two dimensional Brownian motion independent from Wt and
R :=diag(0.01,0.1) is a two dimensional matrix.

In this example, we use α-stable process to generate jumps in the noise and track the
target for the time period t= 0 to t= 2 with uniform time step ∆t= 0.04, i.e. Nt = 50. In
Fig. 4, we compare the tracking performance of the Lévy Backward SDE filter with APF
and choose α= 1. For the Lévy Backward SDE filter, we use 1,500 space points. For the
APF, we use 6,000 particles to describe the conditional pdf of the target state. The black
curve is the real target trajectory in the XY-plane. We can see there are several jumps in
the trajectory. The red curve in the figure is the estimate trajectory obtained by the APF,
and the blue curve is the estimate trajectory obtained by the Lévy Backward SDE filter.
We can see from Fig. 4 that the Lévy Backward SDE filter could capture the change of
state much faster than the auxiliary particle filter.

To better demonstrate the effectiveness of our Lévy Backward SDE filter in tracking
a target with jumps, we choose α= 0.5 for the α-state Lévy process and solve the same
bearing-only tracking problem. Since we choose a small α in this experiment, the α-
stable process has thicker tail in the distribution, which results higher probability for big
jumps. In Fig. 5, we present the tracking performance for the case α = 0.5 and we can
observe two significant jumps in the target trajectory. From this figure, when choosing a
smaller α, we can see that estimate of APF lost target for several steps and the irregular
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Figure 5: Comparison of target tracking for α=0.5.

behavior when trying to catch up with the target is typically caused by its degeneracy
problem. However, our Lévy Backward SDE filter still provides reliable estimate for the
target state even with two big jumps.

4 Application of Lévy Backward SDE filter in material science

In this section, we discuss the application of the Lévy Backward SDE filter in nano-phase
material sciences, in the context of development of algorithmic control over single atom
processes that will enable large-scale and automated manipulation and synthesis of sin-
gle atoms and molecules [31, 35, 44]. The majority of studies on atomic-scale manipu-
lation to date have been carried out largely in the open-loop regime, where there is no
direct feedback between excitation (electric field, electric current, direct chemical inter-
action) and the excited object, or in rare but intriguing cases – with human control [25].
However, automated control methods will be needed to achieve two major goals: dra-
matically increase the manipulation speed, well beyond the human capacity, and equally
importantly to enable deterministic selectivity over the reaction steps – a specific kind of
reaction, specific direction of motion etc. [39].

The automated synthesis algorithm can be generally described by three procedures:
the stochastic optimization procedure, which designs the optimal material potential sur-
face; the tracking procedure, which tracks the movement of a target atom based on the de-
signed material potential surface and the observation data received from scanning probe
(or related electron microscopy); the optimal control procedure, which controls the ma-
terial condition to minimize the cost of synthesis based on the estimation of the molecule
state. In this atomic level material synthesis, the role of the Lévy Backward SDE filter
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is to track the atom trajectory in the single-atom manipulation and single-molecule re-
action, both of which are registered as abrupt events in the relevant observables, such
as tunneling current and/or interaction force between the manipulating probe and the
manipulated entity.

To examine the applicability of our algorithm in the aforementioned framework, we
use Lévy Backward SDE filter to simulate tracking atoms moving on the potential sur-
face of some well-known materials. Single atoms on the surface experience atomic-scale
interaction potential, due to preferential atomic bonding toward maximally coordinated
sites [44]. In this work, we approximate the corresponding potential using a simple trian-
gular lattice of potential energy wells as a sum of sinusoids, where the amplitude was cal-
ibrated to match the experimentally observed diffusion potential. This would coarsely re-
semble the potential of the 111-terminated noble-metal surface (such as Ag(111), Au(111)
and others) toward interaction with a single atom. The depth of the wells was chosen to
mimic a recent work on atomic motion by Giessibl et al. [56]. In what follows, we present
the performance of the Lévy Backward SDE filter in tracking the atom trajectories on
approximated potential surfaces.

Experiment 1

We first depict our approximated potential in Fig. 6 (a), which represents the potential
energy landscape for diffusion of atomic scale species (such as atoms or molecules), and
denote this potential by F1. From this image, we can see that there are several deep wells.
Once the atom falls in the bottom of one well, it will be trapped in this well unless some
excitation occurs. In Fig. 6 (b), we present the 2D plan view of the energy potential F1.
The dark blue disks represent low potential regions which are bottoms of wells and the
connected light blue region represent high potential area.

The position of an atom would follow the force caused by the potential of material
surface presented in Fig. 6. Different from the synthetic examples we presented in Section
3.3, in which we have analytic drift function b in the nonlinear filtering problem (2.1), the
drift term of the state equation in this experiment is calculated by the simulated physical
potential force F1. As a result, the state in this experiment is given by

dSt=−∇F̂1(St)dt+σdWt+
∫

E

β(e)µ̃(dt,de), (4.1)

where St=(Xt,Yt)T is a two dimensional vector describing the position of the atom in the
XY plane. In this experiment, the function∇F̂1 is the drift term of the state equation given
by the force caused by the potential surface. Since the energy potential F1 is obtained from
simulation on a given grid mesh, it is different from the synthetic examples in Section 3.3,
in which the drift term b is an explicit function. In order to derive the gradient of F1, we
use polynomial approximation to construct a smooth surface of F1 and then calculate the
gradient of the surface, i.e. ∇F̂1 on the XY plane. To simulate the trajectory, we choose
σ=diag(0.1,0.1), β(e)=e(10,10)T and use a compound Poisson process to generate jumps
in the state. In Fig. 7, we present a sample atom trajectory of the simulated state St over
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(b) 2D plan view of the material surface potential

Figure 6: The material surface potential F1.

100 150 200 250 300

X

170

180

190

200

210

220

230

240

250

260

Y

Real State

Figure 7: A sample atomic trajectory.

time interval [0,10] with uniform time step ∆t= 0.02, i.e. Nt = 500. From this figure, we
can see that the atom has some jumps with several stable states. Once the atom arrives
at a stable state, it remains at this state until excited by some force and jumps to another
random state. To demonstrate the details of the atom trajectory, we plot the atom position
in each direction in Fig. 8. From this figure, we can see that there are 8 stable positions,
in which the atom remains in the similar X−Y position for a period, and the atom has
some random smaller scale jumps which is not enough to escape from the bottom of the
potential well and is dragged back by the potential force. In Fig. 9, we plot the sample
atom trajectory depicted in Fig. 7 in the energy potential which has been shown in Fig. 6
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Figure 8: Sample trajectory in X, Y directions.
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Figure 9: The sample atom trajectory with respect to the energy potential F1.

(b). From this figure, we can see that all the stable positions of the atom trajectory is
around the bottom of a potential well.

In order to track this atom, we use tunnel electron microscope to receive observation
of the atom. In this experiment, we assume that the observation is noise perturbed atom
position, i.e.

Mtn =Stn+RḂtn , n=1,2,··· ,500,

where Bt is a two dimensional Brownian motion independent from Wt and we choose R=
diag(0.05,0.05). In Fig. 10, we present the performance of our Lévy Backward SDE filter
in tracking this atom. The red trajectory in this figure is the real target atom trajectory
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Figure 10: Tracking performance of Lévy Backward SDE filter in the real energy potential problem.

and the black path marked by circles is the estimated target obtained by using the Lévy
Backward SDE filter. We can see from this figure that the Lévy Backward SDE filter could
track the atom trajectory accurately.

Experiment 2

In this experiment, we approximate a different energy potential surface F2 and use the
Lévy Backward SDE filter to track the atom trajectory based on observation Mtn . In Fig. 11
(a), we present the 3D potential surface that we approximated. On the contrary to energy

(a) 3D image of the material surface potential
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(b) 2D plan view of the material surface potential

Figure 11: The material surface potential F2.
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Figure 12: A sample atomic trajectory.

F1, we can see there are several peaks for the energy potential. If the atom gets on the
peak of potential by any excitation, it would slide down and remains in the bottoms of
different peaks which has lower energy with more stable state. In Fig. 11 (b), we plot the
2D plan view image of the energy potential F2. The yellow disks represent the energy
peaks and the green region has lower energy in which the atom is in stable state. Given
the simulated energy potential F2, we derive the state equation of the nonlinear filtering
problem (2.1) as

dSt=−∇F̂2(St)dt+σdWt+
∫

E

β(e)µ̃(dt,de),

where ∇F̂2 is the drift term of the state equation, which is the approximate gradient of
the energy potential surface F2.

Similar to Experiment 1, we simulate the state equation over time interval [0,10] with
uniform time step ∆t=0.02, i.e. Nt =500 with σ= diag(0.1,0.1) and β(e)= e(10,10)T . In
Fig. 12, we plot a sample atom trajectory and put this trajectory on the material surface
in the XY plane with the 2D plan view of energy potential F2 in Fig. 13. From Fig. 13, we
can see that for most of time, the atom remains stable in the lower energy region. The
position of the atom is perturbed by both Gaussian noises, which makes it linger around
its current position, and Poisson noise, which causes some jumps. If the atom jumps onto
one of the peak, as we can see in the figure, the potential force pushes it down and keep
it remain in the bottom of all the peaks.

Finally, we present the performance of our Lévy Backward SDE filter in tracking this
atom in Fig. 14. The red trajectory in this figure is also the real target atom trajectory
and the black path marked by circles is the estimated target obtained by using the Lévy
Backward SDE filter. We can see from this figure that under the energy potential F2, the
Lévy Backward SDE filter could also track the atom trajectory accurately.
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Figure 13: The sample atomic trajectory with respect to the energy potential F2.
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Figure 14: Tracking performance of Lévy Backward SDE filter in the real energy potential problem.
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