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Abstract. In recent years, alternating direction method of multipliers (ADMM) and
its variants are popular for the extensive use in image processing and statistical
learning. A variant of ADMM: symmetric ADMM, which updates the Lagrange mul-
tiplier twice in one iteration, is always faster whenever it converges. In this paper,
combined with Nesterov’s accelerating strategy, an accelerated symmetric ADMM is
proposed. We prove its O( 1

k2 ) convergence rate under strongly convex condition.
For the general situation, an accelerated method with a restart rule is proposed.
Some preliminary numerical experiments show the efficiency of our algorithms.
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1. Introduction

In this paper, we consider the following convex minimization problem with a linear
constrain and a separable objective function:{

min
x,y

f(x) + g(y)

s.t. Ax+By = c,
(1.1)

where A, B are linear maps and f , g are convex functions. Problem (1.1) has found
numerous applications in statistic and image processing. The augment Lagrangian
formulation of (1.1) is

max
λ

min
x,y

f(x) + g(y)− 〈λ,Ax+By − c〉+ ρ

2
‖Ax+By − c‖2, (1.2)

where λ is the dual variable and ρ is a penalty parameter. Solving (1.1) via (1.2)
is exactly the augmented Lagrangian method by Hestenes [16] and Powell [22]. For
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the separable structure in object function in above class problem, alternating direction
method of the multipliers (ADMM) algorithm [9], one variant of ALM, is preferred. It
minimizes (1.2) on x, y alternatively, then updates the dual variable λ. Readers can
refer to the review paper [2] for some applications of ADMM in statistics and machine
learning fields.

The iterative scheme of ADMM on (1.1) is
xk+1 = argminxf(x)− 〈λk, Ax〉+

ρ

2
‖Ax+Byk − c‖2,

yk+1 = argminyg(y)− 〈λk, By〉+
ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk − ρ(Axk+1 +Byk+1 − c),

(1.3)

where x, y and Lagrange multiplier λ are updated in each iteration. ADMM is shown
to be equivalent to the Douglas-Rachford splitting method (DRSM) [5] on the dual
problem of (1.1). The convergence of ADMM under general condition is guaranteed
for two block situation, and a proof can be found in [2]. The above algorithm can be
easily extended to solve linear constrained minimization with three or more separated
block objective function, while in these cases, its convergence is no longer guaranteed
under general conditions [4].

Apply another famous splitting method: Peaceman-Rachford splitting method
(PRSM) [21] on the dual problem of (1.1), we get a variation of ADMM and its it-
erative scheme is

xk+1 = argminxf(x)− 〈λk, Ax〉+
ρ

2
‖Ax+Byk − c‖2,

λk+
1
2 = λk − ρ(Axk+1 +Byk − c),

yk+1 = argminyg(y)− 〈λk+
1
2 , By〉+ ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk+
1
2 − ρ(Axk+1 +Byk+1 − c).

(1.4)

This algorithm is called symmetric ADMM (sADMM) for it updates λ twice in one iter-
ation.

Different from ADMM, symmtric ADMM requires more to ensure its conver-
gence [12], but it shows a faster convergence than ADMM in numerical computing.
In [12], a contractive step size a ∈ (0, 1) was introduced to the dual variable updating
step to ensure the convergence of the algorithm

xk+1 = argminxf(x)− 〈λk, Ax〉+
ρ

2
‖Ax+Byk − c‖2,

λk+
1
2 = λk − aρ(Axk+1 +Byk − c),

yk+1 = argminyg(y)− 〈λk+
1
2 , By〉+ ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk+
1
2 − aρ(Axk+1 +Byk+1 − c).

(1.5)

ADMM and sADMM are the first-order algorithms. In [12, 14, 15], their O( 1k ) conver-
gences were established. In practice, they can converge slowly to reach a high accuracy,
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this is unlike some high precision algorithms such as Newton’s method or interior-point
method [2]. A lot of numerical results have shown that these iterative schemes have
a large tail that it will converge slowly after some iterations. There are some other
variants of ADMM to improve computational performance. In [13], a varying penalty
parameter ρ strategy was proposed. An over-relaxation scheme in y− and λ-updates
was analyzed in [7], where Axk+1 was replaced by

akAxk+1 − (1− ak)(Byk − c),

and in [6] and [8], experiments suggested that ak ∈ [1.5, 1.8] could improve the conver-
gence of the algorithm. An inexact minimization of the subproblem can be carried out
due to [7], this is especially important when the subproblems are not easy to solve ex-
actly. Recently, Yue et al. gave a criterion of the inexact solver of subproblem in ADMM
which guaranteed the convergence of the algorithm [25]. Some variants of ADMM
involve performing x−, y− and λ− updates in a varying order or multiple times, see
more in [24].

When A = I or B = I, an accelerated primal dual algorithm was proposed in [3] to
solve (1.1), a rate of convergence O( 1

k2
) for the primal dual gap was proved for prob-

lems with some regularity in the primal or dual objective and it is linearly convergent
(O( 1

ek
)) for some smooth cases. When A = B = I, Goldfarb et al. [10] presented both

basic and accelerated first-order alternating linearization algorithms for solving (1.1).
In [20], Ouyang et al. incorporated a multi-step acceleration scheme into linearized
ADMM and demonstrated a better convergence rate in terms of dependence on the
Lipschitz constant of the smooth component. In [11], Goldstein et al. introduced the
well known Nesterov’s accelerating method [18] into ADMM algorithm and proved the
O( 1

k2
) convergence rate on the dual of (1.1) for the problem with strongly convexity

assumption of the primal objective. A accelerated ADMM with restart rule was also
proposed for general convex condition. Later in [17], Kadkhodaie et al. relaxed the
quadratic assumption on G in the accelerated ADMM [11] and proposed an accelerated
ADMM called A2DM2.

Motivated by them, in this paper we try to incorporate Nesterov’s accelerating strat-
egy into the framework of symmetric ADMM. First we add the extrapolation step di-
rectly after the dual variable updating of symmetric ADMM as stated in Algorithm 3.1.
A O( 1

k2
) convergence rate on dual objective is achieved with restriction on parame-

ter ρ and strongly convexity condition of the objection function. Then upon on the
research of symmetric ADMM with contractive step size in [12], an accelerated sym-
metric ADMM with restart rule is presented and we show its monotonic convergence.
A double dual variable updating in one iteration and the flexibility of choosing contrac-
tive step size in our algorithms help a fast convergence over the fast ADMM in [11] as
is demonstrated by some preliminary numerical experiment at last.

The rest paper is organized as follows. In Section 2, we introduce Nesterov’s ac-
celerating strategy in brief. In Section 3, we present an accelerated symmetric ADMM
algorithm and prove its O( 1

k2
) convergence rate on dual optimal under strongly convex
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condition. In Section 4, a monotonous convergence algorithm with a restart rule is
given. Some preliminary numerical results are presented in Section 5.

Notation 1.1. ‖ · ‖2 denotes the Euclidean norm for vector or spectral norm for matrix.
| · | denotes the l1 norm for vector.

2. Nesterov’s accelerating strategy

In a seminal paper [18], Nesterov showed that a special extrapolation on sequence
generated by gradient method could results in dramatic change on convergence speed
of simplest gradient method: from O( 1k ) to O( 1

k2
). The new algorithm uses the infor-

mation in the previous two iterations to generate the next iteration point. Here we
introduce the basic framework briefly. Consider an unconstrained convex minimization

min
x∈Rn

f(x),

where f has a Lipschitz continuous gradient, i.e., there exists a constant number L∇f >
0 such that

‖∇f(x1)−∇f(x2)‖2 ≤ L∇f‖x1 − x2‖2, ∀x1, x2 ∈ Rn,

∇f(x) denotes the gradient of f at x. Nesterov proposed following algorithm to mini-
mize the above problem.

Algorithm 2.1 Nesterov’s accelerated gradient method.
Require: α0 = 1, x0 = y1 ∈ RN , τ < 1

L(∇f)
1: for k = 1, 2, 3, · · · do
2: xk = yk − τ∇f(yk)
3: αk+1 =

1+
√

4α2
k+1

2

4: yk+1 = xk +
αk−1
αk+1

(xk − xk−1)
5: end for

An extrapolation step is added with coefficient inside changing via iteration. It
is proved that Algorithm 2.1 can reach O( 1

k2
) convergence rate on objective with the

smooth assumption.

Theorem 2.1. {xk} is the sequence generated by Algorithm 2.1 and x∗ is one of the
minimization of f(x), then

f(xk)− f(x∗) ≤
2‖x0 − x∗‖2

τ(k + 1)2
. (2.1)

The proof can be found in [18]. Based on Nesterov’s accelerating strategy, a lot of
accelerated versions of first-order algorithms have been proposed for various optimiza-
tion problems in the literatures, e.g., [1,10].
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3. Accelerated sADMM

In this section, we combine Nesterov’s accelerating strategy with sADMM, and pro-
pose an accelerated sADMM as below.

Steps 6-8 are introduced into the original algorithm, specifically the extrapolation
is upon on dual variable λ and primal variable y. In the accelerated ADMM [11], the
extrapolation on y is

ŷk+1 = yk+1 +
θk+1(1− θk)

θk
(yk+1 − yk).

Later in A2DM2 [17], the extrapolation on y takes the form

ŷk+1 = argminyg(y)− 〈By, λ̂k+1〉,

which eliminates the quadratic requirement on g(y) in [11]. When g(y) is quadratic,
one can easily verify that the two extrapolations are equivalent. In the rest of this
section, we demonstrate a O( 1

k2
) convergence rate on dual of (1.1) with the condition

that f(x) and g(y) are strongly convex functions.
We assume the strong convexity of F with modules σF such that for any x1, x2,

F (x1)− F (x2) ≥ 〈v, x1 − x2〉+
σf
2
‖x1 − x2‖2, ∀v ∈ ∂F (x2),

where ∂F (·) denotes the subdifferential set of F . For a convex function F , its Fenchel
conjugate function F ∗ is defined as

F ∗(λ) := sup
z
{〈z, λ〉 − F (z)}.

It is well known that

λ ∈ ∂F (z) ⇐⇒ z ∈ ∂F ∗(λ).

Algorithm 3.1 Accelerated sADMM.

Require: θ0 = θ1 = 1, y1 = y0, λ̂1 = λ1 = λ0 and BTλ1 ∈ ∂g(y1)
1: for k = 1, 2, 3, · · · do
2: xk+1 = argminxf(x) + 〈λ̂k,−Ax〉+

ρ
2‖Ax+Bŷk − c‖2

3: λk+
1
2 = λ̂k − ρ(Axk+1 +Bŷk − c)

4: yk+1 = argminyg(y) + 〈λk+
1
2 ,−By〉+ ρ

2‖Ax
k+1 +By − c‖2

5: λk+1 = λk+
1
2 − ρ(Axk+1 +Byk+1 − c)

6: θk+1 =
2

k+1

7: λ̂k+1 = λk+1 +
θk+1(1−θk)

θk
(λk+1 − λk)

8: ŷk+1 = argminyg(y)− 〈By, λ̂k+1〉
9: end for
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For a strongly convex function F with modulus σF > 0, its conjugate function F ∗ has
a Lipschitz continuous gradient with L∇F ∗ = 1

σF
. Let f∗(λ) and g∗(y) be the conjugate

functions of f and g respectively. Since both f and g are strongly convex functions, then
f∗(λ) and g∗(λ) have Lipschitz continuous gradients with Lipschitz constant L∇f∗ = 1

σf

and L∇g∗ = 1
σg

, respectively.
The dual function of (1.1) is

d(λ) :=min
x,y
{f(x) + g(y) + 〈λ,Ax+By − c〉}

=− f∗(−ATλ)− g∗(−BTλ)− 〈λ, c〉. (3.1)

With strong duality holds, solving Problem (1.1) is equivalent to maximizing the dual
function d(λ), which is equivalent to minimizing p(λ) := f∗(ATλ) + g∗(BTλ) − 〈λ, c〉.
From the strongly convex assumption, p(λ) has a Lipschitz continuous gradient, which
satisfies the condition of Nesterov’s accelerating strategy. Nextly we shall research
deeply into Algorithm 3.1 and prove that incorporation of extrapolation step into
sADMM can lead a fast convergence on p(λ).

The first order optimal condition of the first subproblem in Algorithm 3.1 is

0 ∈ ∂f(xk+1)−AT λ̂k + ρAT (Axk+1 +Bŷk − c),

i.e.,

ATλk+
1
2 ∈ ∂f(xk+1).

Similarly, we have

BTλk+1 ∈ ∂g(yk+1).

From the property of conjugate function, we have

∇f∗(ATλk+
1
2 ) = xk+1, ∇g∗(BTλk+1) = yk+1. (3.2)

The sequence generated by Algorithm 3.1 satisfies the following lemmas.

Lemma 3.1. Assume ∇g∗(BT λ̂k) = ŷk and ρ ≤ 1
L∇g∗‖B‖22

, λk+
1
2 is generated from Algo-

rithm 3.1, we have for any λ,

p(λk+
1
2 )− p(λ) ≤ 1

2ρ
(‖λ̂k − λ‖2 − ‖λk+

1
2 − λ‖2).

Proof. By Lipschitz continuous of the gradient of g∗, one has

g∗(BTλk+
1
2 ) ≤ g∗(BT λ̂k) + 〈B∇g∗(BT λ̂k), λk+

1
2 − λ̂k〉+

L∇g∗

2
‖BT (λk+

1
2 − λ̂k)‖2,
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and for the convexity of f∗ and g∗, we have

f∗(ATλ)− f∗(ATλk+
1
2 ) ≥ 〈A∇f∗(ATλk+

1
2 ), λ− λk+

1
2 〉,

g∗(BTλ)− g∗(BT λ̂k) ≥ 〈B∇g∗(BT λ̂k), λ− λ̂k〉.

Add the above two inequalities together. For p(λ) = f∗(ATλ) + g∗(BTλ) − 〈λ, c〉, we
have

p(λk+
1
2 )− p(λ)

≤〈A∇f∗(ATλk+
1
2 ) +B∇g∗(BT λ̂k)− c, λk+

1
2 − λ〉+

L∇g∗

2
‖BT (λk+

1
2 − λ̂k)‖2

≤〈Axk+1 +Bŷk − c, λk+
1
2 − λ〉+

L∇g∗‖B‖22
2

‖λk+
1
2 − λ̂k‖2

=
1

ρ
〈λ̂k − λk+

1
2 , λk+

1
2 − λ〉+

L∇g∗‖B‖22
2

‖λk+
1
2 − λ̂k‖2

=
1

2ρ
(‖λ̂k − λ‖2 − ‖λk+

1
2 − λ‖2) + 1

2

(
L∇g∗‖B‖22 −

1

ρ
‖λk+

1
2 − λ̂k‖2

)
≤ 1

2ρ
(‖λ̂k − λ‖2 − ‖λk+

1
2 − λ‖2). (3.3)

The second inequality follows from (3.2). The second equality follows from the equal-
ity: 〈a− b, b− c〉 = 1

2(‖a− c‖
2 − ‖b− c‖2 − ‖a− b‖2). The last inequality follows from

the assumption of the lemma. The proof is completed. �

Similarly, we have the following lemma.

Lemma 3.2. Assume ∇f∗(ATλk+
1
2 ) = xk+1 and ρ ≤ 1

L∇g∗‖A‖22
, λk+1 is generated from

Algorithm 3.1, then for any λ, we have

p(λk+1)− p(λ) ≤ 1

2ρ
(‖λk+

1
2 − λ‖2 − ‖λk+1 − λ‖2).

The assumption ∇g∗(B>λ̂k) = ŷk in Lemma 3.1 is satisfied for step 8 in Algorithm
3.1 and in Lemma 3.2 the assumption ∇f∗(A>λk+

1
2 ) = xk+1 is established from (3.2).

Let λ = λk+
1
2 in Lemma 3.2, we have

p(λk+1)− p(λk+
1
2 ) ≤ 1

2ρ
(−‖λk+1 − λk+

1
2 ‖2) ≤ 0.

Combine Lemma 3.1 and Lemma 3.2, we have

p(λk+
1
2 ) + p(λk+1)− 2p(λ) ≤ 1

2ρ
(‖λ̂k − λ‖2 − ‖λk+1 − λ‖2),

then
p(λk+1)− p(λ) ≤ 1

4ρ
(‖λ̂k − λ‖2 − ‖λk+1 − λ‖2). (3.4)

This inequality is fatal in proving the O( 1
k2
) convergence rate of the accelerated

sADMM.
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Theorem 3.1. Assume ρ ≤ min{ 1
L∇g∗‖A‖22

, 1
L∇f∗‖B‖22

}, the sequence {λk} is generated by

Algorithm 3.1, λ∗ is any minimization of p(λ), then

p(λk+1)− p(λ∗) ≤ 1

ρ(k + 1)2
‖λ1 − λ∗‖2, k ≥ 1. (3.5)

Proof. Set λ = (1− θk)λk + θkλ
∗, θk ∈ (0, 1). From the convexity of p(λ), we have

p(λk+1)− p(λ) ≥p(λk+1)− (1− θk)p(λk)− θkp(λ∗)
=p(λk+1)− p(λ∗)− (1− θk)(p(λk)− p(λ∗)). (3.6)

The right side of (3.4) is equivalent to

1

4ρ
(‖λ̂k − (1− θk)λk − θkλ∗‖2 − ‖λk+1 − (1− θk)λk − θkλ∗‖2)

=
θ2k
4ρ

(∥∥∥ λ̂k
θk
− 1− θk

θk
λk − λ∗

∥∥∥2 − ∥∥∥λk+1

θk
− 1− θk

θk
λk − λ∗

∥∥∥2). (3.7)

Denote uk := λk

θk−1
− 1−θk−1

θk−1
λk−1. From Algorithm 3.1, we have

λ̂k

θk
− 1− θk

θk
λk =

1

θk

(
λk +

θk(1− θk−1)
θk−1

(λk − λk−1)
)
− 1− θk

θk
λk

=
λk

θk−1
− 1− θk−1

θk−1
λk−1 = uk. (3.8)

Then the right side of (3.4) becomes θ2k
4ρ(‖u

k − λ∗‖2 − ‖uk+1 − λ∗‖2). Combine (3.4)
and (3.6), we have

1

θ2k
(p(λk+1)− p(λ∗)) + 1

4ρ
‖uk+1 − λ∗‖2

≤1− θk
θ2k

(p(λk)− p(λ∗)) + 1

4ρ
‖uk − λ∗‖2. (3.9)

In Algorithm 3.1, θk = 2
k+1 for k ≥ 1, it is easy to verify that 1−θk

θ2k
≤ 1

θ2k−1
, so the above

inequality becomes

1

θ2k
(p(λk+1)− p(λ∗)) + 1

4ρ
‖uk+1 − λ∗‖2

≤ 1

θ2k−1
(p(λk)− p(λ∗)) + 1

4ρ
‖uk − λ∗‖2 · · ·

≤ 1

θ21
(p(λ2)− p(λ∗)) + 1

4ρ
‖u2 − λ∗‖2

≤1− θ1
θ21

(p(λ1)− p(λ∗)) + 1

4ρ
‖u1 − λ∗‖2

=
1

4ρ
‖u1 − λ∗‖2 = 1

4ρ
‖λ1 − λ∗‖2. (3.10)
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Thus we finally get

p(λk+1)− p(λ∗) ≤ θ2k
( 1

4ρ
‖λ1 − λ∗‖2

)
≤ 1

ρ(k + 1)2
‖λ1 − λ∗‖2.

Thus, we complete the proof. �

Remark 3.1. The choice of θk is not unique. One of the key part in the proof of the
O( 1

k2
) convergence rate is the inequality 1−θk

θ2k
≤ 1

θ2k−1
, so there are different strategies

of choosing {θk}. For example, let

1− θk
θ2k

=
1

θ2k−1
,

i.e.,

θk =
θk−1

(√
θ2k−1 + 4− θk−1

)
2

,

and this is exactly the coefficients in Nestrov’s accelerating strategy. Here θk = 2
k+1 in

our algorithm also satisfies this inequality. In [19], the authors took a deeper look into
the general form: θ2k+1 = (1 − θk+1)θ

2
k + qθk+1, q ∈ [0, 1] and showed the choice of q

greatly affected the speed of convergence even in quadratic programming.

Remark 3.2. The condition BTλ1 ∈ ∂g(y1) in the algorithm can be easily achieved by
solving a y-subproblem and taking the solution as the initial point of the algorithm. An
extra y-subproblem in the algorithm is needed to ensure BT λ̂k ∈ ∂g(ŷk). If g(y) is a
quadratic function, which is satisfied in many applications, this step can be replaced by

ŷk+1 = yk+1 +
θk+1(1− θk)

θk
(yk+1 − yk).

Although we have proven the O( 1
k2
) convergence rate under strongly convex con-

dition, we have to admit that this requirement is too restrict to some real applications,
for example in lasso problem, or TV denoising problem, the object function has a non
strongly convex term. In the next section, a restart version of the accelerated sADMM
is proposed and it is applicable to these problems.

4. Accelerated sADMM with a restart rule

Since sADMM is not necessary to converge under general conditions, in [12] He et
al. proposed a modified version of sADMM with a contractive step size and proved its
convergence. In this section, we combine Nesterov’s accelerating strategy with contrac-
tive step size strategy in a new algorithm as below.
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Algorithm 4.1 Accelerated sADMM with a restart rule.

Require: θ0 = θ1 = 1, y1 = y0, λ̂1 = λ1 = λ0 and BTλ1 ∈ ∂g(y1), a ∈ (0, 1), η = 0.99
1: for k = 1, 2, 3, · · · do
2: xk+1 = argminxf(x) + 〈λ̂k,−Ax〉+

ρ
2‖Ax+Bŷk − c‖2

3: λk+
1
2 = λ̂k − aρ(Axk+1 +Bŷk − c)

4: yk+1 = argminyg(y) + 〈λk+
1
2 ,−By〉+ ρ

2‖Ax
k+1 +By − c‖2

5: λk+1 = λk+
1
2 − aρ(Axk+1 +Byk+1 − c)

6: ck+1 = ‖vk+1 − v̂k‖2H
7: if ck+1 ≤ ηck then

8: θk+1 =
θk(
√
θ2k+4−θk)
2

9: λ̂k+1 = λk+1 +
θk+1(1−θk)

θk
(λk+1 − λk)

10: ŷk+1 = argminyg(y)− 〈By, λ̂k+1〉
11: else
12: θk+1 = 1, ŷk+1 = yk, λ̂k+1 = λk

13: ck+1 ← η−1ck
14: end if
15: end for

In this algorithm, vk and v̂k are defined as vk := (yk, λk), v̂k := (ŷk, λ̂k). H is a
positive semidefinite matrix:

H :=
1

2

 (2− a)ρBTB −BT

−B 1

aρ
I

 . (4.1)

For any vector a, we denote ‖a‖2H := a>Ha. Restart process will take place whenever
ck+1 > ηck, otherwise extrapolations on λ and y execute. We assume that the step
2, 4, 10 in this algorithm have finite solutions through the iterations. This algorithm
is motivated by the accelerated ADMM for weakly convex problem proposed in [11]
and there exist three differences between them: Algorithm 4.1 has a double λ-update
procedure, a contractive step size a and the restart criterion ck here is different from
which in [11]. Same to the accelerated ADMM for weakly convex problem, Algorithm
4.1 is guaranteed to converge for general convex problems.

Theorem 4.1. Algorithm 4.1 converges in the sense that

lim
k→∞

ck = 0,

when both f and g are convex functions.

The keys of proving Theorem 4.1 are the two lemmas proposed in [12] and for the
similarity of the proof to the accelerated ADMM for weakly convex problem in [11], we
omit the detailed proof and only list the key lemmas from [12].
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Lemma 4.1. The sequence {vk} generated by the scheme (1.5) satisfies

‖vk − vk+1‖2H ≤ ‖vk−1 − vk‖2H .

Lemma 4.2. The sequence {vk} generated by the scheme (1.5) satisfies

‖vk − vk+1‖2H ≤
2(1 + a)

(k + 1)(1− a)
‖v0 − v∗‖2H ,

where v∗ = (y∗, λ∗) is any optimal solution of the problem (1.1) and related dual optimal
solution.

For the reason of restart rule, here we adapt another choice of θk which is different
from the choice in Algorithm 3.1. Although we can only ensure the convergence of
Algorithm 4.1 under general convex conditions, not the O( 1

k2
) convergence rate for

Algorithm 3.1 under strongly convex condition, Algorithm 4.1 usually achieves a better
convergence behavior compared to Algorithm 3.1 and accelerated ADMM in [11] as
shown in numerical experiments. This is perhaps for the double updating of dual
variable λ and the flexibility of choosing constracitve step size a.

5. Numerical results

In this section, we give some preliminary numerical experiments to verify our al-
gorithms under both strongly convex condition and weakly convex condition. We first
consider the elastic net regularization problem which satisfies the strongly convex con-
dition, then consider a weakly convex problem from image denoising. The codes run
on Matlab R2013b installed on a laptop computer with 1.8GHz, i5-processor and 4G
memory.

5.1. Elastic net regularization

To fit a large number of variables using a relatively small or noisy data set, a regu-
larization term is introduced in statistics learning. Besides the least absolute shrinkage
and selection operator (LASSO), i.e., l1 regularization, elastic net regularization [26]
is also popular. For the real world data, a simulation study shows that the elastic net
model often outperforms the lasso, while keeps a similar sparsity of the representation.
The model of the variable selection via elastic net regularization is

min
x
e1|x|+

e2
2
‖x‖2 + 1

2
‖Mx− f‖2, (5.1)

where M represents the parameters input, f is the observation, x is the variable to
predict. Model (5.1) can be reformulated as min

x,y
e1|x|+

e2
2
‖x‖2 + 1

2
‖My − f‖2

s.t. x− y = 0.
(5.2)
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The two subproblems are involved in general ADMM form algorithms:
x-subproblem :

min
x
e1|x|+

e2
2
‖x‖2 − x>λk + ρ

2
‖x− yk‖2.

y-subproblem : solving linear equation

(M>M + ρI)y =MT f − λk + ρxk.

For the coefficient matrix M>M+ρI in y-subproblem is fixed, we can decompose it
as R>R in advance, where R is an upper triangular matrix. x-subproblem can be easily
solved by a shrink operator and the solution is

x =



λk + ρyk − e1
e2 + ρ

, λk + ρyk ≥ e1,

0, −e1 ≤ λk + ρyk ≤ e1,
λk + ρyk + e1

e2 + ρ
, λk + ρyk ≤ −e1.

(5.3)

The elastic net regularization satisfies the strongly convex condition if M in (5.1) has
full column rank. Here we use an example from Zou and Hastie [26]: Choose

x = (3, · · · , 3︸ ︷︷ ︸
15

, 0, · · · , 0︸ ︷︷ ︸
25

)

as the parameter to predict and the matrix M ∈ R50×40 is generated by

Mi = Z1 + ei, Z1 ∼ N(0, 1), i = 1, · · · , 5,
Mi = Z2 + ei, Z2 ∼ N(0, 1), i = 6, · · · , 10,
Mi = Z3 + ei, Z3 ∼ N(0, 1), i = 11, · · · , 15,
Mi ∼ N(0, 1), Mi independent identically distributed, i = 16, · · · , 40,

where ei are independent identically distributed N(0, σe) vectors of length 50, i =
1, · · · , 15 and Zi are three random normal vectors of length 50, i = 1, 2, 3. A noisy
measurement is added that f =Mu+ η, where η is normally distributed with standard
deviation 0.1. When the standard deviation of ei changes, the conditional number of
the matrix M changes, so we test two situations: (1) when σe = 1, which is suggested
in [26], conditional number of M is round 20. In this case, the problem is regarded as
well conditioned; (2) σe = 0.1, the correlations between first 15 columns of M is strong
and the condition number of M is round 150. In this case, the problem is regarded as
poor conditioned.

To test the behavior of the algorithms present in this paper, we compare them to
the algorithms in [11], i.e., fast (accelerated) ADMM (Fadmm) and fast (accelerated)
ADMM with restart rule (Fadmm + restart). Same to [11], we use the dual energy
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gap (i.e., d(λ∗) − d(λk)) as the criterion for the quality of the solution and set the
regularization parameters e1 = e2 = 1. From Theorem 3.1, the theoretical upper bound
of ρ for fast symmetric ADMM is min{e2, λsmallest(M>M)}, where λsmallest(M>M) is
the smallest eigenvalue of M>M . The theoretical upper bound of ρ for fast ADMM
(see [11, Theorem 1]) is 3

√
e2(λsmallest(M>M))2. Under the e2 = 1 setting, we see that

the theoretical upper bound of ρ for fast sADMM is alway smaller than the counterpart
for fast ADMM except when λsmallest(M

>M) = 1. From numerical experiments, we
find that the two theoretical upper bounds are too restrict for good behaviors of both
algorithms and we test the algorithms with different ρ.

Figs. 1 and 2 show the convergence behavior of different algorithms on well condi-
tioned and poor conditioned elastic net problem respectively. It is shown from (a) and
(b) that large penalty parameter ρ leads to instability for both Fadmm and Fsadmm
(Fsadmm is short for Algorithm 4.1) and ρ is stricter for Fsadmm than for Fadmm.
This is in agreement with the requirement in Theorem 3.1. For Fadmm, the parame-
ter ρ with best convergence performance on elastic net problem in poor conditioned
situation is larger than that in well condition situation, while ρ in Fsadmm is not that
sensitive. Restart rule works for both Fadmm and Fsadmm from (c) and (d). (e) and (f)
show that the contractive step size a in Algorithms 3.1, 4.1 improves the convergence
behavior, especial when ρ is large. In Fig. 2(e), Algorithm 3.1 dose not converge with
ρ = 4, when a step size a ∈ (0, 1) is added, the algorithm converges, though we can
not prove the convergence of Algorithm 3.1 with a constrictive step size in theory. We
compare the convergence behavior of different algorithms with best turned parameters
on elastic net problem in Fig. 3. The best penalty parameter ρ for different algorithms
is not same and our algorithms with properly tuned parameters work better than those
in [11] in general.

5.2. Image denoising

Image denoising is to reconstruct a clean image from a noised observation. A
common image restoration model is the well known total variation or Rudin-Osher-
Fatemi [23] model:

min
x
|∇x|+ µ

2
‖x− f‖2, (5.4)

where x is the matrix representing the pixel value of the digital image, ∇x represents
the discrete forward difference operator on x:

(∇x)i,j = ((∇x)1i,j , (∇x)2i,j)

with

(∇x)1i,j =

{
xi+1,j − xi,j , if i < N,

0, if i = N,
(5.5a)

(∇x)2i,j =

{
xi,j+1 − xi,j , if j < N,

0, if j = N,
(5.5b)
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(a) Fadmm with different ρ
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(b) Fsadmm with different ρ
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(c) Fadmm+ restart with different ρ
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(d) Fsadmm + restart with different ρ
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Figure 1: Different algorithms on well conditioned elastic net problem.
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(b) Fsadmm with different ρ
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(c) Fadmm+ restart with different ρ

0 50 100 150 200

Iteration

-10

-5

0

5

lo
g(

D
ua

l E
ne

rg
y 

G
ap

)

<
e
 = 0.1

; = 0.5
; = 1
; = 2
; = 4
; = 6
; = 10

(d) Fsadmm + restart with different ρ
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(f) Fsadmm + restart with different a, ρ = 4

Figure 2: Different algorithms on poor conditioned elastic net problem.
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Figure 3: Algorithms with best parameters comparing on elastic net problem.

and |∇x| =
√

(∇x1)2 + (∇x2)2. Another definition is :

(∇x)i,j = ((∇x)1i,j , (∇x)2i,j)

with

(∇x)1i,j =

{
xi+1,j − xi,j , if i < N,

x1,j − xN,j , if i = N,
(5.6a)

(∇x)2i,j =

{
xi,j+1 − xi,j , if j < N,

xi,1 − xi,N , if j = N,
(5.6b)

and |∇x| = |∇x1|+ |∇x2|. Here we adopt the latter one for simplicity.

Implement details. (5.4) can be reformulated as min
x,y
|x|+ µ

2
‖y − f‖2

s.t. x−∇y = 0.
(5.7)

In this case, x has two parts x1 and x2, for the separability of l1 norm, we can divide
the x-subproblem into two independent problem:

min
x1
|x1| − x>λk1 +

ρ

2
‖x1 − (∇yk)1‖, (5.8a)

min
x2
|x2| − x>λk2 +

ρ

2
‖x2 − (∇yk)2‖. (5.8b)

The Lagrange multiplier λ here is composed by λ1 and λ2. The above problems can be
easily solved by a shrink operator which is same to the x-subproblem in the elastic net
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(a) clean image (b) noised image

(c) µ = 5 (d) µ = 10 (e) µ = 20

Figure 4: The clean, blurred and reconstructed images of cameraman.

problem. The y-subproblem is

min
y
µ‖y − f‖2 + ρ‖xk −∇y − λk/ρ‖2. (5.9)

The ∇ operator can be seen as a convolution operator under the above definition and
after a Fourier Transform it become a diagonal matrix, then the problem (5.9) is easily
solved through FFT.

From the definition |∇x|, it is not a strongly convex function of x, so we compare
the performance of ADMM, sADMM and their accelerated variants. In this experiment,
we test the algorithm on the cameraman image. we scale the pixel matrix from 0 ∼ 255
to 0 ∼ 1 and add a Gaussian noise with standard variance 0.01. For choosing µ properly
is crucial for the quality of the recovered images, so a set of µ is tested. The original
image, the noised image, the recovered image under different µ are shown in Fig. 4.

We choose the stopping criterion as

‖yk − y∗‖2

‖y∗‖
≤ 10−3, (5.10)

where y∗ represents the optimal solution of the problem. We compare the numbers of
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Table 1: The numbers of iteration for different algorithms on image denoising.

Algorithms µ = 5 µ = 10 µ = 20
ADMM 124 83 27
sADMM (a = 0.9) 70 47 15
FADMM + restart 94 60 18
FsADMM + restart (a = 0.7) 86 55 16

iteration for different algorithms with best tuned parameter ρ and a. The results are
listed in Table 1.

From Table 1, we see the Algorithm 4.1 works well in weakly convex condition. We
see that the accelerated symmetric ADMM with restart has better convergence behavior
than ADMM, accelerated ADMM with restart [11]. For the problem with bad condition,
the restart procedure happens frequently and this is the reason that it takes a little
more iterations than symmetric ADMM, however with better condition of the problem,
Algorithm 4.1 will dramatically accelerate the original symmetric ADMM.

6. Conclusions

In this paper, we present a fast symmetric ADMM and prove its O( 1
k2
) convergence

rate under strongly convex condition. For problems that do not meet the assumption,
we present a modified algorithm with a restart rule which it is guaranteed to converge
to an optimal solution. Numerical results shows that the accelerated symmetric ADMM
and accelerated symmetric ADMM with restart work well on problem with different
conditions and show a better potential than accelerated ADMM in [11].
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