
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 12, No. 1, pp. 278-300

DOI: 10.4208/aamm.OA-2019-0048
February 2020

A Mixed Formulation of Stabilized Nonconforming
Finite Element Method for Linear Elasticity

Bei Zhang1 and Jikun Zhao2,∗

1 College of Science, Henan University of Technology, Zhengzhou, Henan 450001, China
2 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001,
China

Received 22 February 2019; Accepted (in revised version) 5 August 2019

Abstract. Based on the primal mixed variational formulation, a stabilized noncon-
forming mixed finite element method is proposed for the linear elasticity problem by
adding the jump penalty term for the displacement. Here we use the piecewise con-
stant space for stress and the Crouzeix-Raviart element space for displacement. The
mixed method is locking-free, i.e., the convergence does not deteriorate in the nearly
incompressible or incompressible case. The optimal convergence order is shown in the
L2-norm for stress and in the broken H1-norm and L2-norm for displacement, respec-
tively. Finally, some numerical results are given to demonstrate the optimal conver-
gence and stability of the mixed method.
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1 Introduction

Different variational formulations of the linear elasticity problem have been developed
in the past. In the sense of weak form, it is possible to show the equivalence to the classi-
cal formulation, which consists of the constitutive equation and the equilibrium equation
and is well-defined for differentiable stress and displacement. A very common formu-
lation is the pure displacement formulation, where only the displacement is sought in
H1-space. Therein, the stress tensor is eliminated by using the constitutive equation, as
it can be expressed in terms of the displacement for finite λ where λ is the Lamé con-
stant. However, when this formulation is used, one may expect the stability problem
in case of nearly incompressible or incompressible materials, such that the locking phe-
nomenon may appear. This is due to the fact that, the compliance tensor, which links
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the stress and strain, becomes singular in the incompressible limit (the case λ=∞), such
that the elasticity tensor, the inverse of the compliance tensor acting as a coefficient in
the pure displacement formulation, deteriorates with the growing incompressibility of
material (λ→∞). In the incompressible limit, the inverse of compliance tensor doesn’t
exist, so the stress can not be expressed in terms of the displacement, such that it is not
possible to pose the pure displacement formulation in this case. For this formulation,
some locking-free finite element methods have been developed where the convergence is
uniform with respect to the Lamé constant λ, see, e.g., [9, 13, 21, 30, 31, 40], which will be
further discussed in the following.

Relatively, the mixed variational formulations are preferable to the pure displacement
formulation for modeling of nearly incompressible or incompressible materials, where
both the stress and displacement are simultaneously considered as unknowns as they
show better stability properties. Moreover, the stress is usually a physical quantity of
primary interest. Although it can be obtained in the pure displacement method by dif-
ferentiating the displacement, but this may degrade the order of the approximation.

Here we consider the Hellinger-Reissner mixed formulation. There are essentially
two possibilities to apply the derivatives to the displacement or the stress. The first one
is the primal mixed variational formulation, which is easy to discretize but leads usually
to the standard methods suffering from locking unless special techniques are applied.
Before surveying further the first one, we browse the second one called the dual mixed
variational formulation. The second one needs stress tensor elements with continuous
normal components, which is very difficult to construct due to the symmetry and sta-
bility requirements from this formulation, but may lead to better approximation prop-
erties. While such stable conforming element pairs have been successfully constructed
in both two and three dimensions, the resulting stress elements tend to be quite compli-
cated, especially in three dimensions, see e.g., [1, 2, 5, 6, 27]. We also mention the further
development of stable conforming elements from the references [12, 22, 24, 25], where a
new class of stable conforming elements called the Hu-Zhang element is proposed. On
the other hand, much attention has been paid to constructing the nonconforming mixed
finite elements, which relax the interelement continuity requirement and seem to be sim-
pler, see [3,7,23] and the references therein. However, the convergence of nonconforming
mixed finite element methods has not been considered for nearly incompressible or in-
compressible materials in the works mentioned above, where the compliance tensor is
only assumed to be bounded and symmetric positive definite. Besides, we mention that,
some mixed elements with weaker symmetry have been developed and can be shown to
be uniformly convergent with respect to the Lamé constant λ, see, e.g., [4, 29, 32, 35].

Now we turn back to the primal mixed variational formulation. As mentioned be-
fore, for finite λ this formulation can be reduced to the pure displacement formulation
by eliminating the stress. By splitting the elasticity operator into the gradient opera-
tor and divergence operator with appropriate coefficients, Brenner and Sung [9] used
the Crouzeix-Raviart (CR) element [17] to develop a locking-free nonconforming finite
element method for the pure displacement problem of nearly incompressible elasticity.
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Similar ideas can be found in [13, 31]. However, in the case of the elasticity operator, the
CR element is not stable in that it does not fulfill a discrete Korn’s inequality. For this
reason, Hansbo and Larson [21] proposed a stabilized nonconforming method for the CR
element by adding a jump penalty term based on the pure displacement formulation,
where the optimal convergence order was shown uniformly in the nearly incompressible
case. Therein, the error analysis was carried out in a mesh dependent energy-like norm
(see Section 7 for the definition). There also exist some other numerical approaches to
deal with the locking phenomenon. For example, one may resort to the reduced integra-
tion or some modifications of the variational formulation. Many works are involved in
them directly or indirectly. The readers are referred to [18,28,30,40] for the detailed analy-
sis. An alternative way to avoid locking is to use high-order elements as is done in [36,37]
and leads to the p-version and hp-version methods. By contrast, the mixed finite element
method based on the primal mixed variational formulation seems to be more effective for
nearly incompressible or incompressible materials than the pure displacement methods
and the corresponding discrete spaces are easier to constructed than the mixed methods
based on the dual mixed variational formulation, see [19] for the work on this aspect. For
further developments, see [11, 34, 39].

In this paper, we focus on the discretization of the primal mixed variational formula-
tion. A locking-free stabilized nonconforming mixed finite element method is proposed
based on the primal mixed variational formulation by adding the jump penalty term for
the displacement, where we use the piecewise constant space for stress and the CR ele-
ment space for displacement. We derive a weaker inf-sup condition on a special subspace
of the discrete space, which is enough to show the optimal convergence properties of the
mixed method. Based on this, the convergence order is shown to be O(h) in the L2-norm
for stress and in the broken H1-norm for displacement. By using the usual duality argu-
ment, the convergence order is shown to be O(h2) in the L2-norm for displacement. It
is worth mentioning that, for finite λ our mixed method can be reduced to the stabilized
nonconforming method [21] based on the pure displacement formulation, where the er-
ror analysis was carried out in a mesh dependent energy-like norm as mentioned above.
By contrast, the norms used in this paper are more natural and completely independent
of the mesh size and the Lamé constant, see Section 7 for the discussion on this.

2 Linear elasticity

Let Ω be a bounded domain in Rd with the dimension d=2,3. For any given open subset S
of Ω, (·,·)S and ‖·‖S denote the usual integral inner product and the corresponding norm
of L2(S)d, respectively. For a positive integer m, we shall use the common notations for
the Sobolev spaces Hm(S) and Hm

0 (S) with the corresponding norms ‖·‖m,S and |·|m,S
(see e.g., [15]). If S=Ω, the subscript will be omitted. We use H−1(Ω) to denote the dual
space of H1

0(Ω) with respect to the duality product 〈·,·〉. The dual norm in H−1(Ω) is
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defined by

‖v‖−1= sup
φ∈H1

0 (Ω)\{0}

〈v,φ〉
‖φ‖1

, v∈H−1(Ω).

Let σ and u be the symmetric stress tensor and the displacement field. Denote ε(u) =(
ε ij(u)

)
d×d as the linearized strain tensor, where

ε ij(u)=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The relation between the stress and the strain tensors can be expressed as the constitutive
law:

σ=Cε(u) or ε(u)=Aσ,

where C and A are the elasticity and the compliance tensors of fourth order, respectively.
For an isotropic elastic material, they have the following expressions:

Cε(u)=2µε(u)+λ
(
trε(u)

)
δ, (2.1a)

Aσ=
1

2µ

(
σ− λ

dλ+2µ
trσδ

)
, (2.1b)

respectively. Here δ=(δij)d×d is the identity tensor, λ and µ are the Lamé constants such
that µ∈ [µ1,µ2] with 0<µ1<µ2 and λ∈ (0,∞]. When λ is very large or infinite, materials
are said to be nearly incompressible or incompressible.

For finite λ, it is clear that C is symmetric and positive definite and further A=C−1.
When λ approaches infinity, the elasticity tensor blows up and the compliance tensor
tends to 1

2µ dev that is not invertible, where devσ is the deviatoric part of σ, i.e., devσ=

σ− 1
d trσδ. Hence, for nearly incompressible or incompressible materials, it is preferable

to use the following relation between the stress and the strain:

Aσ= ε(u).

In view of the above discussion, we consider the linear elasticity problem: find the
stress tensor σ and the displacement field u satisfying

Aσ−ε(u)=0 in Ω,
−divσ= f in Ω,
u=0 on ∂Ω,

(2.2)

where f ∈H−1(Ω)d is the body force. For simplicity, here we assume that the boundary
condition is homogeneous. If the domain Ω is convex or its boundary is enough smooth,
the regularity estimate

‖σ‖1+‖u‖2≤C‖ f ‖ (2.3)
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holds, cf. [5, 9, 16, 20, 33]. Henceforth, the symbol C with or without subscripts is used
to denote a generic positive constant, possibly different at different occurrences, which is
independent of the Lamé constant λ and the mesh size. For clearness, we also use other
symbols (e.g., α, β, γ) to denote such a generic positive constant.

3 Primal mixed variational formulation

Before displaying the mixed variational formulation of elasticity problem (2.2), let us first
describe the solution space. Since u vanishes on ∂Ω, we have∫

Ω
divudx=

∫
∂Ω

u·nds=0,

which leads to ∫
Ω

trσdx=0.

Therefore, we can impose such a condition on the stress σ. Define the spaces

Σ=

{
τ∈L2(Ω,S);

∫
Ω

trτds=0
}

, V=H1
0(Ω)d,

where L2(Ω,S) stands for the space of symmetric tensors in L2(Ω)d×d.
Then the primal mixed variational formulation of (2.2) reads: find (σ,u)∈Σ×V satis-

fying {
(Aσ,τ)−(τ,ε(u))=0, ∀τ∈Σ,
(σ,ε(v))=( f ,v), ∀v∈V,

(3.1)

which is equivalent to the standard H1-based variational formulation (pure displacement
formulation). In order to obtain the existence and uniqueness of the solution to (3.1), the
following two stability conditions is well-known:
Z-ellipticity. There exists a positive constant α such that

α‖τ‖2≤ (Aτ,τ), ∀τ∈Z, (3.2)

where Z={τ∈Σ; (τ,ε(v))=0, ∀v∈V}.
Inf-sup condition. There exists a positive constant β such that, for any v∈V,

sup
τ∈Σ\{0}

(τ,ε(v))
‖τ‖ ≥β|v|1. (3.3)

To conclude the section, we introduce a fundamental inequality on the trace of Σ:

‖trτ‖2≤C
(
(Aτ,τ)+‖divτ‖2

−1
)
, ∀τ∈Σ. (3.4)
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This inequality has been proven for a subspace consisting of the tensors in Σ with square-
integrable weak divergences, see [5] for the two dimensional case or also [10] for the
general case. In fact, it also holds for the whole space Σ and the proof only needs some
obvious modifications based on the original one.

According to the definition (2.1b) of A, we have

(Aτ,τ)=
1

2µ

(
‖τ‖2− λ

dλ+2µ
‖trτ‖2

)
,

which, together with (3.4), leads to

α‖τ‖2≤ (Aτ,τ)+‖divτ‖2
−1, ∀τ∈Σ. (3.5)

4 Nonconforming mixed finite element method

In order to define the finite element spaces, we introduce a family of shape-regular sim-
plicial meshes {Th} of Ω. For a given mesh Th, we denote the set of all the edges (faces)
in Th by Eh and the set of interior by E int

h , respectively. For an element K∈Th and an edge
(or face) E∈Eh, let hK be the diameter of K and hE the diameter of E. Especially, we set
h=maxK∈Th{hK}. nK always denotes the exterior unit normal vector along the boundary
of K. For each edge (face), we define its unit normal vector denoted by n, whose ori-
entation is chosen arbitrarily but fixed for interior edges (faces) and coinciding with the
exterior normal of Ω for boundary edges (faces). For a function v and an interior edge
(face) E shared by the elements K and L in Th such that n|E points from K to L, we define
the jump operator [[·]] through E by

[[v]]|E =(v|K)|E−(v|L)|E.

For any boundary edge (face) E, set [[v]]|E =v|E. Similar notation is used for the jump of
vector-valued functions, where the jump is taken componentwise.

For any given element K and nonnegative integer m, Pm(K) denotes the space of
polynomials of order m or less and Pm(K,S) the space of symmetric tensors in Pm(K)d×d.

On Th, we introduce a pair of finite element spaces

Σh ={τh∈Σ; τh|K∈P0(K,S), ∀K∈Th},

Vh =

{
vh∈L2(Ω)d; vh|K∈P1(K)d, ∀K∈Th and

∫
E
[[vh]]ds=0, ∀E∈Eh

}
,

where Vh is the well-known Crouzeix-Raviart finite element space [17].
As usual, we define the interpolation operators Πh and Ih for the spaces Σh and Vh by

setting ∫
K

Πhτdx=
∫

K
τdx, ∀K∈Th,∫

E
Ihvds=

∫
E

vds, ∀E∈Eh,
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where τ∈ L2(Ω,S) and v∈H1(Ω)d. For τ∈Σ and v∈V, it obviously holds that Πhτ∈Σh
and Ihv∈Vh. Furthermore, by the standard scaling arguments we have the following local
interpolation error estimates:

‖τ−Πhτ‖K≤Chl
K|τ|l,K, l=0,1, (4.1a)

|v− Ihv|m,K≤Chl−m
K |v|l,K, m=0,1, l=1,2. (4.1b)

If we directly discretize the primal mixed variational problem (3.1) with the finite dimen-
sional spaces defined above, it leads to an unstable formulation:{

(Aσh,τh)−(τh,εh(uh))=0, ∀τh∈Σh,
(σh,εh(vh))=( f ,vh), ∀vh∈Vh,

where εh(vh) is defined locally on each K∈Th, i.e., εh(vh)|K= ε(vh|K). In fact, we can only
verify the following two conditions:
Zh-ellipticity. There exists a positive constant α that is the same as the one in (3.2) such
that

α‖τh‖2≤ (Aτh,τh), ∀τh∈Zh, (4.2)

where Zh ={τh∈Σh; (τh,εh(vh))=0, ∀vh∈Vh}.
Weaker inf-sup condition. There exist two positive constants β1 and β2 such that, for any
vh∈Vh,

sup
τh∈Σh\{0}

(τh,εh(vh))

‖τh‖
≥β1‖vh‖1,h−β2

(
∑

E∈Eh

h−1
E ‖[[vh]]‖2

E

) 1
2

, (4.3)

where ‖·‖1,h is the broken H1-norm on the discrete space Vh defined by

‖vh‖1,h =

(
∑

K∈Th

|vh|21,K

) 1
2

.

To verify the Zh-ellipticity, we first give the following lemma.

Lemma 4.1. For any given τh∈Σh, there exist a function vh∈Vh such that

(τh,εh(vh))= ∑
E∈E int

h

hE‖[[τhn]]‖2
E, (4.4)

and a positive constant C2 such that

‖vh‖1,h≤C2

 ∑
E∈E int

h

hE‖[[τhn]]‖2
E

 1
2

. (4.5)
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Proof. Take vh satisfying ∫
E

vhds=hE

∫
E
[[τhn]]ds, E∈E int

h .

Then we have

(τh,εh(vh))= ∑
E∈E int

h

∫
E
[[τhn]]·vhds= ∑

E∈E int
h

hE‖[[τhn]]‖2
E,

which is (4.4).
For (4.5), it is sufficient to use the standard scaling arguments [15].

Next we verify the Zh-ellipticity. According to Lemma 4.1, for any given τh∈Zh, there
exists a function vh∈Vh

(τh,εh(vh))= ∑
E∈E int

h

hE‖[[τhn]]‖2
E =0,

which implies that the normal jumps of τh over interior edges (faces) vanish. Thus the
divergence of τh belongs to L2(Ω)d and divτh = 0. According to (3.5), we obtain the Zh-
ellipticity.

To prove the weaker inf-sup condition, we apply the Korn’s inequality on piecewise
H1 vector space (cf. [8]) to the space Vh and obtain

‖vh‖2
1,h≤C

(
‖εh(vh)‖2+ ∑

E∈Eh

h−1
E ‖[[vh]]‖2

E

)
, ∀vh∈Vh,

since the functions in Vh are piecewise linear on Th. For any given vh∈Vh, we take τh =
εh(vh). Since∫

Ω
trτhdx=

∫
Ω

trεh(vh)dx= ∑
K∈Th

∫
K

divvhdx= ∑
E∈Eh

∫
E
[[vh ·n]]ds=0,

then we have τh∈Σh. Therefore, there exist two positive constants β1 and β2 such that

(τh,εh(vh))

‖τh‖
=‖εh(vh)‖≥β1‖vh‖1,h−β2

(
∑

E∈Eh

h−1
E ‖[[vh]]‖2

E

) 1
2

,

which leads to (4.3).
Based on the weaker inf-sup condition (4.3), we propose a stabilized mixed finite

element method: find (σh,uh)∈Σh×Vh satisfying

Q((σh,uh),(τh,vh))=( f ,vh), ∀(τh,vh)∈Σh×Vh, (4.6)
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where the bilinear form is defined by

Q((σh,uh),(τh,vh))=(Aσh,τh)−(τh,εh(uh))+(σh,εh(vh))+γ ∑
E∈Eh

h−1
E

∫
E
[[uh]]·[[vh]]ds,

and γ is a positive constant to be properly chosen. Since Vh*H1
0(Ω)d, the mixed method

(4.6) is nonconforming.

Remark 4.1. We observe that the stabilized formulation (4.6) is indeed a special case of
mixed DG method proposed in [14], where the discrete spaces are fully discontinuous
polynomial spaces.

We conclude this section by showing the existence and uniqueness of the solution
to (4.6). To this end, we assume f = 0, then it is sufficient to show that the system of
homogeneous equations has only zero solution. By setting τh =σh and vh =uh, we have

Q((σh,uh),(σh,uh))=(Aσh,σh)+γ ∑
E∈Eh

h−1
E ‖[[uh]]‖2

E =0,

which leads to
(Aσh,σh)=0 and [[uh]]|E =0, ∀E∈Eh.

Due to the fact that (σh,εh(vh)) = 0 for all vh ∈Vh, i.e., σh ∈ Zh, the Zh-ellipticity implies
σh =0. Thus, setting vh =0 in (4.6) leads to

(τh,εh(uh))=0, ∀τh∈Σh,

which, together with the weaker inf-sup condition (4.3) and the fact that the jump of uh
on each edge (face) vanishes, yields uh =0.

5 Stability

In order to show the optimal convergence properties of the mixed method (4.6), we here
derive a weaker inf-sup condition of the bilinear form Q with respect to the norm on
Σh×Vh. To this end, we first introduce a special subspace of Σh and several auxiliary
lemmas.

Let V∗h =Vh∩H1
0(Ω) be the usual conforming linear finite element space with the ap-

proximation property [15]

|v− I∗h v|m,K≤Ch1−m
K |v|1,K̃, m=0,1, ∀K∈Th, (5.1)

where v∈H1
0(Ω), I∗h is the usual Clément interpolation operator and K̃ denotes the union

of elements that share at least one point with K. Then we define a subspace Z∗h of Σh by

Z∗h ={τh∈Σh; (τh,ε(v∗h))=0, ∀v∗h∈V∗h }.
In addition, in the proofs of the following lemmas, we will frequently use the trace in-
equality [15]

‖v‖2
E≤C

(
h−1

E ‖v‖2
K+hE|v|21,K

)
, ∀E⊂∂K, ∀K∈Th. (5.2)
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Lemma 5.1. There exists a positive constant C1 such that

‖divτh‖−1≤C1

 ∑
E∈E int

h

hE‖[[τhn]]‖2
E

 1
2

, ∀τh∈Z∗h . (5.3)

Proof. For any given τh∈Z∗h , first we have

〈divτh,v〉=−(τh,ε(v))=−(τh,ε(v− I∗h v))

=− ∑
E∈E int

h

∫
E
[[τhn]]·(v− I∗h v)ds

≤ ∑
E∈E int

h

‖[[τhn]]‖E‖v− I∗h v‖E,

where v∈H1
0(Ω)d is arbitrary. Combining (5.1) and (5.2), it holds

‖v− I∗h v‖E≤Ch1/2
E |v|1,K̃, ∀E⊂∂K, ∀K∈Th,

which implies

〈divτh,v〉≤C|v|1

 ∑
E∈E int

h

hE‖[[τhn]]‖2
E

 1
2

.

According to the definition of ‖·‖−1, the proof is completed.

Lemma 5.2. There exists a positive constant C3 such that(
∑

E∈Eh

h−1
E ‖[[vh]]‖2

E

) 1
2

≤C3‖vh‖1,h, ∀vh∈Vh. (5.4)

Proof. Let

PEvh =
1

hE

∫
E

vhds, E∈Eh.

The trace inequality (5.2) and Poincaré/ Friedrichs inequality [38] imply that

h−1
E ‖[[vh]]‖2

E =h−1
E ‖[[vh−PEvh]]‖2

E

≤Ch−1
E ∑

K∈TE

(
h−1

E ‖vh−PEvh‖2
K+hE|vh|21,K

)
≤C ∑

K∈TE

|vh|21,K,

where TE is the set of the elements having E as an edge (or face). Thus the inequality (5.4)
holds.
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For convenience, we also show that the compliance tensor A is bounded in the L2-
norm.

Lemma 5.3. There holds
‖Aτ‖≤ 1

2µ
‖τ‖, ∀τ∈Σ. (5.5)

Proof. It follows from the definition (2.1b) that

‖Aτ‖2=
1

4µ2

(
‖τ‖2− 2λ

dλ+2µ
‖trτ‖2+

dλ2

(dλ+2µ)2 ‖trτ‖2
)

=
1

4µ2

(
‖τ‖2− λ(dλ+4µ)

(dλ+2µ)2 ‖trτ‖2
)

≤ 1
4µ2 ‖τ‖

2,

which leads to (5.5).

With the above preparations, we are ready to show the weaker inf-sup condition of
Q on the subspace Z∗h×Vh.

Theorem 5.1. For any given (σh,uh)∈Z∗h×Vh, there exists a positive constant Cγ that is related
to the parameter γ such that

sup
(τh,vh)∈Σh×Vh\{0}

Q((σh,uh),(τh,vh))

‖τh‖+‖vh‖1,h
≥Cγ(‖σh‖+‖uh‖1,h). (5.6)

Proof. First we have

Q((σh,uh),(σh,uh))=(Aσh,σh)+γ ∑
E∈Eh

h−1
E ‖[[uh]]‖2

E. (5.7)

Due to the weaker inf-sup condition (4.3), there exists a function ρh∈Σh such that

(ρh,εh(uh))≥β1‖uh‖2
1,h−β2‖uh‖1,h

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2

,

and ‖ρh‖=‖uh‖1,h. Then we take (τh,vh)=(−θ1ρh,0) and obtain

Q((σh,uh),(−θ1ρh,0))
=−θ1(Aσh,ρh)+θ1(ρh,εh(uh))

≥−θ1(Aσh,ρh)+θ1β1‖uh‖2
1,h−θ1β2‖uh‖1,h

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2

≥−θ1‖Aσh‖‖uh‖1,h+θ1β1‖uh‖2
1,h−θ1β2‖uh‖1,h

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2

.



B. Zhang and J. K. Zhao / Adv. Appl. Math. Mech., 12 (2020), pp. 278-300 289

We use the following inequalities

‖Aσh‖‖uh‖1,h≤
β1

4
‖uh‖2

1,h+
1
β1
‖Aσh‖2,

β2‖uh‖1,h

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2

≤ β1

4
‖uh‖2

1,h+
β2

2
β1

∑
E∈Eh

h−1
E ‖[[uh]]‖2

E,

and Lemma 5.3 to obtain

Q((σh,uh),(−θ1ρh,0))≥ θ1β1

2
‖uh‖2

1,h−
θ1

4β1µ2 ‖σh‖2− θ1β2
2

β1
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E. (5.8)

Due to Lemma 4.1, there exists a function wh∈Vh such that

(σh,εh(wh))= ∑
E∈E int

h

hE‖[[σhn]]‖2
E,

and

‖wh‖1,h≤C2

 ∑
E∈E int

h

hE‖[[σhn]]‖2
E

 1
2

.

Then we take (τh,vh)=(0,θ2wh) and obtain

Q((σh,uh),(0,θ2wh))= θ2(σh,εh(wh))+θ2γ ∑
E∈Eh

h−1
E

∫
E
[[uh]]·[[wh]]ds

=θ2 ∑
E∈E int

h

hE‖[[σhn]]‖2
E+θ2γ ∑

E∈Eh

h−1
E

∫
E
[[uh]]·[[wh]]ds

≥θ2 ∑
E∈E int

h

hE‖[[σhn]]‖2
E−θ2γ

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2
(

∑
E∈Eh

h−1
E ‖[[wh]]‖2

E

) 1
2

≥θ2 ∑
E∈E int

h

hE‖[[σhn]]‖2
E−θ2γC3

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2

‖wh‖1,h

≥θ2 ∑
E∈E int

h

hE‖[[σhn]]‖2
E−θ2γC2C3

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2
 ∑

E∈E int
h

hE‖[[σhn]]‖2
E

 1
2

,

where we have applied Lemma 5.2 to the second last inequality.
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We use the following inequality

γC2C3

(
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

) 1
2
 ∑

E∈E int
h

hE‖[[σhn]]‖2
E

 1
2

≤γ2C2
2C2

3
2 ∑

E∈Eh

h−1
E ‖[[uh]]‖2

E+
1
2 ∑

E∈E int
h

hE‖[[σhn]]‖2
E

to obtain

Q((σh,uh),(0,θ2wh))≥
θ2

2 ∑
E∈E int

h

hE‖[[σhn]]‖2
E−

θ2γ2C2
2C2

3
2 ∑

E∈Eh

h−1
E ‖[[uh]]‖2

E. (5.9)

Summing up (5.7-5.9), we take (τh,vh)=(σh−θ1ρh,uh+θ2wh) and obtain

Q((σh,uh),(σh−θ1ρh,uh+θ2wh))

≥(Aσh,σh)+
θ2

2 ∑
E∈E

∫
h

hE‖[[σhn]]‖2
E−

θ1

4β1µ2 ‖σh‖2

+

(
γ− θ1β2

2
β1
− θ2γ2C2

2C2
3

2

)
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E+
θ1β1

2
‖uh‖2

1,h.

Setting θ2=
1

2γC2
2C2

3
, it yields

γ− θ1β2
2

β1
− θ2γ2C2

2C2
3

2
=

3γ

4
− θ1β2

2
β1

,

which implies that

Q((σh,uh),(σh−θ1ρh,uh+θ2wh))

≥(Aσh,σh)+
1

4γC2
2C2

3
∑

E∈E int
h

hE‖[[σhn]]‖2
E−

θ1

4β1µ2 ‖σh‖2

+

(
3γ

4
− θ1β2

2
β1

)
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E+
θ1β1

2
‖uh‖2

1,h

≥(Aσh,σh)+
1

4γC2
1C2

2C2
3
‖divσh‖2

−1−
θ1

4β1µ2 ‖σh‖2+

(
3γ

4
− θ1β2

2
β1

)
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E

+
θ1β1

2
‖uh‖2

1,h

≥
(

αmin
{

1,
1

4γC2
1C2

2C2
3

}
− θ1

4β1µ2

)
‖σh‖2+

(
3γ

4
− θ1β2

2
β1

)
∑

E∈Eh

h−1
E ‖[[uh]]‖2

E+
θ1β1

2
‖uh‖2

1,h,
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where we have used (3.5) and Lemma 5.1, since σh∈Z∗h .
Setting

θ1=min
{

2αβ1µ2min
{

1,
1

4γC2
1C2

2C2
3

}
,

β1γ

4β2
2

}
,

it holds that

αmin
{

1,
1

4γC2
1C2

2C2
3

}
− θ1

4β1µ2 ≥
α

2
min

{
1,

1
4γC2

1C2
2C2

3

}
,

3γ

4
− θ1β2

2
β1
≥ γ

2
,

which leads to

Q((σh,uh),(σh−θ1ρh,uh+θ2wh))

≥α

2
min

{
1,

1
4γC2

1C2
2C2

3

}
‖σh‖2+

γ

2 ∑
E∈Eh

h−1
E ‖[[uh]]‖2

E+
θ1β1

2
‖uh‖2

1,h

≥Cγ(‖σh‖2+‖uh‖2
1,h). (5.10)

On the other hand, we have

‖σh−θ1ρh‖≤‖σh‖+θ1‖uh‖1,h, (5.11a)

‖uh+θ2wh‖1,h≤‖uh‖1,h+C2θ2

 ∑
E∈E int

h

hE‖[[σhn]]‖2
E

 1
2

≤C(‖σh‖+‖uh‖1,h), (5.11b)

where we have used the trace inequality (5.2) and inverse inequality on finite element
spaces.

Summing up (5.10-5.11b), the proof is completed.

Remark 5.1. We obseve that the weaker inf-sup condition of the bilinear form Q only
holds on the subspace Z∗h×Vh. It is sufficient to derive the optimal convergence results of
the mixed method.

6 Error analysis

This section is devoted to the error estimation on ‖σ−σh‖, ‖u−uh‖1,h and ‖u−uh‖, where
(σ,u) is the weak solution to (2.2) and (σh,uh) the approximate solution satisfying (4.6).

Theorem 6.1. Under the condition of the regularity estimate (2.3), it holds that

‖σ−σh‖+‖u−uh‖1,h≤Ch‖ f ‖.
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Proof. Observing (2.2) and (4.6), we first reformulate the consistency error, for any (τh,vh)∈
Σh×Vh,

Q((σ−σh,u−uh),(τh,vh))

=Q((σ,u),(τh,vh))−( f ,vh)=(σ,εh(vh))−( f ,vh)

= ∑
E∈Eh

∫
E

σn·[[vh]]ds= ∑
E∈Eh

∫
E
(σ−PEσ)n·[[vh−PEvh]]ds, (6.1)

since the jump average of vh on each edge (face) vanishes. The Poincaré/Friedrichs in-
equality [38] and trace inequality (5.2) imply that

‖σ−PEσ‖E≤Ch1/2
K |σ|1,K, ‖vh−PEvh‖E≤Ch1/2

K |vh|1,K, ∀E⊂∂K, ∀K∈Th,

which, together with (6.1), yields

Q((σ−σh,u−uh),(τh,vh))≤Ch|σ|1‖vh‖1,h. (6.2)

Observing the third equation of (6.1), there holds

(Πhσ−σh,ε(vh))=(σ−σh,ε(vh))=0, ∀vh∈V∗h ,

i.e., Πhσ−σh∈Z∗h . Then the weaker inf-sup condition (5.6) on Z∗h×Vh leads to

‖σh−Πhσ‖+‖uh− Ihu‖1,h≤
1

Cγ
sup

(τh,vh)∈Σh×Vh\{0}

Q((σh−Πhσ,uh− Ihu),(τh,vh))

‖τh‖+‖vh‖1,h

=
1

Cγ
sup

(τh,vh)∈Σh×Vh\{0}

Q((σ−Πhσ,u− Ihu),(τh,vh))−Q((σ−σh,u−uh),(τh,vh))

‖τh‖+‖vh‖1,h
. (6.3)

By using the interpolation error estimates (4.1a-4.1b), trace inequality (5.2) and Lemma
5.2, we obtain

Q((σ−Πhσ,u− Ihu),(τh,vh))≤Ch(|σ|1+|u|2)(‖τh‖+‖vh‖1,h). (6.4)

Substituting (6.2) and (6.4) into (6.3) yields

‖σh−Πhσ‖+‖uh− Ihu‖1,h≤Ch(|σ|1+|u|2).

The triangle inequality and regularity estimate (2.3) conclude the proof.

Theorem 6.2. Under the condition of the regularity estimate (2.3), it holds that

‖u−uh‖≤Ch2‖ f ‖.
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Proof. The proof relies on the usual duality argument. Let (σ∗,u∗) be the solution to the
auxiliary problem 

Aσ∗−ε(u∗)=0 in Ω,
−divσ∗=u−uh in Ω,
u∗=0 on ∂Ω.

(6.5)

From the regularity estimate (2.3), it immediately follows that

‖σ∗‖1+‖u∗‖2≤C‖u−uh‖. (6.6)

On both sides of the second equation of (6.5), we take an L2-inner product with respect
to u−uh and obtain

‖u−uh‖2=−(divσ∗,u−uh)=(σ∗,εh(u−uh))+ ∑
E∈Eh

∫
E

σ∗n·[[uh]]ds

=(σ∗−Πhσ∗,εh(u−uh))+(Πhσ∗,εh(u−uh))

+ ∑
E∈Eh

∫
E
(σ∗−PEσ∗)n·[[(uh−u)−PE(uh−u)]]ds. (6.7)

For the second term above, the Eqs. (2.2), (4.6) and (6.5) imply that

(Πhσ∗,εh(u−uh))=(A(σ−σh),Πhσ∗−σ∗)+(A(σ−σh),σ∗)
=(A(σ−σh),Πhσ∗−σ∗)+(σ−σh,ε(u∗))
=(A(σ−σh),Πhσ∗−σ∗)+(σ−σh,ε(u∗− I∗h u∗)), (6.8)

where in the last equation we have used the fact that (σ−σh,ε(vh)) = 0 for all vh ∈V∗h .
Combining (6.7) and (6.8), it yields

‖u−uh‖2=(σ∗−Πhσ∗,εh(u−uh))+(A(σ−σh),Πhσ∗−σ∗)+(σ−σh,ε(u∗− I∗h u∗))

+ ∑
E∈Eh

∫
E
(σ∗−PEσ∗)n·[[(uh−u)−PE(uh−u)]]ds.

By using the interpolation error estimates (4.1a)-(4.1b) and (5.1), Poincaré/ Fridrichs in-
equality [38] and trace inequality (5.2), we obtain

‖u−uh‖2≤Ch(‖σ−σh‖+‖u−uh‖1,h)(|σ∗|1+|u∗|2).

Combining the regularity estimate (6.6) and Theorem 6.1 concludes the proof.
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7 Relation to a stabilized nonconforming pure displacement
method

As is stated in Introduction, for finite λ the mixed method (4.6) can be reduced to the
stabilized pure displacement method: find uh∈Vh satisfying

(Cεh(uh),εh(vh))+γ ∑
E∈Eh

h−1
E

∫
E
[[uh]]·[[vh]]ds=( f ,vh), ∀vh∈Vh, (7.1)

with σh =Cεh(uh), since εh(Vh)⊂Σh.
The stabilized nonconforming method has been proposed by Hansbo and Larson

in [21]. Therein, the optimal convergence order has also been obtained uniformly in
the nearly incompressible case. However, the error analysis was carried out in a mesh
dependent energy-like norm defined as

|||v|||h =
(
(Cεh(v),εh(v))+ ∑

E∈Eh

hE

∫
E
{{Cεh(v)n}}·{{εh(v)n}}ds+2µ ∑

E∈Eh

h−1
E ‖[[v]]‖2

E

)
,

where {{·}} denotes the average operator on edges (or faces).
By contrast, we use the L2-norm for the stress space and broken H1-norm for the dis-

placement space, which are more natural and completely independent of the mesh size
and the Lamé constant. Moreover, as well as the displacement, the optimal convergence
order for the stress tensor is also obtained uniformly in the nearly incompressible or in-
compressible case.

8 Numerical results

In this section, we demonstrate the optimal convergence and stability of the stabilized
nonconforming mixed method by an example taken from [26]. To this end, we use the
mixed formulation (4.6) with γ = 1 to simultaneously approximate the stress and the
displacement, although for finite λ it is equivalent to the stabilized pure displacement
method (7.1) that is easier to compute. Note that, the stabilized nonconforming method
(7.1) has been tested to be locking-free by solving a closed cavity flow problem in [21].
Here, the numerical results are slightly better than those in [26].

In the following example, let Ω=(−1,1)×(−1,1) and µ= 1. As shown in Fig. 1, we
use the uniform n×n mesh Th on Ω with h=2/n. The right-side term is taken as

f (x1,x2)=

( −8(x1+x2)
(
(3x1x2−2)(x2

1+x2
2)+5(x1x2−1)2−2x2

1x2
2
)

−8(x1−x2)
(
(3x1x2+2)(x2

1+x2
2)−5(x1x2+1)2+2x2

1x2
2
) ).

It is not difficult to check the exact solution of (2.2) in this case is

u(x1,x2)=

( −4x2(1−x2
2)(1−x2

1)
2

4x1(1−x2
1)(1−x2

2)
2

)
+

1
2+λ

( −4x1(1−x2
1)(1−x2

2)
2

−4x2(1−x2
2)(1−x2

1)
2

)
,
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Figure 1: The uniform mesh with h=2−3.

and the corresponding stress tensor σ computed by σ=Cε(u).
We first discuss the convergence of our mixed method. The Lamé constant λ is taken

to be 1, 10 and 109, respectively. The corresponding numerical results for different values
of λ are given in Tables 1-3 and Figs. 2-4, from which we may find that the convergence
order of ‖u−uh‖, ‖u−uh‖1,h and ‖σ−σh‖ is O(h2), O(h) and O(h), respectively. It is

Table 1: The errors for λ=1 and different h.

h ‖u−uh‖ ‖u−uh‖1,h ‖σ−σh‖
20 1.2513e+000 7.2810e+000 1.1581e+001

2−1 4.1688e−001 4.2304e+000 6.6350e+000
2−2 1.0501e−001 2.1569e+000 3.4760e+000
2−3 2.6279e−002 1.0744e+000 1.7484e+000
2−4 6.5728e−003 5.3408e−001 8.7353e−001
2−5 1.6438e−003 2.6599e−001 4.3622e−001
2−6 4.1103e−004 1.3270e−001 2.1793e−001

Table 2: The errors for λ=10 and different h.

h ‖u−uh‖ ‖u−uh‖1,h ‖σ−σh‖
20 1.3084e+000 7.0572e+000 1.3423e+001

2−1 4.3872e−001 4.1392e+000 7.6216e+000
2−2 1.1381e−001 2.1187e+000 3.9040e+000
2−3 2.8797e−002 1.0557e+000 1.9441e+000
2−4 7.2248e−003 5.2481e−001 9.6844e−001
2−5 1.8084e−003 2.6139e−001 4.8325e−001
2−6 4.5236e−004 1.3041e−001 2.4138e−001
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Figure 2: The errors for λ=1 and different h in the logarithmic scale.
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Figure 3: The errors for λ=10 and different h in the logarithmic scale.

worth noticing that, even in the nearly incompressible case (λ = 109), the optimal con-
vergence order can be still maintained. These numerical results are consistent with the
theoretical results in Theorems 6.1 and 6.2.

Next, we focus on the robustness of the stabilized mixed method with respect to λ. Let
λ vary from 1 to 109 on a fixed mesh with h=2−6. The corresponding numerical results
for ‖u−uh‖, ‖u−uh‖1,h and ‖σ−σh‖ are shown in Table 4, from which we observe that
the errors are hardly affected by the choice of λ. Therefore, the stabilized nonconforming
mixed method is stable with respect to λ, i.e., it is locking-free.
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Figure 4: The errors for λ=109 and different h in the logarithmic scale.

Table 3: The errors for λ=109 and different h.

h ‖u−uh‖ ‖u−uh‖1,h ‖σ−σh‖
20 1.3495e+000 7.0870e+000 1.4253e+001

2−1 4.6211e−001 4.1743e+000 8.1347e+000
2−2 1.2387e−001 2.1422e+000 4.1311e+000
2−3 3.1715e−002 1.0670e+000 2.0420e+000
2−4 7.9742e−003 5.3016e−001 1.0144e+000
2−5 1.9958e−003 2.6402e−001 5.0577e−001

Table 4: The errors for h=2−5 and different λ.

λ ‖u−uh‖ ‖u−uh‖1,h ‖σ−σh‖
100 1.6438e−003 2.6599e−001 4.3622e−001
101 1.8084e−003 2.6139e−001 4.8325e−001
102 1.9678e−003 2.6360e−001 5.0296e−001
103 1.9929e−003 2.6398e−001 5.0548e−001
104 1.9955e−003 2.6401e−001 5.0574e−001
105 1.9958e−003 2.6402e−001 5.0577e−001
106 1.9958e−003 2.6402e−001 5.0577e−001
107 1.9958e−003 2.6402e−001 5.0577e−001
108 1.9958e−003 2.6402e−001 5.0577e−001
109 1.9958e−003 2.6402e−001 5.0577e−001

9 Conclusions

In this paper, we present the stabilized mixed finite element method with the jump
penalty term for the displacement, which is the discretization of the primal mixed varia-
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tional formulation for linear elasticity. Here we use the piecewise constant space for stress
and the Crouzeix-Raviart element space for displacement, so the mixed method is non-
conforming. The optimal convergence order is shown in the L2-norm for stress and in the
broken H1-norm and L2-norm for displacement, respectively. Moreover, the convergence
does not deteriorate in the nearly incompressible or incompressible case, so the mixed
method is locking-free. It is worth mentioning that, for finite λ our mixed method can
be reduced to the stabilized nonconforming method [21] based on the pure displacement
formulation, where the error analysis was carried out in a mesh dependent energy-like
norm as mentioned above. By contrast, the norms used in this paper are more natural
and completely independent of the mesh size and the Lamé constant.
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