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Abstract. In this paper, we solve linear parabolic integral differential equations us-
ing the weak Galerkin finite element method (WG) by adding a stabilizer. The semi-
discrete and fully-discrete weak Galerkin finite element schemes are constructed. Op-
timal convergent orders of the solution of the WG in L? and H' norm are derived.
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1 Introduction

Integro-differential equations [24] are used to simulate many phenomena in the fields
of mathematics, dynamics and engineering technology [1,9,15]. It is also used in high-
energy physics and biomedicine to help describe related physical phenomena and laws [7,
13]. Especially, in geology, the integro-differential equation [31] can be used to describe
the fine three-dimensional problem of the interior of the earth to explore mineral prod-
ucts and predict earthquakes [8]. It also plays an important role in aerodynamics [3].
For example, it blue can be used to study the Brown displacement and thermal diffu-
sion of suspended grain in heterogeneous fluid. When determining the profile of airfoil,
the integro-differential equation can be used to calculate the effect of circulation, lift and
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resistance of the air [10]. Because of their application values, integro-differential equa-
tions are essential and significant research subjects. In this paper, we consider the linear
parabolic integro-differential equation in domain QO C R? with boundary 9Q): seek an
unknown function u = u(x,t) satisfying:

ut(x,t)—V-(AVu(x,t))—/OtV- (BVu(x,0))dc=f(x,t), (xt)eQx(0,T], (1.1a)

u=g(xt), (x,t)€0Q2x (0,T], (1.1b)
u(x,0)=9(x), xeq), (1.1c)

where x = {xl,xz}, A= [ai/j(x,t)]gxz, B = [bl’/](x,t)]gxz, At = [(ﬂi,j)t(x,t)]zxz and Bt =
[(bij)t(x,t)]2x2. The matrix-valued functions A and B are sufficiently smooth and A is
symmetric. They also satisfy the some properties with positive constants a1, a», a3, B1, B2
for any ¢,i7 € R? that

w12 <¢TAS <az|C]I%, g™ Al <aslgl I,
"Bl <paligllnll, 1" Byl < BallE N Il

Several numerical methods for problem (1.1a)-(1.1c) have been proposed. The earli-
est ones are the finite element (FE) methods [2,4, 25] and the finite volume (FV) meth-
ods [14,16]. One important characteristic of the finite element method is that it can pre-
serve the conservation of mass and momentum. This method is primarily applied for the
diffusion problems and the existence and uniqueness are proved. However, the finite vol-
ume method is preferred to the finite element method for conservation and stability. And
it is more suitable for the discretization of the conservation of laws. A FV-FE method [12]
which combines the advantages of the above methods is proposed. However, these meth-
ods require two mutually associated meshes. In order to reduce this correlation, many
experts and scholars have proposed various discontinuous Galerkin methods. However,
it is difficult to construct the penalty items of the discontinuous Galerkin method [5,11].

Wang and Ye in 2011 proposed the weak Galerkin finite element for the second-order
elliptic equations [19,29]. The method is applied to many problems, such as Stokes equa-
tions [17,18,20-22,28], Brinkman problem [23,27], Biharmonic equations [30], eigenvalue
problems [26] and Stochastic problems [6,33] and so on. The partition of the domain can
be arbitrary polygonal or polyhedral. The construction of the approximated function is
simple and satisfies the stability condition. The essence of the weak Galerkin finite ele-
ment is that the classical operators are replaced by some weak operators. In paper [32],
the weak Galerkin finite element method is applied to the linear parabolic integro-
differential equations. It proposes the semi-discrete and fully-discrete weak Galerkin
finite element schemes. The optimal error estimates are obtained.

In this paper, we propose another weak finite element method by adding a stabi-
lizer. The reason why we propose this method is that: firstly, the approximation space
is easily constructed and simply satisfies the stability condition; moreover, the element
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of partition can be arbitrary polygon or polyhedron. That means, comparing with the
literature [32], the weak Galerkin finite element method with a stabilizer is more effec-
tive in dealing with polygon meshes. In particular, polygonal meshes are widely used in
the geological fields, such as earthquake prediction, coal mining and petroleum storage,
etc.. Therefore, the weak Galerkin finite element method with a stabilizer is more flexible
and has a wider range of applications. We also obtain the optimal order convergence in
corresponding norms for the semi-discrete scheme and the fully-discrete scheme of the
weak Galerkin finite element method, respectively.

The rest of this article is organized as follows. In Section 2, the preparatory work
is presented. We propose semi-discrete and fully-discrete weak Galerkin finite element
schemes in Section 3. The error estimates in H! norm and L? norm are derived in Sec-
tion 4. In Section 5, we provide the weak Galerkin finite element method for the primal
integro-differential. This part provides further theoretical support for the error estimates
in Section 4. Finally, several experiments are presented to verify the validity of above
theoretical analysis.

2 Preparatory work

In order to construct the variational forms of the weak Galerkin finite element method,
we first introduce serval definitions and notations.

In this paper, we use the standard definitions in the Sobolev space H*(D). The as-
sociated inner products and norms are denoted by (-,-)sp and ||-||sp with any s >0,
respectively. The space H’(D) coincides with L?(D). When D = (), we shall drop the
subscripts D and s in the norm and inner product notation. When D is an edge/face, the
L? inner product is represented by (-,-)p.

It is a well-known fact that the classical variational form of the parabolic integro-
differential equations (1.1a)-(1.1c) is to find u € L?(0,T; H!(Q))) satisfying respectively the
initial and boundary conditions (1.1b) and (1.1c) with ¢ € (0,T], such that

(1,0) + (AV i, Vo) + /0 BV Vo)l =(f0), VoeHL(Q).

Assume that 7}, is a partition of the domain ), which is a polygons in R? or polyhedral
in R? and satisfies a set of shape regularity conditions [20]. Denote by T is an any element
with 9T as its boundary. Denote by &, the set of all edges or faces in 7j,. For any element
T €Ty, denote by ht the diameter of T. Similarly, the diameter of e € &, is given by k.. We
define the mesh size of partition 7}, as

h=maxhr.
TeT),

Next, we introduce the weak Galerkin finite element space
Vi, = {UI {UO,Z)b}, Vo € Pk(T), Up € Pk(e), YT eT,, Vee gh}/
V) ={ve V), vlon =0},
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where Py(T) and Pg(e) are the sets of polynomials on T and e with the degree of poly-
nomial no more than k. Note that, vy is the internal functions and v, is the boundary
functions on each element T. There is no relationship between vy and v,. We emphasize
that v;, has a single value on each edge e € &j,.

At last, we define the discrete weak gradient operator. For each v={vy,v,} €V}, the
discrete weak gradient [19] is denoted by V, x_1v and defined by the following equation

(Vak-10,T)=—(00,V-T)r+ (v, T-n)or,  TEP_1(T).

In the following sections, we will drop the subscript k—1 of the discrete weak gradient
with the confusion.

3 Weak Galerkin finite element method

With the partition of the domain (), we define some projections. On each element T € 7y,
Qo is the L? projection from L?(T) onto Pi(T). For each edge/face e € &, Qy is the L?
projection from L?(e) onto Py(e). Combing the projections Qg and Qj are written to Q, =
{Qo0,Qp}. Let Ry, be a projection from [L?(T)]? onto [P,_1(T)]¢. The projections satisfy
the commutative property V(Qpu) = R;(Vu), which is obtained by the definition of
discrete weak gradient and integration by parts [20].

Introduce two bilinear forms with a matrix-valued function S in ()

s(w,v)= Z h771 (wo—wp,v0—Vp)ar,
TeT,
a(S,w,v)=(SVypw,Vyv)r+s(w,v),
for all w,v eV},

From the above preparatory work, we present the semi-discrete weak Galerkin finite
element schemes for the linear parabolic integro-differential equations.

Weak Galerkin Algorithm 1. Find uy,(t) = {uo(t),u,(t)} € L2(0,T;V}) satisfying

((t10)e,00) +a( A,y 0) + /O 'a(B,un,0) 42 = (f,00), (3.1a)
up(t) =Qug, (3.1b)
uy(0) =Epu(0), (3.1c)

for any v={vo,v),} € V.
Let 7 be the step size, t;=it fori=0,1,---, ul :=uy(t;) = {ub,u} } and f:=f(t;). At the

time t=t;, the backward Euler differential quotient is given by

ooyl gyt

51}14;1 =_h "h

With 6;, we construct the fully-discrete weak Galerkin finite element scheme as follows
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Weak Galerkin Algorithm 2. Find u} = {u,ul} € L2(0,T;V},) with any positive integer
1 <i< N such that

i—1

(S;ub,v0) +a(Alul,v) +TZa(Bj,u{l,v) =(f',v), (3.2a)
j=0

uy=Qu8", (3.2b)

ug =Eu°, (3.20)

for any v={vg,vp} € V.
Define the norm of space V}) as
ollI>=a(Lv,),
where [ is an identity matrix.

Lemma 3.1. |||v||| is a norm of weak Galerkin finite element space V.

Proof. When |||v||| =0, we get V,v=0 and vy =1, on 0T. From the fact V,,v=0 and for
any g€ [P,_1(T)]¢, we have

Oz(vaIQ)T
=—(v0,V-q)1+(vp,9-1)57
:(VU(),E])T.

Considering the arbitrariness of g and letting g = Vuvy, we obtain || Vvp||>=0. That yields
vo="C on each element. It follows from v, =0 on d() that vy =v, =0. O

Lemma 3.2. Forany v,w & VY, we have

|a(S,w,0)[ < C[[[wl[[[[[]l]
[a(A,0,0)] > Cll[o]||*.

Lemma 3.3. For the numerical solution to the semi-discrete weak Galerkin finite element scheme
(3.1a) with initial and boundary conditions (3.1b) and (3.1c), there holds that

)12 (I @IP+C [ DI ).

Proof. Letting v=1uy, in the form (3.1a), we have

((uo)t,uo)+a(A,uh,uh)—l—/0ta(B,uh,uh) ag=(f,uo).
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It follows from bilinear property of a(-,-,-) that

((u0)t,u0) < (f,uo),
ie.,

s 30 dr= (o) < (Fay < ( [ e [ ud) av).

Integrating the above inequality with respect to t and using Gronwall lemma, we com-

plete the proof of this lemma. O

Theorem 3.1. The solution of the semi-discrete weak Galerkin finite element schemes (3.1a)-
(8.1c) is unique.

Proof. It is enough to present that the following homogenous equations have a unique
zero solution

t
((Mo)t,v)+”(A,Mh,U)+/ a(B,uy,v) dC=0, VoeV?, 0<t<T, (3.3a)
0
up(t)=0 on 0Q), 0<t<T, (3.3b)
1, (0)={0,0}. (3.30)

Taking v=1uy, in (3.3a), we have

((uo)t,uo)+a(A,uh,uh)—|—/0ta(B,uh,uh) dc=0.

Considering the positive definiteness of matrix A, the boundedness of the matrix B, the
Cauchy-Schwarz inequality and the Young’s inequality, we get

1d 1d [,
Eﬁ(”Or”O)—Ea o
a( A up,up) > o ||[ug ||,

t t
— [ a(B (@) (1)) dE <C [ g Q11 dg-+ Sl
0 0

It follows from these equations above that

1d

2 a1 2 ! 2
i <[ u ( dc.
t/ ug dx+ > HW\H > /0 H\ h( )W 4

Integrating above equation from 0 to ¢, we obtain

1 2 o [t 2 Lre 2
IR+ 5 [l dg <€ [ [ )11 dg dz. 64)
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Since ||uo(t)||? >0, so we have the fact

ar [* 2 Lré 2
S [l az=c [ [ (ol de de.
2 Jo 00

From Gronwall inequality, we get

t
|l g <o.

Considering the property of norm |||u, ||| >0, we obtain u; =0, which means up=u,=0. [

Theorem 3.2. The solution of the fully-discrete weak Galerkin finite element schemes (3.2a)-
(3.2¢) is unique.

Proof. It is analogous to prove the Theorem 3.1. Consider the following homogeneous
equations

) o i—1 S
(Seup,v0) +a( A’ uj,0)+1Y_a(B,u),0)=0, Voe VP, 1<i<N, (3.5a)
j=0
ul =0 on 9Q), 1<i<N, (3.5b)
u) ={0,0}. (3.5¢)

Taking v= ”L in (3.5a), we get
(Orup,up)+a(A',uj,uy) +T2a(B],u;l,u;l) =0, 1<i<N.
j=0

It follows from backward Euler form, the positive definiteness and boundedness of
a(-,-,-) and the Young’s inequality that
a( Ay ) > o[l ]|,
o 1., . . —_— S 1 , -
(Jruup,up) = 5—((up,up) — (g g )+ (o —uy g —ug 1)) = 5 (lluol* = g™ 7).

and
S T i N1 112 2L 2
—7 ) a(Bluguy,) <P [l -1 11 < CBr ) 1l 117+ 5 1l I
j=0 j=0 j=0
Summing up all above equations yields

1 ) . A ) i—1 .
o= (lp* = g 1||2)+3|||u§1|!|2§(3/31TZ(:)|||L41||!2~ (3.6)
j=
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Accumulating inequality (3.6) with i from 1 to k—1 for 1 <k < N+1, we obtain

k=1 k=1i-1
g™ 112 +-ea ) [l 11 < CB1.(x)2 ) Y Ml I (3.7)

i=1 i=1j=1

Considering the discrete Gronwall inequality with the fact [|u}~1||2 >0, we arrive at
k=1
Ty lllulIP<0,  1<k<N+1,
i=1
which yields “Z =0 with 1 <i<N. This theorem is completed. ]

4 Error estimates

In this section, we derive the error equations and error estimates for the semi-discrete
and fully-discrete weak Galerkin finite element schemes. First, we define an elliptical
projection Ej, which is similar to Wheeler’s projections in [23], for the exact solution
ueL?(0,T;H(Q)) of the linear parabolic integro-differential equations (1.1a)-(1.1c). With
Ej, we define an equation with a fixed time t € (0, T] such that

a( A, Eyit,0) + /O ' a(B,Eyi,0) di = (— V- (AVi),0) — /O \(V-B(Vu),0) de,
Eyu=Qpg on dQ),

for any v={vg, v} € V.

Denote
e=Epu—uy, p=Quu—Eyu, n=u—Quu,
&=Qous—6:(Qou), pr = Qpuus— Epuy, N =ur— Qpliy.

4.1 Semi-discrete WG error estimates

Firstly, we derive the semi-discrete error equations. Then, we use the error equations to
derive the semi-discrete error estimates in H! norm and L? norm.

Lemma 4.1. Assume uy, € LZ(O,T; Vi) is the numerical solution of semi-discrete WG schemes
(3.1a)-(3.1c) and u € L2(0,T; H(Q)) is the exact solution of linear parabolic integro-differential
equations (1.1a)-(1.1c) for 0<t < T. Then, for any v € V., we have

((e0)t,v0) +a(A,e,0)+ /O 'a(B,e,0) d2 = —((p0)1,0). 4.1)
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Proof. Testing the integral differential equation (1.1a) by v={vy,v; } € V) and considering
the definition of projection E;, we get

t
(ut,v)—Hz(A,Ehu,v)—k/0 a(B,Eju,v) dl=(f,vo). 4.2)
It follows from the semi-discrete variational equation (3.1a) that
t
(Eout— (19),v0) +a(A, Eyu—up,v) —1—/0 a(B,Eyu—u,v) dl=—(Qout— Eout,vp).

Following the definition of e and p, we obtain the semi-discrete error equation. O

Theorem 4.1. Assume u € L*>(0,T;H**1(Q)) and uj, € L*(0,T;V;,) are the solutions of integro-
differential equations (1.1a)-(1.1c) and semi-discrete weak Galerkin finite element variational
forms (3.1a)-(3.1c), respectively. There exists a positive constant C independent of h satisfying

t
el < CHED [ (2 + o 24) a2, (4.3a)
t
[lell]> < Chz(”l)/o (el 1+ lluee241) 4G (4.3b)
Proof. Firstly, taking v=e in the semi-discrete error equation (4.1), we have
Y & q

((eo)eeo) +a(A,e,e)=((po)ec0)~ [ a(Bee) T

It follows from property of a(-,-,-), the Cauchy-Swarch inequality and the Young’s in-
equality that

1d 1
((e0)t,€0) = 5 = (e0,e0) = 5 [leo]|, a(Aee) > aillell?,
t t 1
~ [[a(Bee)< [ pillell g, ~((po)ueo) <Cllpo)e 2+ 5 ol

which leads to
d t
@Ileol\“rlllel\l2 SC/O lllel[1* dZ+C ([l (0o)elI>+lleol ).

Integrating above equation from 0 to t with the fact e(-,0) =0 yields

t t T t
feo+ [ ell? ag < ([ MellP de-+ ol ) dg-+C 1 pohe? .

By the Gronwall’s inequality and the estimate of ||(pg);|| in the Theorem 5.3, we obtain
an error estimate formula (4.3a).
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Next, for each fixed ¢, letting v =e¢; in semi-discrete error equation (4.1) yields

((eo)t,(eo)e) +a(Aeer)= —/Otﬂ(Bfelet) dZ—((po)t, (e0)t)-

Since 4a(S,e,e) =a(Ste,e)+2a(S,e,er) with S € {A,B}, we obtain

1d
2 [E—
I(eo)ell+5 Zza(Aee)

:;a(At,e,e)—;a(B,e,e)~|—;/Ota(Bf,e,e) aZ—((po)t,(eo)t)- (4.4)

Using the definition of [||-]||, the property of A and B and the Young’s inequality, we
obtain

a(Ae,e) > al|le]|?, a(Are,e) <asl|le]|?,
—a(B,e,e) < Billelll?, a(Bye,e) < Balllelll?,

and

1
~((po)e,(e0)r) < 7l (0o)ell*+ | (eo):I*
Substituting all these forms into (4.4) yields

1d 2 2 2 ' 2
—_ < .
2dt”|e|” <C(|llellI=+ 1 (po)ell )+C/O \[[ell|* dC

Integrating the above formula with respect to ¢, we have

t t
llellZ<C [ lell dg+C [ 11 Gpo)e | .

From Gronwall inequality and the estimate of ||(po):||, we obtain an error estimate for-
mula (4.3b). O

4.2 Fully-discrete WG error estimates

Firstly, we derive the fully discrete error equations. Then, we use the error equations to
derive the fully-discrete error estimates in H! norm and L? norm.

Lemma 4.2. Let uy, € L2(0,T;V},) be the numerical solution of fully-discrete WG schemes (3.2a)-
(3.2c) and u € L2(0,T; H* (Q)) be the exact solution of linear parabolic integro-differential equa-
tions (1.1a)-1.1c with 0 <t <T. Then, for any v € Vf and 1 <i <N, we have

. . . . . I 171 . :
(616, 00) +a(Al¢l,0) = —(&,00) — (6:01),00) — /O a(B,Eyu,0)dg+7Y _a(Blu,0).
=0
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Proof. Using v={vg,v;,} € V} to test the integro-differential equation (1.1a) and the defi-
nition of Ej, we have

(Qout,vo)—|—a(A,Ehu,v)—|—/0ta(B,Ehu,v) ag=(f,vo).

Considering the fully-discrete variational forms and the equation above with t =# and
1 <i<N, we obtain

) . ) . t i—1 o
(5t66,vo)—|—a(Al,el,v):—(%,vo)—(étpb,vo)—/o a(B,Eju,v) dé—l—rZa(B],u;l,v).

j=0
Thus, we complete the proof. O

Similarly, following the error estimates of semi-discrete WG schemes, we construct
the error estimates of fully-discrete WG schemes in H! norm and L? norm, respectively.

Theorem 4.2. Let ul! € L*(0,T;V},) be the solution of the problems (5.3a)-(5.3b) arising from
fully-discrete weak Galerkin finite element schemes (3.2a)-(3.2c). Assume u € L?(0,T;H*T1(Q))
is the exact solution of integro-differential problems (5.3a)-(5.3b). Then, for any ve V2, 1<k<N
and n=0,1---, we obtain

k
HeoH2 <Ct? <H“tt H%Z(O,T;LZ) + H“H%2(0,T;Hs+1) + HutH%Z(o,T;HsH))

4 C2(+) <Hu||%2(0,T;HS+1) + ||ut|\%2(O,T;Hs+1)) :
Proof. Taking v=e¢' in Lemma 4.2 for the fully-discrete error equation, we have

((5tef),ef)) —|—a(Ai,ei,ei)
i1

o o t ‘ ‘ L
:—(176,@6)—(&,06,@6)—/0 a(B,Ejyu,e') dC—l—TZa(B],Ehu(t]),e’)
=

—TZa(B],Ehu(tj)—u;l,el), 1<i<N.

j=0
It follows from the backward Euler form, the definition of ||| -||| and the Young’s inequality
that
i Lo i—1 ,i—1 e R | Lovinz_ii-1y2
|(5t€0/€0)|:E((30/€0)_(0 €0 )+ (en—eq ,en—ep ))EE(H%H —lleg " 1I%),
ja(Alele')| = anl|e']]|%.
Notice that

f

&= Qout; —6:(Qou') = Qo(u — ') = Qo (1/tl

T -1

(Z—t"Nun(2) d'c:) ,
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we obtain

1

) # # 2
Mwscw41WAowmzc<yﬁlwuﬁ%>.

So, we have

o . 1 . t 1 .
[(0.€0)] SCllf,?éllzﬂjlleéllzSCT/%1 (s dC+;1||66||2~

Thanks to
o = | 0 HtMPo ag|| < / [(po)i |12 g,
we get
i C [t 1.
|~ Gohoeh) 1< 2 [ oo d+ b
Since
d
E(szu(Ehu)):Btvw(Ehu)+va(Ehut)/
we obtain
# ) i—1 ) ) )
/ a(B,Ehu,el)d@—TZa(B],Ehu(t]),el)
0 £
j=0
tl
—/ (Epu,e') dg — TZS Eju(t),e)
ptl . . .
(Z/ [BV o (Epu(Z)) =BV (Epu(t))] dg,Vwé).
t!
We have the fact

i1
‘(2 ,/, [BVw(Epu(2))— BV (Epu(#))] de, wei>‘
0/t \%
i d i
/t/ dg —[BVw(Enu(g))] dgdl, Ve

:<< /ﬂw /HC[Bti(Eh(g))+va(}5hut(g))] dgdC,de)

[Btvw(Eh(g)) +va(Ehut(€))]dgszei>

175
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= (T/Otl [B: Vi (En())+BVau(Enu (7)) dC,Vwé)

151 i
<C2 (JulRaig pppn) + it e g o)) + 2 NI,

and

tis(Ehu,ei) dC—TEs(Ehu(tj),ei)

=
—Z /]
—Z//HH s(Eyu—Epu(t),e') dg

H+1 1

s(Eyu,e') df — Z/ s(Eyu(t),e') dg

t]+1

—Z /, ((Eotu—Eyue) — (Eou () — Eyu(t)) e ar 42

Te771

Mh<2 T

</ h [Eout(C) — Epu (Q)] dC,eé—ef,>
T€77,

1 .
SCTZHMtHiw(O,T;HHl) +€|Helm2

t]+1

7 [Eout () — Eyu (7)) dC/€6—62>
oT

oT

From the property of a(-,-,-), we get
Ty a(B Eyu() —uy,e") <BrTY ||| Equ(t) —uylll|]le']]]
j=0 j=0

2].71 im2 ., %1012
<Ct*y _lle']]] + el
j=0
Combing all the equations above, we get

lep1® = lleg 12 +2ax 7 llef]]

<ce [" lulPdz+elePc [ lpo)Iag

. =1
+C8 (1412w g o) 146 3 1) )+l P+ CT2 L e
j=0
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Accumulating the above equation with i from 1 to k—1, we obtain

k-1
e P+t 3 el
i=1
k=1 k=1 I
<Ce [l dg+7 L eblP+C [ 1l Gpo)ell? g
i=1
2 2 2 SN2
+Ct (H”H °°(0,T;H5+1)+Hul‘HLw(O,T;HS“))+CT Y M,
i=1j=1

where 1 <k < N-+1. Following the Gronwall inequality and the estimates of |||p|||, we
obtain the fully-discrete error estimate. O

Theorem 4.3. Let uj, € V), be the solution of the problems (5.3a)-(5.3b) arising from fully-discrete
weak Galerkin finite element schemes (3.2a)-(3.2c). Assume u € L2(0,T;H**1(Q)) is the exact
solution of (5.3a)-(5.3b). Then, for anyve Vy, 1 <k<Nand n=0,1---, we have

k
[Ile[[]> <Ct? (HuttH%Z(O,T;HSH)—’_ H“tHZw(o,T;L2)+ H”Hzoo(o,T;HsH))

4 CH2(+) <Hut ozt ||u||%2(O,T;Hs+1)> :
Proof. Letting v= 5! in the fully-discrete error equation in Lemma 4.2, we obtain
|6:eb||>+a(Al,e',ore)
—_— (@6,&66) — (5tp6,§teé) — /Otiu(B,Ehu,(Stei) al+t lill u(BiO,uZ’,(Ste")

ip=0

S o t . -1
- (Cb,éteb) - (5tP6/5t66) +0 (/ a(BIEhu/el) dC—TZﬂ(B],u]h,el)>
0 4

j=0

T i-1

1 # . . . . o
—= (/ a(B,Eju,e'™t) d@—Ta(B’_l,Ehu(tl_l),el_l)) —a(B e Le ).
t
We estimate the second term and the right hand side terms as follows
a(A'e, o) > E(a(Al,el,e’) —a(Alé, e 1)),
vy 2. Lys g2
—(Go.dre0)| = C(lIGolI”+ 7 llorenll %),

o . 1 .
| = (8tp0,81e0) | < Clldupp1* + 4 | 8rep 1,

la(B e <Cllle |



178 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Notice that
1( ‘ A ‘
([ (B Bty dz—va(B L B )0
tl
! ' i— i— i—
= T(/t (va(Ehu) )dC <B 1vw(Ehu(t 1)),Vw€ 1)>|
1( ‘ ‘
+|= / S(Ehu,elfl) dC—Ts(Ehu,e“l) ,
T -1
where

# ' ' ' '
( tffl(va(Eh”)'Vwel_l) dg_T(Bl_lVw(Eh”(tl_l)),Vwe’_l)) ‘
1/t
T Ji

J (BVu(Ep) BV (Bt 1) dg,vwef—U)'

1
T
- ( [ A e (BYwlEnn(s )))dgdg,vwef—1>

/t [ (BiVu(Eyn) + BV (Eyn) g, Vive'™ )‘

f i
<Ct (lBl||u‘|2w(0’T;Hs+l)+ﬁ2’|ut||i°°(0,T;H5+l)> |Hel 1|H

<ct? (/31 HMH%W(O,T;HS“) +52H“t”2w(o,T;Hs+1)) +lle %,

and

# , .
1 (/ s(Epu,e™t) d@—Ts(Ehu,el_l)> ‘
T fi—1

t . .
= 1/ S(Ehu—Ehu(tl_l),el_l) dC‘
T J#i-1

— /1 Eou Eyu— (Eou(ti_l)—Ebu(ti_l)),eé_l—eé_1>aTdC’
t# TeT

<) /‘t hy' (Eous($) — Eyur(Q)) dg,eq ' —ef !
et aT

TeT,
SCTZHMsz(O,T;HHl) +|||el_1‘||2‘
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Summing the equations above, we get
7||6seb||24-a(Aele) —a(Alel e t)
t t ,
<ce? [ fualdg+C [ ool dg+Crlle 2

+CT3 <,Bl ||u||zoo(0/T;Hs+l) +,BZ ”ut ‘|%°°(O,T;Hs+1)>

H ) i—1 o )
42764 (/0 a(B,Eju,e') dC—TZa(BJ,uL,éteZ)> )

=0
Adding the above with respect to i from 1 to k with 68 =0and 1<k<N, we have

el

k
=1

tk tk
H!ek!HZSC#/O HuttHZ dé{-C/O H(PO)tHZ dg—l—CT
i
2 2 ’
+C7 (4l + 0t o ) )

tk k=1 o
-2 (/ a(B,Epu,e) d@—TZa(B%uL,e’ﬁ) .
0 .

j=0
It follows from the proof of the estimates of | ¢§|| that
I k-1

/ a(B,Ehu,ek) ai—t Za(Bj,M;;,@k)
0 4

j=0
Lok
<C2 (1l 50y + e 2 ooy ) +5 11N

Using the Gronwall inequality and the estimate of ||(pp):||, we have

Kk
[e¥][[> <C? (HuttH%Z(O,T;HSH)—’_ el 0,7;02) + H”Hzoo(o,T;HsH))

420+ (||ut [F— 7 y|§2(O,T;HS+1)) .

Thus, we complete the proof.

5 WG for primary integro-differential equation

179

In this section, we firstly present several results regarding approximation properties of
the L2 projections Ry, and Qj. Then, we provide the H I norm and L? norm for the linear
integro-differential equation without the item u;, respectively, to support the analysis of

previous error estimates.
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Lemma 5.1 ([19]). Let T}, be a finite element partition of Q) satisfying the shape reqularity [20]
and we H™ and p € H'(Q) with 1 <r <k. Then, for 0<s <1 we have

Y- hF|w—Qow|F,, < CHU w74,
TeT,

Y. W[ Vw—Qo(Vw) |1}, < Ch ||w|7 ;.
TeT,

Theorem 5.1. Let u € H"1(Q) be the exact solution of linear integro-differential equation with-
out the item u;. According to the definition of p, then

1
el <ch (JulZo+ [ Iuleidg)’,  o<e<r 61
Proof. It follows from the definition of Ej, and integrating by parts with any v € V) that
a(A,Ehu,v)+/()ta(B,Ehu,v) ac
——(V-(AVw)o0) - | (V- (BVu),00) dC

t
=(AVu,Voo)— ) (AVu-n,vo—vb>aT—|—/ (BVu,Vuvy) dg
TeT, 0

_/t Z (BVu-n,v9g—0vy)ar dg.

0 7e7,

By the definition of a(-,-,-) and discrete weak gradient, commutativity and integrating by
parts, we have

a(A,Qhu,v)+/(Jta(B,Qhu,v) ag
:(ARh(Vu),va)+/0t(BRh(Vu),va) d§+s(Qhu,v)+/0ts(Qhu,v) dg

t
=(AR,(Vu),Vouy)+ Z (ARh(Vu)-n,vb—vo>aT+s(Qhu,v)+/() s(Quu,v) dg
TeT,

t t
+/0 (BRh(Vu),Vvo)dZJr/O T;_h<BRh(V”)'nrvb_UO>aT dg.

From the above two equations, we obtain
t
a(A,p,v) —l—/o a(B,p,v) d{
t
—(A(Ry (Vi) — Vi), Vop) +/O (B(Ry(Vit) — V), Vo) dC

—I—l(A,u,U)+/0tl(B,u,v) d§+s(Qhu,U)+/0ts(Qhu,v) ag, (5.2)
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where
Z(S,M,U) = Z (S(Rh(Vu) —VM) 'H,Ub—00>aT.
TeT,

Taking v=p in the error equation (5.2), we get

o(A,00) == [ a(B,00) AT +(ARY(Va) Vi) Vo) + [ 1(B,u) dC
1A 1,0) +5(Quep)+ [ (BRY(Va) Vi), Vo) dg

t
+[) S(Qh”rP) dg
The properties of A and B, the Cauchy-Schwarz, approximation properties and the trace
inequality yield
la(A,p,0) [l = anlllell%,

|1(A,u,p ]—‘ Y (A(Ry(Vu) VU)'HIPO_Pb>aT‘
TeT,

1/2
<Cl[lplll- ( ) IIRh(Vu)—ull%+h2||V(Rh(W)—u)||%>
TeT,

aq
SChZS||”||§+1+g|HP|||2/

Y hH(Qou—Qput,p0—pp)ar
TeTy,

Y~ h N Qou—1u,00—pp)ar

T<T),

<Ch25”””s+1+7|HPH|2

Qhu/p

and
[ (A(Ry(Vu) = Vu),Vpo) || <C||Rp(Vu) = Vu| - | Vol
<Ch25”””s+1+7|HPH|2

[ R0 ~Vu), Vpo) g

! 2
- [[atep0) 2] <pr [ oI d,

<o [l dgc [ el a,

t t t
A mp) de| < [l dzec [ ol

Al
[

t t
stQup) de| < [l dg-+C [ ol .
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Combining these inequalities, we get

t t
lloll2<C /O lolI1? g+ Ch2|[u]]2, 1 + Ch* /O |2, 2.

Using the Gronwall inequality, we obtain the error estimate in H! norm. O

Next, we estimate ||o||. Assume we€ H'(Q) is the exact solution of the elliptic problem
with a Drichlet boundary condition

—V-(AVw)=py in O, (5.3a)
w=0 on 0Q). (5.3b)

We presume that the dual problem has the H! (Q)-regularity property
[wll2 < Cllpoll-

Theorem 5.2. Let u€ H**1(Q) be the exact solution of linear integro-differential equation with-
out the term u;. We have the following error estimate for po:

1
t 2
leoll < i (e + [ llBadc) ', o<es. 54
Proof. Testing the elliptic problem (5.3a) against pg, we have

lpoll*=(=V-(AVw),po) = (AVw,Vpo) - TZ; (AVw-n,po)ar
:((A —Z) (Vw—Rh (VCU)),VP(]) + (ARh(VaJ),Vpo)

— Y (AVw-n,00—pp)ar

TeT,
=((A—A)(Vw—Ry(Vw)),Vpo)+a(A,Quw,p)
—s(Quw,p) —1(A,w,p), (5.5)

where using the fact (A(Vw—R;Vw),p0) =0 and Y re7. (AVw-n,p0,) =0. Considering
Eq. (56.5) and taking v = Qw in the error equation (5.2), we obtain

2 ! t
ool == [ (BVup,Ry(Veo)=Vew) dC— [ (Vup,BYw) dg
0 0

—/Ots(p,Qhw) dZ+((A—=A)(Vw—Ry,(Vw), Vo)
+1(A,w,0) —s(Quw,p) — ((A—A)(Vu—Ry(Vu)),V(Qow))
—/Ot((B—B)(Vu—Rh(Vu)),V(QOw)) Al+1(A,u,Quw)

t t
+ [ 1B1,010) dE+5(Qun,Queo)+ [ 5(Quut Qo) .
0 0
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In order to get the estimates, we estimate the form term by term. Using the definition of
the discrete weak gradient, the trace inequality and the property of projection yield

t t
[ (BVap,Ry(Ve) = Vao) dg] <C [ 1VupllIRy(Vew)~ Vel dg
t
<ch [ Jwlallell .

[ (Vopve) dt| = [ 6005 BY@)) dt| < [ ool e,
(A=) (Ve Ru(Vew)), Vol <) Al e[ 1]

and

|s(Quu,Quuw)| <C ( Y h]_"1||Q0u_u||22)T> ( Y. h]_"l||Q0w_w+w_waH%T>

TeT, TET,
<CI M |ulsallw]l2,

11(A,u,Quw)| = ’ Y (ARy(Vu)—Vu) ‘n/QOW_w+w_wa>aT’
TET,
<Ch M ullsyallw]]2-

Following the estimate of |||p|||, the definition of the discrete weak gradient, the trace
inequality and the property of projection, we have

s(Quop) | <Chlwlallelll,  [1(Aw,p)| <Chllw]zlell,
[ (BB (Tu—Ru(Vu), T(Qu)g| <Ch [ ol
[(A=A)(Vu=R,(V4)), ¥(Quew))| < CHH w1,

and

t t
[ stQunueo)de] <t [l ol

t t
[ sto.0uo) e <cn [ pllwlatz,

t t
[ Qu)de] <C [l

From the estimate of |||p|||, regularity property and the Cauchy-Schwarz inequality, we
get

1 t t
ool < 3 lpol?+C [ loolPag-+Che (2ot [l ).



184 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

According to the Gronwall inequality, we obtain

ool <t (2 + 1dc)

The proof of this theorem is completed. O

Similar to the proof of Theorem 5.1 and Theorem 5.2, we can obtain the estimate of p;.

Theorem 5.3. If u; € L®(0,T; H*1(Q))), there is a positive C with 0 <t < T such that

1
2
Ml < e (Il By el ) )

1

.t
o)l <O+t (B et [ QB+ ) dc)

6 Numerical example

We present several numerical examples to verity the order of convergence with weak
Galerkin finite element method by adding the stabilizer for the linear parabolic integro-
differential equation (1.1a)-(1.1c).

Example 6.1. We solve (1.1a) over the square domain ()= (0,1) x (0,1) where

A (3FTxy 1/2 B XTY -1/2
o 1/2 4—x+y)’ S \-1/2 x+y )’

0=(0,1)x(0,1),
and the exact solution is chosen as

u(x,y,t)=e 'x(1—x)y(1—y). (6.1)

We use P, weak Galerkin finite elements on rectangular grids where the first level
grid is the domain itself and each grid is refined in to the half-sized grid to form the next
level grid. We choose T=10"* and compute the solution up to T=1. The errors and the
orders of convergence are listed in Table 1.

Example 6.2. We solve (1.1a) where

10 0 -1/2
A=<0 1), B:ﬁ1<_1/2 0 ), ‘31:1 or 10,

f=1  g=0, p=0, Qx(0,T)=(0,1)x(0,1) x(0,1).

We do not know the exact solution. The numerical solutions are plotted in Fig. 1, where
we can see the effect of memory integral.
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Table 1: Example 6.1. The errors and the orders of convergence for solving (6.1).

Te [1Qui—ualle W [ [Qui—tialls W [ [[Qui—twall "

P; weak Galerkin finite element method

4 | 0.1528E-02 1.90 | 0.7005E-02  1.08 | 0.4221E-02 1.34

5 | 0.3889E-03 1.97 | 0.3601E-02 096 | 0.1176E-02 1.84

6 | 09743E-04 2.00 | 0.1876E-02 094 | 0.3031E-03 1.96

P, weak Galerkin finite element method

4 | 0.6438E-04 3.07 | 0.1997E-02  2.04 | 0.1397E-02 2.27

0.7492E-05 3.10 | 0.4782E-03  2.06 | 0.2871E-03  2.28

6 | 09107E-06 3.04 | 0.1161E-03  2.04 | 0.5943E-04 227
P3 weak Galerkin finite element method

0.1048E-02  3.70 | 0.1140E-01 255 | 0.1315E-01 2.93

0.6760E-04 3.95 | 0.1529E-02 290 | 0.1657E-02  2.99

4 | 04138E-05 4.03 | 0.1891E-03  3.02 | 0.1967E-03  3.07
P, weak Galerkin finite element method

0.9909E-04 5.06 | 0.1826E-02  4.07 | 0.2976E-03 294

0.3014E-05 5.04 | 0.1079E-03  4.08 | 0.2582E-04 3.53

4 | 0.1551E-06 4.28 | 0.6457E-05 4.06 | 0.1910E-05 3.76

6] ]

@W N

W N

(0.0,0.0, 0.19107

1.0, 1.0,-0.05412)

(0.0,0.0, 0.04001

1.0, 1.0, -0.00056)

Figure 1: Example 6.2. The weak Galerkin solution for =1 (bottom) and for =10 (top).

7 Conclusions

In this paper, we developed another weak Galerkin finite element method with a sta-
bilizer, which provides more options to choose elements of partition, for solving linear
parabolic and primary integro-differential problems. The semi-discrete and fully-discrete
weak Galerkin finite element schemes were constructed. The semi-discrete WG scheme
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was proved to be stable with respect to the right hand side. The fully-discrete WG scheme
was discretized by the backward Euler method. The optimal orders of convergence were
obtained in L2 and H! norms. Numerical examples confirmed theoretical analysis.
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