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Abstract. In this paper, a mixed finite element method is investigated for the Maxwell’s
equations in Debye medium with a thermal effect. In particular, in two dimensional
case, the zero order Nédélec element (Qp X Q19), the piecewise constant space Qy ele-
ment, and the bilinear element 11 are used to approximate the electric field E and
the polarization electric field P, the magnetic field H, and the temperature field u,
respectively. With the help of the high accuracy results, mean-value technique and
interpolation postprocessing approach, the convergent rate O(t+h?) for global super-
convergence results are obtained under the time step constraint T=O(h!*7), v >0
by using the linearized backward Euler finite element discrete scheme. At last, a nu-
merical experiment is given to verify the theoretical analysis and the validity of our
method.
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1 Introduction

In this paper, we consider the following Maxwell’s equations:

oB oD
VXE__EI VXH——y—‘—J,

V-D=p, V-B=0,

where E and H denote the strengths of the electric and magnetic fields, respectively. D
and B are the electric and magnetic flux densities, respectively. J and p represent the
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current density and the density of free electric charge, respectively. The above equations
will be supplemented with the constitutive laws by:

D=¢)E+P, B=uoH-+uoM,

where P and M represent the electric and magnetic polarization, respectively. €y and po
are the electric permittivity of free space and the magnetic permeability, respectively. We
assume M = 0 since we can choose to ignore the magnetic effect among the dielectric
materials.

Debye medium is one of basic physical concepts when one investigates dielectric in
electromagnetic theory and materials science [22]. It is a kind of isotropic dispersive
medium, and its permittivity and conductivity are functions of frequency. With the help
of the polarization and dielectric relaxation, one can establish phenomenological theory
in Debye medium. That is to say, in the process of polarization, microscopic particles
complex energy exchange actions can be taken into the following dielectric time param-
eters. Therefore, numerical studies of Maxwell’s equations in Debye medium have at-
tracted considerable attention.

The linear polarization representation originates from the model proposed by Debye
[3]. Similar to this representation, in this paper, we consider a linear polarization model

1 p_ €0(€s—€co)

P _
a to to

E,

where €, €x and tp stand by the static relative permittivity, the value of permittivity
for an extremely high frequency field and the relaxation time of the dielectric materials,
respectively.

Considering the effect of temperature field on electromagnetic field, we use Ohm’s
law J=0(u)E to describe the system, The unknown u is the temperature, the local density
of Joule’s heat generated by intensive electric waves equals [21]

E-J=E-oc(u)E=0(u)|E|*.
Thus, from Fourier’s law and the conservation of energy, we see that u satisfies
u— V- (kVu)=c(u)|E|?r,

where k is the coefficient of thermal conductivity and other physical constants such as
density and specific heat have been normalized.

Throughout the paper, we suppose that ¢ is Lipschitz continuous with respect to u,
which satisfies

O<Umin Sagamax-
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Assumed that Q) C R? is a bounded domain with Lipschitz boundary, we consider the
following coupling model

eoEt+€0(€5_€°°)E+U(u)E—V><H—t1P:0, (X)€% (0,T], (1.1a)
yHt-l-VxEO:O, 0 (X,t)eQx(0,T], (1.1b)
Pt+t10P:€°(€sto_€°°)E, (X,1) Q% (0,T], (1.1c)
u—V-(kVu)=c(u)|Ef?, (X,t)€Qx(0,T], (1.1d)
with the initial date

E(X,00=Eg, H(X,0)=Hy, P(X,0)=Py, u(X,0)=uy, XeQ, (1.2)

and the perfectly electric boundary condition
Exn=0, u(X,t)=0, (X,t)€0Q2x[0,T], (1.3)

where n is the outward normal vector on d().

As we know, superconvergence analysis has been an interesting field. A sizable
amount of researches have been done on the superconvergence of finite element meth-
ods for many types of PDEs, such as, the second order elliptic equation [18], parabolic
equation [36], Stokes equations [20], nonlinear Sobolev equation [29, 30], Schrodinger
equation [5], parabolic equationswith integral two-space-variables condition [6] and so
on. There have been a few theoretical results on superconvergence analysis for Maxwell’s
equation. In [24], the authors studied the superconvergence of the Maxwell’s equations
in 1994 for the first time. Later, in [27], the authors used the integral identity technique
to study this problem once more and improved the result in [24]. The similar result was
provied for 2-D and 3-D Maxwell’s equations in [7,8,11-13,16,17]. In [4], the authors
discussed the superconvergence of second and third order rectangular edge elements.
In [31], the authors studied the superconvergence of nonconforming mixed finite ele-
ment methods for 3-D time-dependent Maxwell’s equations in isotropic cold plasma me-
dia. In recent years, Maxwell’s equations in Debye medium [26-28,32] have been studied
the convergence and superconvergence properties of the nonconforming finite element.
Now stochastic collocation methods for Maxwell’s equations with random inputs [10] are
becoming another popular issue.

The relevant models of Maxwell’s equations in the above mentioned studies are lin-
ear, and the influence of temperature field on electromagnetic field has been ignored in
the process of research. In [35], the coupling system of temperature field and electro-
magnetic field is studied for the first time, and it is proved that when o(u) is nonnega-
tive and bounded, the weak solution E, H, u is existence and uniqueness when E(X,t),

H(X,t) € L®(0,T;(L*(Q))3), u(X,t) € Lq(O,T;WS’q(Q)), g€ (1,5/4). However, no relevant
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reports has been found on the finite element method. The similar analysis of existence
and uniqueness for nonlinear Maxwell’s equations can be found in [33,34].

In this paper, we will focus on the superclose and superconvergence properties of the
nonlinear coupled model (1.1a)-(1.3). For convenience, this paper only discusses the case
in 2-D. The article is organized as follows. In Section 2, we introduce some notations,
the mixed finite element scheme and the variational problem. In Section 3, we give the
linearized backward Euler fully discrete scheme and deduce the superclose estimates
of order O(t+h?), where T = O(h'*7), 4> 0. In Section 4, the O(t+h?) order global
superconvergence results are obtained with the help of the interpolation postprocessing
technique of the coupled model. At last, some numerical results are provided to verify
the theoretical analysis, and show the efficiency of the method. Furthermore, it can be
verified that when y >1/2, the conclusion in this paper can be extended to the 3-D after
replacing the mixed Nédélec elements.

2 Construction of mixed finite elements and variational
formulation

We need the following Sobolev spaces
H(cur, ) :={w=(w;,w;) € (L*(Q))*: Vxwe (L2(Q))?},
Hy(curl;)):={we H(curl;(3):nxw=0on dQ},
H (curl;Q):={we (H(Q))*: Vxwe (H(Q))?},
where s >0,and n is the unit outer normal to Q).
The above spaces are equipped with the norms, respectively,
HWH%{(CHH;Q) = ||W||%L2(Q))2 +[|V % WH%LZ(Q))Z/
HWH%JS(CWZ;Q) = HWH%—IS(curl;Q) +V XWH%—IS(curl;Q)'

Now, we consider that the weak formulation of system (1.1a)-(1.3) in two-dimention. For
any t >0, find (E(t), H(t), P(t), u(t)) € Ho(curl; Q) x L*(Q) x H(curl;Q2) x H} (Q}), such
that

eo(En ) + 2O (£,9) 4 (0(u)E.9)— (1,7 )

_th(P,(P):()’ Vo€ Ho(curl;Q0), (2.1a)
1(Hy, )+ (V xE, ) =0, vy L2(Q), (2.1b)
(Pt,w)+th(P,w):€O(€StO_€°°)(E,w), Vwe H(curl;QY), (2.1¢)
(ut,0)+ (kVu, Vo) = (c(u)|E[*v), Yoe H)(Q). (2.1d)

E(X,0)=E;, H(X,0)=H,, P(X,0)=P;, u(X,0)=u;, XeQ. (2.1¢)
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Since P in (2.1a)-(2.1d) is the ordinary differential equation with respect to E, the existence
and uniqueness is similar to [35], and we do not pay much attention to it here.

Assume that () is a rectangle in the X = (x,y) plane with edges parallel to the coor-
dinate axes. Let 7 be a rectangular subdivision of () satisfying the regular condition.
Given K €Ty, we denote the lengths of edges parallel to x -axis and y -axis by 2h, k, 2hy k,
respectively. Set

hg =max{hyx,h,x} and h=max{hk}.
KeT,

The finite element spaces Nj,, Wy, Vj, are defined by
N, ={E=(E1,E2) € H(curl;); E|x € Qo1 (K) X Q10(K), VK€ Ty},
Wy, ={we L2(Q); w|x € Qo(K), VKE T},
Vh:{U;U‘KEQH(K), VKEE}, VOhZ{U;UEVh,UbQ:O},
where

JdE, OE;
.0) — 2(0))12 el
H(curl; Q) = {Ee I(Q)F, VxE=52-5 }
Qij=span{x"y’, 0<r<i, 0<s<j}.
For v € H?(Q), E= (E!,E?) € (H'(Q))?, we define the associated interpolation operator
ITy, Rh/ Iy as

II,:Ec (H(Q))* = I,EEN,, II,|x=TIlg, /Z(E—HKE)-nids:O,

1

Ry:weL2(Q) = RyuweW,, Rylk=Rx, /(w—RKw)rds:O, Vrew,,
K
I:oe H*(Q) = LweV, Lilk=Ik, Ixv(a)=0v(a;), i=1234,

respectively, where n; is the unit tangent vector of [;.
We can cite the following interpolation error estimate in [1,19,23]

Lemma 2.1. 1. For any E€ H*(curl;QY), 3 <a <1, we have
[E—T1,E|o+ |V x (E—-I1,E) o < Ch* || E|| g curt;r)

2. For0<m<I—1,ifmand p satisfym>2,p<lorm=1, p>6/5, for VE€ (W"+1F(K))?,
we have

[BE—TI,E| 1 (k) < CH™ | D" HVE|| 1o g -
In addition, if m=0, p <2, for VE€ (WP (K))?, DcurlE € L*(K), we have

1 1
|E—IT,E|| 1y (k) < Ch(||DE|| (k) +h[K|? = | DcurlE]|

L5(K))-
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We also have the following the interpolation error estimate: v € H™ 1 (Q) for 1 <m <k, we have
lo— 10l 200 AV (0= 10) 12(0) < CH™ [0 11
where C is a positive constant independent of both the mesh size h and the time step T.

Define ff=(a1,a7) =E—II,E=(E; —II;,E1,E;—I1,E>), then we recall the following two
lemmas which can be found in [14] and plays an important role later.

Lemma 2.2. Assume that u € H3(Q)), there hold
/KV(u—Ihu)Vvdxdy:O(h2)|u|3,K||v||llK, Yo e V.
In addition, if u € H*(Q), we have
/KV(u—Ihu)Vvdxdy:(’)(hz)|u|4,KHv||O,K, voe V. 2.2)

Lemma 2.3. For E€ (H?(Q))?, we L?*(Q), we have

(E—TI,E,p) =0 () [E|: [pllo VpEN;,
(Vx(E—II,E),r) =0, Vre Wy,
(w—Ryw,V xp)=0, VpENy,

Lemma 2.4. Forall E=(Ey,E,) € (H%(Q))?, there hold
(a;,0) =0 Efll2lloll,  (j=12), VoeV.

Proof. First of all, we introduce two error functions:

1
E(X)Zi((x—xK)z—hi,K), F(y)= ((y yk)*—hy ).
Vv eV, it easy to see that

o(x,y) =o(xK,yk) + (X —xx)vx (XK, yK) + (Y =YK ) 0y (XK, YK) + (X = XK) (Y — YK ) Oxy

holds.
By using the properties of E(x), F(y) and the definition of the element Qp; X Q19, we
have

/Kuqudy:/Kqu”(y)dxdy:—/KoclyF (y)dxdy= /Elyy y)dxdy,
which causes
[ roGeiydxdy = [ By F(y)lo(y) = (xr=x)os (v )
— (=) vy (xiyi) = (¥ =xK) (y =y ) vxyldxdy.
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With the help of interpolation error estimation and inverse inequality [9, 14], we have

Similarly, we have

[ o Gey)dxdy =00 Eallols

¥ [ o1 (x =)o (xi i) dxdy = O() Exlal]o]1,
K

Y. | ar(y—yx)vy(xx,yx)dxdy=O(h*)|E1l2||o]1,
K VK

Y o1 (=00 (4 =y sgdxdy = O () ExLal ol
K

By (2.3)-(2.4), we obtain

Similarly,

(21,0) = O ()| Ex ]2 o]]1-

(a2,0) = O (%) E2 2|01

The proof is completed.

3 Backward Euler fully discrete scheme

(2.3)

(2.4a)
(2.4b)

(2.4¢)

In this section, we can turn our attention to the discrete scheme. For positive integer N,
let 0=ty <t; <---<ty=T be a partition of the time interval [0, T] with step length =1, for

some positive integer N. For a sequence of function {¢"})_, we denote d-¢" =

¢n*¢’17]

T
In the same manner of [28], we use the following linearized backward Euler discrete
scheme: forn=1,2,---,N—1, seek (E},H}!, P}, u}!) :€ Nj, x Wy, x Nj, X V,, such that

€0\ €5 — € n n— n

€o(arE"/¢h)+0(St0)( non) + (o (™ VE], dn)
1
_(H}T;/qujh)_%(Pqujh):O/ VﬁbhENhr

(0 Hy, ¢n) + (V X By, ) =0, Vb € Wy,

1, ., €0(€s—€0) e
(aTPZ/wh)—i_t_(](Ph/wh):()(t(])(Eh 1lwh>l VWheNh,
(Ozuy, o)+ (kN uy, Vo,) = (o (u} )|, 0n), Vo, €Vy,

with the initial approximations:

E2:HhE0, ngRhHo, PgZHhP(), ugzlhuo.

We give the existence and uniqueness of the solutions of Egs. (3.1a)-(3.1d).

(3.1a)
(3.1b)
(3.10)

(3.1d)
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Theorem 3.1. For any n=1,2,---,M, there exists a unique solution (EZ,H,’;,PZ,uZ) :€ Ny, %
Wi, x Ny, x Vy, to solve Egs. (3.1a)-(3.1d).

Proof. Notice that Ej; and P} are chosen from the same finite element space, here P} can
be computed as follows:

Py = [ipgweo(egew)]agl} (i+t10) o (3.2)

Substituting (3.2) into (3.1a), we can rewrite this equation as follows:

(04 0L =) (1 )t (o)l ) — (HL Y x)

T to
1 €0 Teo(€s—€w) pn-1
S e+ (T ) B e, YN ()

On the other hand, we can rewrite (3.1b) as follows

2 HL )+ (VB ) =L (H ), VW, (3.4)
Hence, the backward Euler mixed finite element scheme for (3.1a)-(3.1c) can be realized
in practice as follows: at each time step, we first solve a system of (3.3)-(3.4) for E; and
Hj!, then update Pj by (3.2).

Finally, notice that the coefficient matrix for the system of (3.3)-(3.4) can be written as

A -B
where the matrices
A— (?JO(GtO_eC"’)) (Np,Np) + (02 ()N, 02 (1" )Ny,), (3.6)
B=(W,VxNy),  D=Ew,w), (3.6b)

and B’ denotes the transpose of matrix B. Here, the determinant of Q can be obtained as
det(Q)=det(A)det(D+B AB),

which is guaranteed to be non-zero. Hence the system of (3.3)-(3.4) is guaranteed to have
a unique solution (E}',H}!) at each time step.
The equation of (3.1d) can be written as:

(g on)+t (kU Vo) =t (o (U ) [Ef 2o+ (U op),  Vou €V, (3.7)

it is easy to see that (3.7) have a unique solution by Lax-Milgram Lemma. The proof is
completed. O
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Theorem 3.2. Let (E", H", P", u") and (E}}, P}, H}}, u}}) be the solutions of the problem (2.1a)-
(2.1d) and (3.1a)-(3.1d) at time t =t,,, respectively. Assume that
EcL®(0,T;H*(cur;Q))N(W'®(Q)))?%,  PcL®(0,T;H*(curl;Q0)),
HelL®(0,T;L2Q), uecl?(0,T;H*(Q)),
E;, P, cL®(0,T;H?(curl;Q3)),  u; € L%(0,T;H*(Q)),
Ey, P €L°(0,T;(L*(0))?),  HyeL®(0,T;L*(Q)),  uxcL®(0,T;HL(QY)).

We have the following superclose estimates

max (|[Ej —ILE"[jo-+[|Hy —RyH" [lo+]| P}

1<n
TP o[ ()~ T o < Cl+ ). (3.8)

Proof. Let

E"—E; =E"—II,E"+II,E" —E; =:a" + ",

H"-H;=H"-R,H"+R,H"—Hj; =:"+1",

P"—P; =P"—II,P" +1I,P" —P; =:6" ++",

' —up =u" —Lu"+ Lu" —up = A"+".
At every time level 1, we can get the following error equations

€0 (G

,¢h) + St_eoo) (B" )+ (@ (" )B" pn) — (", V x ) — %(7"14’11)

=—€g (%/%) +eo(RY, @) — 60(620_600) (", ¢n)

+(&",V x ¢p) +%(9”,¢h) —(o(u" N, ) — (e (") —o(u} ") E}Ldn)
—((U(M”) o(u"1)E" ¢p), (3.9a)

n— n—1
(L) (7 B = () e RE )~ (V) 6B

M

(T2 ) + L o)
n_gnfl

__<9

1 €o(es—e _
o) + (R ) — (0% 0)+ L) (gt )
€0(€s —€xo
+ 0( S )(

t “n_llwh)—i_m(ﬁn_l/wh)/ (39C)
0 0

T

(Cn —¢ vh) +(kVZ", Vo)

An_)\n—l ; o ,
= (2 o) (A Yo+ () o) E P 01)
() BB (B B o)+ (o) o (@) E" o)+ (Rlon),  (3.94)
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where, R} =D.E" —E{, R} =D.H"—H}, R} =D.P" P}, R} =D.u" —uj}, and

ty
IR =17 [ (taa— D Eu(atIf < Cr

n—1 n—

ty

|| Ex () |5t
1
Similarly,

tn
IRZIB<CT [ I1Ha(t) et

n—1

tn
IRSIB<CT [ (),

n—1
tn
IRYIG=Cr [ Jlun(t) et
n—1
Choosing ¢, = 8" in Eq. (3.9a) and ¥, =#" in Eq. (3.9b), adding the results together, we
have

n_ pn—1 _ n__,,n—1
o BB )+ 1) g oty ) e (L

-l 60(65_600) ( n

——eo () oY ) - U (o )
n__xn—1
T xB) +@ 8+ o (B ()
(RE ) = (7 ") = (o () 5) = (o (")
12
oL~ (o) —ow B £ YA (3.10)

Now, we deal with the left term of (3.10),
-1

o (BB )+ U8 (g1 4 () ) (1T )

to

€0 _ €0(€s—€oo) _
> S0 (1B 13= 18" 1) + S0 12 i B34 5 ([l 13— 1 12).
2T to 2T

For the right term of (3.10), using Schwarz inequality, e-Young inequality and Lemma 2.3,
we have the following error estimates

A< (CIPT B |2~ Cl Y[ H|2) 8" lo

€0(€s—€oo)

(:h4 tn 2
< - E;||5dt+ ——=——2||g" A1
<" el ey, (3112)
€0(€s—€co tn €p(€s—€o
Ae< R+ e o <ce [ i S, e
n—1
eo(€s—€co €0(€s—€wo
Ay < UG TER) (2,187 ) < OB B+ L& )y gz (3.110)

8to
Ay=A7=A9=0, (3.11d)
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As < CH " " o< ¥ 2" 3+ 2L =E) g, (3.11¢)
Ao Cly I+ 2=y, (311
Av<CIRYIB+CllB<Cr [ (o) -+l I3 (311g)
A <Clu =~ ol[E" o 8" lo<Ct [ n(tlfar+ L= i,

where the estimates Az, A4, As, Ay, Ag should employ Lemma 2.3.
For any w € WY (K), define w:= % [xwdxdy (Lemma 3.4 in [2]), then there holds

lw —@0|0,00,x < Chi|w]1,00 k-

Using Lemma 2.4, Ao can be estimate as
A10<‘E/ o(u=1))a" ﬁ”dxdy‘—k’Z/ o(un—Ta ,B”dxdy’
<Y o™ o T ol o8 ox+ X [ o T gy

SChZZHE"HLKHﬁ ||o,1<—|-ChZZHE”H2,KHﬁ ok <CHY_E™ |2,k /I B llo,x
K

<P [E" ol o < CH " 3 2L )||ﬁ 12 (3.12)

To estimate A1, similar to the technique used in [28], we give the following mathematical
induction hypothesis.

||EZ||O,OO§6/ vn:olll/M (313)
Then, using (3.13), A11 can be estimated by

An <Cllu" ! =i Hlo B} llo. | B llo < CCH2 [ 2+ 12" o) 18" o

eole

<O+l [+ L (.19
Taking the above estimates of A;, i =1,2,---,12 into (3.10) and multiplying by 27 and
summing up from 1 <n <M, notice that 170 =0, ,BO =0, we have

1BM[§+ (1 —Co) ™15
M-1 M M-1
<C(h*+)+Ct Y I [F+Ct Y " I5+Ct Y 112115 (3.15)

n=1 n=1 n=1
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To get the estimate of ||7"[|3, setting w, =" in (3.9c), we have

,),n_,),n—l , l -
(7T i )+t0(7 ")
n__pgn—1 _
—_— <%,71’1) +(R§1,,yn) _%(91’1,,)/71)_’_ eO(eSt eoo) <E}’Z_En71,,yn)
0 0
60(65_600> n—1 .n 60(65_600) n—1 . n\ A d
+T(w Y )+T(ﬁ ") =) B (3.16)

The left-hand side of (3.16) becomes

,Yn_,),n B
(C=2 0 2 L= 1R,

1 1
=" ") ==17"|I3- (3.17)
T to

to
Now, we need to estimate the terms B;,i=1,2,---,6.
By Schwarz inequality, e-Young inequality and Lemma 2.3,

b
BlS(Ch2T_1||P"H2*Ch2T_1||P"_1||z)||7"|\oSCh4T_1/t P43 dt+7||7 lo,  (3.18a)
1

n—

Bz<cnR§|%+(j||v"||%<cf'/t':”l|mt)n g 1", @15b)
By <CI P 2l < [P B+ 171, 3189
Bi<CIE'—E" folly"fo<Cr [ ||Et<t>||%dt+i|w"||%, @184)
Bs <CIP B ol o < I "~ 1H2+ 3 189
Bo <ClI8" loll7"lo < ClI8" I3+ -1 @189

where the estimates B;, Bz, Bs should employ Lemma 2.3.
Taking the above estimates of B;, i=1,2,---,6 into (3.16), and multiplying by 27 and
summing up from 1 <n <M, notice that 7?=0, we have

M-1
IMIF<c*+*)+Ct Y (18115 (3.19)

n=1

To get the estimate of [|{"[|3, let v, =" in (3.9d)

(Cn gn 1 éi’l) (kvgl’l’vgﬂ)
e
+ (o) —o(up ) B2, ") + (o (") (B +Ef) (B" —E}),C")

6
+((o (") o (") [E"%,0") +(RY,C") £ ) _Di. (3.20)
i=1
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The left-hand side of (3.20) becomes

n n—1
() Ve V) 2 (13- I R R G

Now, we need to estimate the terms D;, i=1,2,---,6. In fact, it is easy to check that

tn tn
Di<cre ! [ fulads| o <CitT ! [ JulBas+CICB (322
1

n—1 n—

Then according to (2.2) of Lemma 2.2, there holds
Dy <CR?{[u"[|4[IZ" [lo < CH*|[u" |3+CI 2" [5- (3.23)
By (3.13), D3 can be estimated as

D3 <Cllu" " —up ™ o[ B} 15 12" o < CC2 [[u" 241127 Hl0) 12" o
<Ch*u"3+Clg" S +ClI 5. (3.24)

As for Dy, we rewrite it as
Dy=(c(u" ") (B"+E})-a",¢")+(c(u" ) (E"+E})-B",5") = G1 +Ga.

Furthermore, G; can be written as

G1=2(c(u" " )E"-a",0") + (o (u" ") (Ef —E")-a",C")
=2(o(u" " E} -, 0" +2(0 (u"~ 1)52 -3, ")+ (o (u" ) (Ef —E")-a",2")
=h+]2+]s.

For J;, due to Lemmas 2.1, 2.4 and H!(Q) < L*(Q)) in two-dimensional space, we have
h=21 [ o) —o (1) Ejai "+ o (1) (Bf~ Ef)a”
K

o (un ) Efalg" dxdy

SCZH‘T(“"_l) = (u"1) [|o,00,x || E ll0,00,x |1 [l0,x I [l0,.x
+CZHE” ET|oz2|laf ||04|\C”||04+C2h IET[I2,x1C" |1,k

SChzZHE’f|\1,1<H§”H0,K+Ch22|\51 Hl,zHE?H1,4!C"!1,1<+ChZZHE'fHz,K\C”h,K
K K K

k
<CH|E{ [ 1 x < CHHIE] |5+ 518" 3. (3.25)
Similarly, we have

k
T <CHY(|E3 I3+ 3 12" 3- (326)
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Furthermore

Js <C|E} —ILE"{|o2]|a" lo.4/|C" 0.4+ CITE" —E"[[o.4]|a"[[04l1g"[l02
<ClIB" lo2lla" llo4llZ" los+CH2[1E" 13 412" lo
<C|B"lo2lla"[loallg" 1 +Ch* | E"[IZ 4lI&" [lo
<Ch||B"llo2lIE"[|1,4l1¢" I +CH?[[E"[I% 411Z"[lo

k
<CH+Clg"[[5+31¢" It (3.27)
For G, we have

G < Cllor(u"™") oo [[E" +Ef llo.ol| 8" 01"l < Cll 8" I5+ClI1Z"II5, (3.28a)
Ds+Dg < Cllu" —u"[Jo]|E" [§ 12" lo+CIIRE oIS [0

ty tn
<ct [ O Rdt+Cr [ ua(la+CleB (3.28)

n—1 -1

Then taking (3.21)-(3.28b) into (3.20), we derive

(1" B 112" 1B)

tn
<Ot [ s +C O +7)+ClIg"F+Clle™ F+CllB" 3

n—1

Multiplying by 27 and summing up fromn=1,---,M, (1< M < N), we obtain

M-1 M
(1-CollgMF<C(r*+*)+CT ) (1" I5+CT Y 18" [I5- (3.29)
n=1 n=1

By (3.15), (3.19) and (3.29), choosing proper €y, i, T, so that ¢g—Ct, u—Ct, 1-CT are
greater than 0, and applying discrete Gronwall inequality, we get

18 o+l llo+ 7™ [lo+ 1™ [lo < C(z+1?). (3.30)
Now, let’s verify (3.13). First, when n=0,

1ER |00 =/ITILE(0) [lo,00 < [ITL,E(0) —E(0) [[0,00 +[|E(0) [[o.00
<Ch[|E(0) 1,00+ I[E(O) [lo,00 < C- (3.31)

Assume that (3.13) holds true for n=k—1, then there holds from (3.30) that

1T =B o < C(H+7).
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Then when n=k, we need to verify that ||Ef||.. < C. Moreover, we know that ||Ej,(t)]|0,c0
is a continuous function with respect to ¢, so for a given € >0, there exists § >0, such that
when |ty —t;_1| =T < J, there holds

0,00 = B} loeo| <e
Lete=Hh,

IE} llo,c0 <IER 0,00+ I 0,00 — [IE} ™ fl0,00]
<||Ef T —TLES o0+ [TLES T =B [o 0+ [ EX 0,00+
<Ch Y|Ey ' —TIES o+ Ch|EF | 0o+ [|E* 0,00+
SC(h-f—h_lT)-f-HEHLW(WOm(Q))SCV,
where 7= (’)(h”") v >0 is needed and / is sufficiently small such that Ch? < 1. Thus
we can choose C =1+ I|E|| e (WOm(0) - This implies that the mathematical induction (3.13)

holds uniformly for any n.

Now, we pay attention to the estimate of |{"|3. Let v, =" —{"~! in (3.9d)

n n—1
() v V- Y)
n__yn—1
=—(*A S ) RVAL T (g )+ (o) o) B
ol ) BB (B — B¢ ")+ () —o ()[R )
6
+ (R}, """ EY F. (3.32)

i=1
The left-hand side of (3.32) becomes
(¢"— C”_lT,C”—C”_l) (kVg",V(C"=¢"1)
1
>—(l¢"=¢" 1Ho+ (12" =12"" ) (3.33)

Now, we start to estimate each term F;, i=1,2,---,6. First, in the same way as D, D, and
D3, we can check that

tn
R<cr! [ IIutszSHC”—C”‘lHoSCh4/ JuslBds+ "~ E, (339

n—1 n—1

- 1 -
B CHu"[l4¢" =" o< Crht+ (17" =" l5, (3.35)
B <Cllu" =i Hlol By 15,0012 =" llo < CO* [l flo+ 12" Hlo) 18" =" o

n_ i L
<C(P+7)(Ig" =" Mo < Cr(h*+7%)+ —[Ig" =" 5. (3.36)
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Second, we rewrite F; as
Ey=(o(u""")(E"+E}) (E"~E})),¢"— ")

=(o(u" 1) (E"+Ejp)-a", " =" ) + (o (u" ) (E"+Ey)- B, 0" =" 1)
=2(c(u" E"a"),¢" =" )+ (o (u" ) (B —E") ", 0" =)

(" 1) (B"+E})-p",0" = ")

TOELa)), g =) A 2(o(u T ES ay), 0" =)

+(o(u" ) (B —E") ", 0" =" )+ (o (u" 1) (B +Ej) - B0 =)
=Fy1 + Fip + Fi3+ Faa.

+(o(u

)
=2(c(u")E{ -aq
)

Now, we start to estimate each term Fy;, (i =1,2,3,4). Due to Lemma 2.1 and Lemma
2.3-2.4, inverse inequality, we have

Fi3 < C||E} —TLE"[oalla” [o4llC" = 2"~ [lo,x+CITLE" —E"[loa 2" lo4IC" ok
<Ch 2 (I +7)Ch|[E" 1,41 5" =" o+ CH|[E" R 412" =" o
<COA+RAT) " =" ok +-CI " ="l
<Cr(i+2)+ "R,
Fu <Cllo (") lloco | E" +Ejf ool 8" l0llC" = 2" Hlo < C(H*+1) 2" =" lo
<Cr( )+ ="~
For Fy, using the identity (a",b" —b""1)=(a",b")—(a"~1,b" 1) —(a"—a""1,b" 1), we have
Fn =2[(c(u" ) EY -, 0") — (o (u" ) Ey ™, 0" )]
2o Ef o o (' 2)Ey a0
=2((o(u" ) EY -, 0") — (o (u" ) Ey =)
—2[((o(u "*1)—0@” 2))15"'061/5” D+ (o (") (B —EyH)al, ")
(o (") E{ (] —ay ), 0" ).
For the third term of the above equatlon, applying the mean-value inequality, we have
=2((e(u" ) —o (")) Ef af, L")
=23 [0 = O W DBl
o (A) (T =2 kT k)
+0'(A) k=1 —uk=2(E7 —EM) g 40/ (A) uk=1 —uk—2ETa gV dxdy
S;CKhiTllE?IILKI\@”_l||0,K+ZK:CKh%<T||E'fH1,1<||C"_1Ho,K

+Y Crhg || Ef kL] 1,4l10" Hloa+ Y Crhx Tl EF 2k 12" ik
K K
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<Ch*t|7" Y| < Ch*r+Ct|7"3,

where A is between at u" ! and u" 2.

Similarly, we can derive

—2(o(u" ) (EY —E{~1)af,g" ) < Ch*t+CT|0",
=2(o(u" ) E{ T (o —af ™), 0" < Chtr+ |

Therefore, F4; reduce to

Fa <2[(o(u" ) E}-a},2") — (o ) By L,0" ) - Chi*r+Clg" 2
In the same way, we have

Fip <2[(o (" ") ES-a3,0") — (o (u" ) Ey a1, " )]+ Chitr+C| 1.
Furthermore, it follows that

Fa <2{(o (") Ef-af, ") — (o (" 2) By a5 )]
2o B0 ") — (o D) ES e g

1
+HC(H + )T+ Crld" F+ 10" =" 6 (3.37)
Furthermore, we have
Fs+Fo <Cllu" — " ol|E" B 12"~ " lo+CIIRE IB1IZ" 2" o

tn tﬂ 1
<ce [ JuOIBdt+C7 [ () -+ g7 =B (339

n—1 n—1

Then taking (3.33)-(3.38) into (3.32), and summing up the above inequality and noticing
that {° =0, we obtain

k
(E—CT)MM%
M-1
<2(c (@ HEM- !, M) +2(0 (uM BN, M)+ C (R - T7) +CT Y [T
n=1

By choosing proper T so that %—CT >0, applying the similar process as J; for the first and
second terms in the right-hand side of the above inequality, we have

M-1
[ME<C(h*+7*)+CT ) 10",

n=1

by applying discrete Gronwall inequality, we can complete the proof. O
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4 Global superconvergence analysis

To obtain global superconvergence, we merge the adjacent four elements Ky, Kz, K3, K4
into one big element K =J}_, K; (Fig. 1) without overlapped.

7 Is 7 I 7
I X, 5 B L
Za‘ Elh‘ Z_D “M T
Is K, Iy I I3
z, I F4) I z,

Figure 1: Large unit K.
By use of the postprocessing interpolation operators I3, , J5,, I3, constructed in [14]:

I,w|z— Q1 (K)x Qi1 (K), VYw=(wy,w;) € (H*(K))?, KeTy,
/ (12,1 —w;)ds =0, i=1,2,5,6; / (I2,wy—wp)ds =0, i=3,4,7,8;
I li

Bualg€Qu, [ Uha—q)dxdy=0, i=1234;

Bulz€Qn(K), YueC(K), Bu(Z)=u(Z;), i=1,9,

where C(K) is a continuous function space on K, the postprocessing interpolation opera-
tors H%h, ]%h, I%h (details in [14]) satisfy

15, L,w=15w, J3Jq=J54 Llu=1u, (4.1a)
TG, w—wllo <CH|wl>, VYwe(H*(Q))? (4.1b)
3509 —allo<CH|lgll2, VqeH*(Q), [Gyuli<CH|ullz, YueH(Q), (410
I3, willo <Cllwillo, YwieNy  [J5qullo<Clignllo,  Van €W, (4.1d)
I5,0nlli <Cllonlls,  Vone Vg (4.1e)

Using these post-processing operators, we can achieve the following global super-
convergence for all three dispersive media.

Theorem 4.1. Under the conditions of Theorem 3.2, there holds the following global supercon-
vergent results

E" —I13,E} o+ P" —I13,P!
122(]\](” 1 Epllo+] 1P llo

+H" =35, Hy o+ 1V (u" =13, u}) o)
<C(h*+7).
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Proof. Notice that

E" —I13,E} = E" —I13,IT, E" + 113,11, E" — 115, E],,
using (4.1a)-(4.1e), we have

1B — X3, IT, E"[|o = || E" — T3, E" |0 < CR?||E" |2,

and

|03, X0, E" — T03, Ej o = |13, (T1, E" — E}) [lo < C | TI,E" — Ej||o < C(h* + 7).

According to (4.2)-(4.4), and using triangle inequality,

[E" —I13, Ej[lo < || E" — T3, I, E" []o + || 103, TN, E" — T13, B} |0 < C(h? + 7).

Similarly, we have
[P 113, Py [lo < C(h*+7),
|H" =33, Hijllo < C(h*+7),
IV (" = 15,1)[lo) < C(H*+7).

24 7
24 7
The proof can be completed.

5 Numerical examples

159

(4.2)

(4.3)

(4.4)

In this section, we provide a numerical examples to confirm the theoretical analysis. Let

the domain Q2 =[0,1] x [0,1], and the exact solutions
E(x,y,t)=[—e 'cos(rrx)sin(7y),e 'sin(rrx)cos(mty)],
H(x,y,t)=2me " (cos(mx)cos(my)),

P(x,y,t) =[2e 'cos(mx)sin(rty),—2e~'sin(7rx)cos(my)],

u(x,y,t) =e 'sin(rmx)sin(my),
with the electric conductivity
()= —— 41
14w

We divide the domain Q) into N x N uniform rectangles, and choose 7= O(h?). The
convergence and superconvergence results of E, H, P, and u with respect to t =0.5,1.0
are listed in Tables 1-8, respectively. It can be seen from Tables 1-4 that ||E" —E}||o,
|H"—=Hj}|lo, ||[P"—=P}llo, ||u"—uj|[1 are convergent at optimal rate of O(h), respec-
tively. From Tables 5-8, we can see that ||[E"—I13,E}|jo, |H"—J3,H}|o, ||P"—T13, P70,
|u —13,ul||; are of scale O(h?), respectively. This data coincide with the theoretical
analysis. Moreover, for clarity, we also plot the convergence errors and superconvergent

errors using logarithm scales in Figs. 2 and 3.
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—— & =Bl
+ —&— [|H" — Hjllo
o e [P~ Ry
| - e A .
Figure 2: The errors at t=0.5(left) and t=1.0(right).
—— [|E" — I3, B ||, —— ||E" — I3, E" ||y
) 10° Y
10 \
\\
Figure 3: The superconvergent errors at t=0.5(Left) and t=1(right).
Table 1: Convergent results at t=0.5.

NxN [[E"—E}|lo Order ||H"—H}|[p Order [[P"—Pj[[p Order
4x4 0.0971 - 0.5982 - 0.1929 -
8x8 0.0486 0.9981 0.3039 0.9771 0.0970 0.9913

16x16 0.0243 0.9999 0.1525 0.9943 0.0486 0.9977

32x32 0.0121 1.0000 0.0764 0.9986 0.0243 0.9994

Table 2: Convergent results at t=0.5.
NxN [u"—ufllo Order [u"—u}|l; Order
4x4 0.0160 - 0.3035 -
8x8 0.0041 1.9783 0.1525 0.9913
l6x16 0.0010 1.9950 0.0763 0.9981
32x32 0.0003 1.9988 0.0382 0.9995
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Table 3: Convergent results at t=1.0.

Table 5: Super-convergent phenomenon at t=0.5.

NxN |[E"—Ej}l[p Order |H"—H}[[p Order [P"—P}llp Order
4x4 0.0592 - 0.3627 - 0.1172 -
8x8 0.0295 1.0033 0.1843 0.9769 0.0589 0.9927

l6x16 0.0148 1.0020 0.0925 0.9942 0.0295 0.9983

32x32 0.0074 1.0006 0.0463 0.9985 0.0147 0.9996

Table 4: Convergent results at t=1.0.

NxN |u"—u}llp Order [|u"—ujll; Order
4x4 0.0094 - 0.1841 -
8x8 0.0023 2.0539 0.0924 0.9930

16x16 0.0005 2.0067 0.0463 0.9981

32x32 0.0001 2.0010 0.0231 0.9995

NxN [[E"—II5,El[[p Order |[H"—J5,H}'[lp Order
4x4 0.0765 - 0.0293 -
8x8 0.0196 1.9664 0.0052 2.2035

16 x16 0.0049 1.9903 0.0011 2.0621

32x32 0.0012 1.9976 0.0003 2.0164

Table 6: Super-convergent phenomenon at t=0.5.

NxN |P"—1I5,P}[ly Order

[ul —T5,u}]; Order

4x4
8x8
16 x16
32x%x32

0.1258
0.0326
0.0081
0.0020

1.9964
2.0004
2.0002

0.0679
0.0169
0.0042
0.0011

1.9991
1.9996
1.9999

Table 7: Super-convergent phenomenon at ¢t =1.0.

NxN [[E'-TZE/y Order [H"—J2 Hp Order
4x4 0.0483 - 0.0130 -
8x8 0.0126 1.9790 0.0033 2.2562

16 x16 0.0032 1.9943 0.0008 2.0632

32x 32 0.0008 1.9985 0.0002 2.0172

Table 8: Super-convergent phenomenon at t=1.0.

NxN [[P"—II5,P/[[p Order

[ul =13, ul'[y Order

4x4
8x8
16 x16
32x32

0.0705
0.0183
0.0044
0.0011

2.0046
2.0012
2.0010

0.0411
0.0102
0.0024
0.0006

1.9998
1.9999
2.0000
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