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Abstract. In this paper, we study the two-dimensional Helmholtz scattering prob-
lem by a locally perturbed line with impedance boundary condition. Different from
the problem with Dirichlet boundary condition, the Green function of the Helmholtz
equation with impedance boundary condition becomes very complicated and com-
prises surface waves along the locally perturbed line. A uniaxial perfectly matched
layer (UPML) method is proposed to truncate the half plane into a bounded computa-
tional domain. The main contribution of this paper is to prove the well-posedness of
the PML problem and the exponential convergence of the approximate solution to the
exact solution as either the thickness or the medium parameter of PML increases.
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1 Introduction

Numerical solution of scattering problems has drawn considerable attentions for its broad
real-life applications and mathematical interests. The treatment of radiation conditions
of scattering solutions is the first key ingredient of numerical simulations. It involves
the truncation of an unbounded domain to a bounded domain and imposes highly accu-
rate boundary conditions at the artificial boundary (cf. e.g., [24–26, 34]). Recently, there
arises a surge of studies on the scattering problems involving infinite boundaries, such
as the scattering in layered media and half-spaces (cf. e.g., [11,19,20,22,35]). With the ap-
pearance of infinite boundaries, the scattering waves usually comprise reflective waves,
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transmitted waves and surface waves. Thus the numerical treatment of radiation condi-
tions becomes very challenging and appeals for new theories and methods.

In this paper, we study the time-harmonic scattering problem governed by the
Helmholtz equation with impedance boundary condition in a locally perturbed half-
plane:

∆u+k2u=0 in R2
Σ+, (1.1a)

∂u
∂n
−ikβu= g on Σ, (1.1b)

lim
r=|x|→+∞

∫
S1

r

∣∣∣∂u
∂r
−iku

∣∣∣2=0, lim
r→+∞

∫
S2

r

∣∣∣∂u
∂r
−i
√

Z2+k2 u
∣∣∣2=0, (1.1c)

which could model outdoor sound propagation or the harbour resonances. For example,
in the harbour resonances, the sea is supposed to fill the half-plane which is locally per-
turbed by harbour geometry. Here k> 0 is the constant wave number, Σ= {(x1,p(x1)) :
x1 ∈R} is the infinite boundary, p∈C(R) is a piecewise C1-smooth function supported
in [−1,1], R2

Σ+ :={x∈R2 : x2> p(x1)} and n is the unit outer normal on Σ pointing to the
exterior of R2

Σ+. For convenience, we write Σ into the combination of the flat part and
the perturbed part

Σ=Σ∞∪Σp, Σ∞ :={(x1,0) : |x1|≥1}, Σp =Σ\Σ∞.

Clearly Σ is a local perturbation of the horizontal axis Σ0 := ∂R2
+, where R2

+ :={(x1,x2) :
x1∈R, x2 >0} (see Fig. 1 for an illustration of the setting). β is the acoustic admittance,
which would have to be taken as a complex-valued piecewise constant function in order
to model the boundaries of rocks, sand, concrete in the applications. Here β∈L∞(Σ) and
satisfies

Re(β)≥0 and β≡−iZ/k on Σ∞,

where Z>0 is the constant impedance parameter. We assume that the boundary condi-
tion on Σ satisfies

g∈H−1/2(Σ), supp(g)⊂Σp.

The two radiation conditions in (1.1c) represent propagating waves and surface waves
respectively (see [22]) where

Sr :={x∈R2
+ : |x|= r}, S1

r :=
{

x∈Sr : x2≥ r1/4
}

, S2
r :=Sr\S1

r . (1.2)

The existence and uniqueness of the solution to (1.1) are studied in [22]. Our concerns
here are to propose an approximation of the radiation conditions on a truncation bound-
ary and to solve the approximate problem on the bounded domain numerically.
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Figure 1: The setting of the scattering problem.

There are extensive studies on scattering problems in half-planes or half-spaces with
local perturbations (cf e.g., [1–3,21–23,35] and the references therein). A practical applica-
tion is the prediction of radar cross section of cavities in aircraft industries. In [1–3], Am-
mari and coauthors studied the well-posedness of electromagnetic scattering problems
from cavities and proposed a variational method for numerical solutions of the problems.
In [35], Zhang and coauthors proposed the UPML method for scattering problems from
cavities in a half-plane. They studied the Helmholtz equation with Dirichlet boundary
conditions on the infinite boundary Σ. The Green function in this case is the addition of
two fundamental solutions of the Helmholtz equation which represent the point source
and its image in the horizontal boundary Σ0. In [22,23], Durán and coauthors studied the
well-posedness of the scattering problems in locally perturbed half-plane and half-space
with impedance boundary conditions on Σ. Different from the problem with Dirich-
let boundary condition, the Green function of the Helmholtz equation with impedance
boundary condition becomes very complicated and comprises surface waves which only
propagate along Σ. The main objective of this paper is to propose a UPML method for
solving (1.1) and to prove the exponential convergence of the UPML method.

Since the work of Bérénger [5], which proposed a PML method for solving the
time dependent Maxwell equations, various constructions of PML absorbing layers have
been proposed and studied in the literature (cf. e.g., Turkel and Yefet [33], Teixeira and
Chew [32] for the reviews). The basic idea of the PML method is to surround the compu-
tational domain by a layer of finite thickness with specially designed model medium that
absorbs all the waves that propagate from inside the computational domain. The conver-
gence of the PML method for homogeneous background materials has drawn consider-
able attention in the literature. It is proven that the PML solution converges exponentially
to the solution of the original scattering problem as the thickness of the PML layer tends
to infinity. We refer to [27, 30, 31] for circular PML methods for acoustic scattering prob-
lems. In 2005, Bao and Wu first proved the exponential convergence of the PML method
for time-harmonic Maxwell’s equations [4]. In [6–9], Bramble and Pasciak also studied
the stability and exponential convergence of the PML method in both circular and Carte-
sian coordinates for acoustic and electromagnetic scattering problems. In [16, 18], Chen
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and Zheng proved the exponential convergence of the PML method for time-harmonic
acoustic and electromagnetic scattering problems in two-layer media. We also refer the
reader to the papers [10, 17, 28, 29] on the PML methods for elastic scattering problems.
In [12–15], Chen and coauthors developed the adaptive PML method for solving time-
harmonic scattering problems. The method refines the mesh using a posteriori error es-
timate and produces a coarse mesh size away from the fixed domain such that the total
computational cost is insensitive to the thickness of the PML absorbing layer.

The main objective of this paper is to prove the exponential convergence of UPML
method for the scattering problem (1.1). Due to the impedance condition on the infi-
nite boundary, the scattering solution comprises surface waves which only propagate in
the horizontal direction and satisfy a nontraditional radiation condition. This makes the
convergence analysis of the UPML method difficult. Our convergence proof is based on
the Cagniard de-Hoop transformation of the Green function and the idea of the complex
coordinate stretching. We first prove an integral representation of the solution of the exte-
rior Helmholtz equation. Then using some elaborated estimation of the modified Green
function, we show that the solution of the UPML problem converges exponentially to the
solution of (1.1) as the thickness of the PML tends to infinity. In the literature, the work
on investigating the exponential convergence of the PML method for scattering problems
in locally perturbed half-plane with impedance conditions is very rare.

The layout of the paper is organized as follows. In Section 2 we study the Green
function for the scattering problem in the upper half-plane. We use the Cagniard-de
Hoop transform to derive an expression of the Green function which is crucial for the
convergence analysis. In Section 3 we prove an integral representation of the solution
to the scattering problem. In Section 4 we introduce the UPML formulation for (1.1) by
the method of complex coordinate stretching. The exponential decay of the stretched
solution is proved by estimating the stretched Green’s function in the PML. In Section
5, we propose the PML approximation problem on the truncated domain and prove the
well-posedness and exponential convergence of the problem. Additionally, some useful
results concerning the PML transform are provided in the appendix.

2 The Green function

In this section we study the Green’s function for the scattering problem in the upper
half-plane 

∆xG(x,y)+k2G(x,y)=−δy(x) in R2
+,

∂G
∂x2

(x,y)+ZG(x,y)=0 on Σ0,
(2.1)

where δy(x) is the Dirac source at y∈R2
+ and Σ0 = {(x1,0) : x1∈R}. The Green function

satisfying (2.1) is analyzed in [22] and is represented as an integral along an complex
integral path. Here we derive the Green function for completeness and for our purpose
of PML theory. First we will derive an explicit expression for the Green function by using
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the Fourier transform and the Sommerfeld Integral Path. Next we will use the Cagniard-
de Hoop transform to obtain a new formula of the Green function which will be crucial
for us to prove the exponential decay of the PML extension in Section 4.

Throughout the paper we will always assume that for z∈C, z1/2 is the analytic branch
of
√

z such that Re(z1/2)≥0. This corresponds to the left half real axis as the branch cut
in the complex plane. For z= z1+iz2, z1,z2∈R, we have

z1/2=

√
|z|+z1

2
+isgn(z2)

√
|z|−z1

2
. (2.2)

2.1 The method of Fourier transform

Write Gy(x1,x2) :=G(x,y) and let

Ĝ(ξ,x2)=
1√
2π

∫ ∞

−∞
Gy(x1,x2)e−i(x1−y1)ξdx1

be its Fourier transform for the first variable. By taking the Fourier transform of (2.1) in
the first variable, we obtain the equation (with initial condition) in x2:

∂2Ĝ
∂x2

2
+(k2−ξ2)Ĝ=− 1√

2π
δy2(x2) for x2>0,

∂Ĝ
∂x2

+ZĜ=0 for x2=0.

(2.3)

The solution of the initial problem (2.3) reads (see also [22])

Ĝ(ξ,x2)=
i√
8π

1
µ

(
Z−iµ
Z+iµ

eiµ(x2+y2)−eiµ|x2−y2|
)

,

where µ is the square root defined by using the limiting absorption principle

µ(ξ)= lim
ε→0+

[
(k+iε)2−ξ2]1/2

. (2.4)

From (2.2), it is easy to see that, for ξ∈R,

µ(ξ)=

{√
k2−ξ2 if |ξ|≤ k,

i
√

ξ2−k2 if |ξ|> k.

Recall that the Green function for the Helmholtz equation is

Φ(x,y)=
i
4

H(1)
0 (k|x−y|),
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which satisfies (cf. e.g., [19])

Φ(x,y)=
i

4π

∫ +∞

−∞

1
µ

ei(x1−y1)ξ+iµ|x2−y2|dξ. (2.5)

By taking the inverse Fourier transform of Ĝ(ξ,x2), we obtain the Green’s function

G(x,y)=∗−Φ(x,y)+Φ(x,y′)+
1

2π

∫ +∞

−∞

1
Z+iµ

ei[(x1−y1)ξ+(x2+y2)µ]dξ

=−Φ(x,y)+Φ(x,y′)+
1

2π

∫ +∞

−∞

1
Z+iµ

ei[|x1−y1|ξ+(x2+y2)µ]dξ

=−Φ(x,y)+Φ(x,y′)+
1

2π
I(1/(Z+iµ);|x1−y1|,x2+y2),

for any x,y∈R2
+, where y′=(y1,−y2) is the image of y=(y1,y2) in Σ0 and

I(h;a,b) :=
∫ +∞

−∞
h(ξ)ei(aξ+bµ)dξ, ∀a,b>0.

Two possible roots of Z+iµ(ξ)=0 are

ξ±= lim
ε→0+

ξ±ε , ξ±ε :=±
[
Z2+(k+iε)2]1/2

.

While from (2.2) and (2.4), we have

µ(ξ±)= lim
ε→0+

µ(ξ±ε )=±iZ.

Therefore, Z+iµ(ξ)=0 only has one root ξ+. The Green’s function reads

G(x,y)=−Φ(x,y)+Φ(x,y′)−S(x,y)

+
1

2π
P.V. I(1/(Z+iµ);|x1−y1|,x2+y2), (2.6)

where

S(x,y)=
iZ√

Z2+k2
e−Z(x2+y2)ei|x1−y1|

√
Z2+k2

. (2.7)

Clearly S(x,y) represents evanescent waves which propagate in the horizontal direc-
tion and decay exponentially in the vertical direction (see [22] for more discussions).
From [22] we have the following theorem on the radiation condition for the Green func-
tion.

Theorem 2.1. Let S1
r ,S2

r be defined in (1.2) and kZ :=
√

Z2+k2. Then for any y∈R2
+, we have

lim
r=|x|→+∞

∫
S1

r

∣∣∣∣∂G(x,y)
∂r

−ikG(x,y)
∣∣∣∣2dSx =0,

lim
r=|x|→+∞

∫
S2

r

∣∣∣∣∂G(x,y)
∂r

−ikZG(x,y)
∣∣∣∣2dSx =0.
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2.2 The Cagniard-de Hoop transform

Now we are going to derive a new form of the principal value integral P.V. I(h;a,b) by us-
ing the Cagniard-de Hoop (CdeH) transform [19, Page 215]. For any ε>0, the requirement
that µε(ξ) :=

[
(k+iε)2−ξ2]1/2 has a positive imaginary part implies that the integral vari-

able ξ should be in the second and the fourth quadrants. Therefore, the principal value
integral P.V. I(h;a,b) can be calculated along the Sommerfeld integral path (SIP)

P.V. I(h;a,b)=P.V.
∫

SIP
h(ξ)ei(aξ+bµ)dξ.

We refer to [19, Chapter 2] for more discussion on the SIP (see Fig. 2).
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Figure 2: The Sommerfeld integral path.

Lemma 2.1. Let a,b>0, ρ=
√

a2+b2 and let h be an analytic function in C\((−∞,−k]∪[k,∞))
such that ξh(ξ) is bounded. Then

P.V. I(h;a,b)=−i
∫ ∞

1

1√
t2−1

[(µh)(ξ+(t))+(µh)(ξ−(t))]eikρtdt,

where ξ± is defined by the CdeH transform

ξ±(t)= kρ−1
(

at±ib
√

t2−1
)

, ∀t∈ [1,+∞). (2.8)

Proof. First we define a curve by the CdeH transform

Γ=Γ+∩Γ−, Γ± :=
{

ξ± : ξ±= kρ−1
(

at±ib
√

t2−1
)

, t≥1
}

.

For any ξ∈Γ, write ξ= ξ1+iξ2 with ξ1,ξ2∈R. Then

ξ2
1

a2−
ξ2

2
b2 =

k2

ρ2 . (2.9)
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Figure 3: Cagniard-de Hoop transform from the SIP to Γ+∪Γ−.

Clearly Γ stands for the right branch of a hyperbola in the complex ξ-plane. The curve
intersects the real axis at ξ0= ka/ρ. By the convention in (2.2), we easily get

µ(ξ±)=
k
ρ

(
bt∓ia

√
t2−1

)
,

dξ±
dt

=±i
µ(ξ±)√

t2−1
. (2.10)

For any r > 0, let C+
r ,C−r be respectively the part of the circle {ξ : |ξ|= r} that are

bounded by the SIP and Γ+ and by the SIP and Γ− respectively. The geometry is depicted
in Fig. 3. For the integrals on C±r , we claim that

lim
r→∞

∣∣∣∣∫C±r
h(ξ)ei(ξa+µb)dξ

∣∣∣∣=0. (2.11)

The proof of (2.11) will be postponed to the last two paragraphs of this proof. Using
Cauchy integral theorem and letting r→∞, we obtain

P.V. I(h;a,b)=P.V.
∫

SIP
h(ξ)ei(ξa+µb)dξ=P.V.

∫
Γ

h(ξ)ei(ξa+µb)dξ,

which by the definition of Γ and (2.10) yields

P.V. I(h;a,b)=−i
∫ ∞

1

1√
t2−1

[(µh)(ξ+(t))+(µh)(ξ−(t))]eikρtdt.

Now it is left to prove (2.11). We only prove the limit for the integral on C+
r . The

proof for the integral on C−r is similar and we omit the details. Let C+
r intersect with Γ+

at ξ(θ1)= reiθ1 and with the x–axis at ξ(θ2)= reiθ2 . Clearly 0< θ1 < θ2≤π. Since ξh(ξ) is
bounded, ∣∣∣∣∫C+

r

h(ξ)ei(ξa+µb)dξ

∣∣∣∣≤C
∫ θ2

θ1

e−Im(ξa+µb)dθ. (2.12)
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If θ∈ (θ1,π/2), Imµ2=−r2sin2θ<0. From (2.2) we have

Im(ξa+µb)= arsinθ−b
[
|k2−r2e2iθ |−(k2−r2cos2θ)

2

]1/2

,

which is an increasing function in [θ1,π/2]. Thus for θ1≤ θ≤π/2,

Im(ξa+µb)≥ Im(ξ(θ1)a+µ(ξ(θ1))b)= kρt(θ1),

where ξ(θ1)= reiθ1 ∈Γ+ and t(θ1)∈ (1,∞) satisfies

reiθ1 =
k
ρ

[
at(θ1)+ib

√
t(θ1)2−1

]
.

Therefore, we have r≤ kt(θ1) and

Im(ξa+µb)≥ kρt(θ1)≥ρr. (2.13)

If θ∈ (π/2,5π/6), since Imµ2=−r2sin2θ>0, we have

Im(ξa+µb)≥ arsinθ> arsin(5π/6)= ar/2. (2.14)

If θ∈ (5π/6,π), Reµ2= k2−r2cos2θ<−r2/4 for r� k. Then (2.2) shows that

Im(ξa+µb)≥bImµ=b

√
|µ|2−Reµ2

2
≥br/2. (2.15)

Inserting (2.13)–(2.15) into (2.12) yields (2.11) for the integral on C+
r .

2.3 The modified Cagniard-de Hoop transform

Notice that the CdeH transform ξ±(t) defined in the previous section will degenerate
as b→ 0. It makes the Green’s function much more difficult to analyze. To solve this
problem, we introduce a small constant 0<δ<1/4 and define

bδ =
√

b2+δ2ρ2, ρδ =
√

a2+b2
δ =
√

1+δ2ρ.

The modified CdeH transform is defined by

Γδ ={ξ±(t) : 1≤ t<+∞}, ξ±(t)= kρ−1
δ

(
at±ibδ

√
t2−1

)
. (2.16)

Now we define a new integral path by (see Fig. 4)

Γ̂={ξ∈Γδ : Imξ> Imξ−(
√

2)}∪{kt+ξ−(
√

2) : t≥0}.

Clearly, Γ̂\Γδ is located in the fourth quadrant. This indicates that µ±(t) are analytic
functions in both the domain between Γ̂∩Γδ and the left half of the real axis and the
domain between Γ̂\Γδ and the right half of the real axis (see Fig. 4).
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Figure 4: Cagniard-de Hoop transform from the SIP to Γ̂.

Lemma 2.2. Let a,b> 0 and let h be an analytic function in C\((−∞,−k]∪[k,∞)) such that
ξh(ξ) is bounded. Then

P.V. I(h;a,b)=−i
∫ ∞

1

F+(t)√
t2−1

eikρδtdt−i
∫ √2

1

F−(t)√
t2−1

eikρδtdt

+kei
√

2kρδ

∫ ∞

0
G(kt+ξ−(

√
2))eikatdt,

where ξ± is defined by (2.8) and define

Λ±(t)= kρ−1
δ

(
bδt∓ia

√
t2−1

)
,

F±(t)=h(ξ±(t))Λ±(t)ei(b−bδ)Λ±(t), G(ξ)=h(ξ)ei[bµ(ξ)−bδΛ−(
√

2)].

Proof. For any r> 0, let O+,O− be respectively the part of the circle {ξ : |ξ|= r} that are
bounded by the SIP and Γ̂ in the first quadrant and by the SIP and Γ̂ in the fourth quadrant
respectively. The geometry is depicted in Fig. 4. For the integrals on O+, by arguments
similar to those in Lemma 2.1, we obtain

lim
r→∞

∣∣∣∣∫O+
h(ξ)ei(ξa+µb)dξ

∣∣∣∣=0.

For the integrals on O−, since ξh(ξ) is bounded, Imξ≥ Imξ−(
√

2) and Imµ(ξ)>0 in the
fourth quadrant, there is a constant C>0 independent of r such that

lim
r→∞

∣∣∣∣∫O−
h(ξ)ei(ξa+µb)dξ

∣∣∣∣≤ lim
r→∞

Cr−1
∫

O−
|ξh(ξ)|dξ=0. (2.17)

Now using Cauchy integral theorem and letting r→∞, we obtain

P.V. I(h;a,b)=P.V.
∫

SIP
h(ξ)ei(ξa+µb)dξ=P.V.

∫
Γ̂

h(ξ)ei(ξa+µb)dξ= I1+ I2,
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with

I1=P.V.
∫

Γ̂∩Γδ

h(ξ)ei(ξa+µb)dξ, I2=P.V.
∫

Γ̂\Γδ

h(ξ)ei(ξa+µb)dξ.

By the definition of Γ̂ and (2.16) yields

I1=−i
∫ ∞

1

F+(t)√
t2−1

eikρδtdt−i
∫ √2

1

F−(t)√
t2−1

eikρδtdt.

Moreover, since ξ(t) = kt+ξ−(
√

2) for any ξ ∈ Γ̂\Γδ and
√

2kρδ = aξ−(
√

2)+bδΛ−(
√

2),
we have

I2= kei
√

2kρδ

∫ ∞

0
h(ξ(t))ei[kat+bµ(ξ(t))−bδΛ−(

√
2)]dt.

Then the proof is completed.

2.4 The CdeH integral representation for the Green function

We end up this section by applying Lemmas 2.1-2.2 to the Green function G. Let 0< δ<
1/4 be a constant which will be specified in Section 4. Define

a= |x1−y1|, b= x2+y2, ρ=
√

a2+b2,

bδ =
√

b2+δ2ρ2, ρδ =
√

a2+ρ2
δ.

The CdeH transform is defined for b>δa and b≤δa respectively by

ξ±(t)=


k
ρ

(
at±ib

√
t2−1

)
, if b>δa,

k
ρδ

(
at±ibδ

√
t2−1

)
, if b≤δa,

∀t∈ [1,+∞), (2.18a)

Λ±(t)=


k
ρ

(
bt∓ia

√
t2−1

)
, if b>δa,

k
ρδ

(
bδ∓ia

√
t2−1

)
, if b≤δa,

∀t∈ [1,+∞). (2.18b)

We define, if b>δa,

J(h;x,y)=−i
∫ ∞

1
[h(ξ+(t))Λ+(t)+h(ξ−(t))Λ−(t)]

eikρδt
√

t2−1
dt,
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and if b≤δa,

J(h;x,y)=−i
∫ ∞

1
h(ξ+(t))Λ+(t)ei(b−bδ)Λ+(t) eikρδt

√
t2−1

dt

−i
∫ √2

1
h(ξ−(t))Λ−(t)ei(b−bδ)Λ−(t) eikρδt

√
t2−1

dt

+kei
√

2kρδ

∫ ∞

0
G(ξ(t))eikatdt,

where G(ξ)=h(ξ)ei[bµ(ξ)−bδΛ−(
√

2)] and ξ(t)= kt+ξ−(
√

2).
Then the CdeH integral representation for the Green function is as follows

G(x,y)=− i
4π

J(1/µ;|x1−y1|,|x2−y2|)+
i

4π
J(1/µ;|x1−y1|,x2+y2)

+
1

2π
J(1/(Z+iµ);|x1−y1|,x2+y2)−S(x,y).

3 The scattering problem

The purpose of this section is to study the weak formulation of the scattering problem
(1.1) and to show an integral representation of the scattering solution. We start by the
well-posedness of (1.1). The following theorem can be proved by very similar arguments
as in the proof of [22, Theorem 6.2]. We omit the details here.

Theorem 3.1. For any g∈H−1/2(Σ) satisfying supp(g)⊂Σp, the scattering problem (1.1) has
a unique solution u∈H1

loc(R
2
Σ+).

3.1 An integral representation of the scattering solution

Let L1≥1, L2>‖p‖L∞(R) be two constants and define

Ω1={x∈R2
Σ+ : |x1|<L1, x2<L2}, Γ1 :=∂Ω1\Σ.

Clearly Σp⊂ ∂Ω1. Let ΨSL,ΨDL be, respectively, the single-layer and double-layer poten-
tials defined by

ΨSL(λ)(x)=
∫

Γ1

G(x,y)λ(y)dSy, ∀λ∈H−1/2(Γ1), (3.1a)

ΨDL(g)(x)=
∫

Γ1

∂G(x,y)
∂ny

g(y)dSy, ∀g∈H1/2(Γ1). (3.1b)

Now we show an integral representation of the solution of the exterior scattering prob-
lem. It plays an important role in our subsequent analysis.
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Lemma 3.1. Any solution u of the exterior problem (1.1) satisfies

u=ΨDL(γDu)−ΨSL(γDu) in R2
Σ+\Ω̄1, (3.2)

where γDu :=u|Γ1 and γNu := ∂u
∂n

∣∣
Γ1

are respectively the Dirichlet trace and the Neumann trace
of u on Γ1.

Proof. First we introduce a circular truncation of R2
Σ+ by

Or ={x∈R2
Σ+ : |x|< r}, Sr =∂Or\Σ, Σr =∂Or∩Σ. (3.3)

Let r be large enough such that Ω̄1⊂Or. By Green’s formula, we have

u(x)=
∫

Γ1∪Sr∪(Σr\Σ1)

[
∂u(y)

∂n
G(x,y)− ∂G(x,y)

∂ny
u(y)

]
dSy, ∀x∈OR\Ω1,

where n is the unit outer normal to ∂(Or\B̄1). By the impedance boundary conditions in
(1.1b) and (2.1), direct calculations show that∫

Σr\Σ1

[
∂u(y)

∂n
G(x,y)− ∂G(x,y)

∂ny
u(y)

]
dSy =0, ∀x∈Or\Ω1.

Now it suffices to show that∫
Sr

[
∂u(y)

∂n
G(x,y)− ∂G(x,y)

∂ny
u(y)

]
dSy→0 as r→∞. (3.4)

To do that, we use the radiation conditions in (1.1c) and find that, as R→∞,∫
S1

r

[∣∣∣∣∂u
∂r

∣∣∣∣2+k2|u|2+2kIm
(

u
∂ū
∂r

)]
dS=

∫
S1

R

∣∣∣∣∂u
∂r
−iku

∣∣∣∣2dS→0, (3.5a)

∫
S2

r

[∣∣∣∣∂u
∂r

∣∣∣∣2+k2|u|2+2kZ Im
(

u
∂ū
∂r

)]
dS→0. (3.5b)

On the other hand, for any fixed R0< r such that Ω̄1⊂OR0 , using Green’s formula again,
we have∫

∂(Or\ŌR0 )
u

∂ū
∂n

dS=
∫

Or\ŌR0

(u∆ū+∇u·∇ū)dx=
∫

Or\ŌR0

(|∇u|2−k2|u|2)dx.

Since
u

∂ū
∂n

=Z|u|2

on Σ∞ by the impedance boundary condition, we have

0= Im
(∫

∂(Or\ŌR0 )
u

∂ū
∂n

dS
)
= Im

(∫
SR0∪Sr

u
∂ū
∂n

dS
)

,
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which indicates that ∫
Sr

Im
(

u
∂ū
∂r

)
ds=

∫
SR0

Im
(

u
∂ū
∂r

)
ds<∞.

Thus we deduce from (3.5a)-(3.5b) that ‖u‖L2(Sr) is bounded as r→∞.
Similarly, by Theorem 2.1, we know that ‖G(·,y)‖L2(Sr) is also bounded as r→∞. Note

that ∫
Sr

[
∂u(y)

∂n
G(x,y)− ∂G(x,y)

∂ny
u(y)

]
dSy

=
∫

S1
r

[(
∂u(y)

∂n
−iku(y)

)
G(x,y)−

(
∂G(x,y)

∂ny
−ikG(x,y)

)
u(y)

]
dSy

+
∫

S2
r

[(
∂u(y)
∂ny

−ikZu(y)
)

G(x,y)−
(

∂G(x,y)
∂ny

−ikZG(x,y)
)

u(y)
]

dSy.

Then (3.4) follows from (1.1c) and Theorem 2.1. This completes the proof.

Remark 3.1. From (3.2) and (2.6), the solution of (1.1) can be split into

u(x)=us(x)+up(x), (3.6)

where

us(x)=
∫

Γ1

[
S(x,y)

∂u(y)
∂ny

− ∂S(x,y)
∂ny

u(y)
]
dSy,

up(x)=
∫

Γ1

u(y)
∂

∂ny

[ 1
2π

P.V. I
( 1

Z+iµ
;|x1−y1|,x2+y2

)
−Φ(x,y)+Φ(x,y′)

]
dSy

−
∫

Γ1

∂u(y)
∂ny

[ 1
2π

P.V. I
( 1

Z+iµ
;|x1−y1|,x2+y2

)
−Φ(x,y)+Φ(x,y′)

]
dSy.

The first term us stands for surface waves (or evanescent waves) which propagate in the
horizontal direction but decay exponentially in the vertical direction. The second term
up stands for propagating waves in all directions of R2

+.

3.2 A weak formulation of the scattering problem

First we introduce the DtN operator T:H1/2(Γ1)→H−1/2(Γ1) be defined as follows: Given
f ∈H1/2(Γ1), T f = ∂χ

∂n on Γ1 where χ solves the scattering problem

∆χ+k2χ=0 in R2
Σ+\Ω̄1, (3.7a)

∂χ

∂x2
+Zχ=0 on Σ\∂Ω1, (3.7b)

χ= f on Γ1, (3.7c)

lim
r→+∞

∫
S1

r

∣∣∣∂χ

∂r
−ikχ

∣∣∣2dS=0, lim
r→+∞

∫
S2

r

∣∣∣∂χ

∂r
−i
√

Z2+k2χ
∣∣∣2dS=0. (3.7d)
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Figure 5: The setting of the scattering problem (3.7).

Let R be sufficiently large such that Ω1⊂OR, where OR is defined by (3.3) and denote
ΩR =OR\Ω1 for convenience (see Fig. 5 for an illustration of the setting). We introduce
the bilinear form b : H1(ΩR)×H1(ΩR)→C as follows:

b(v,w)=
∫

ΩR

(
∇v·∇w̄−k2vw̄

)
dx−〈DNv,w̄〉SR−Z〈v,w̄〉ΣR\Σ1

, (3.8)

where Σ1=Σ∩∂Ω1 and 〈·,·〉Γ stands for the inner product on L2(Γ) or the duality pairing
between H−1/2(Γ) and H1/2(Γ) for any one-dimensional Lipschitz manifold Γ. The DtN
operator DN : H1/2(SR)→ H−1/2(SR) is defined as follows: Given g∈ H1/2(SR), define
DN(g)= ∂ψ

∂n on SR, where ψ solves

∆ψ+k2ψ=0 in R2
Σ+\OR, (3.9a)

∂ψ

∂x2
+Zψ=0 on Σ\ΣR, (3.9b)

ψ= g on SR, (3.9c)

lim
r→+∞

∫
S1

r

∣∣∣∂ψ

∂r
−ikψ

∣∣∣2dS=0, lim
r→+∞

∫
S2

r

∣∣∣∂ψ

∂r
−i
√

Z2+k2 ψ
∣∣∣2dS=0. (3.9d)

In [22, Section 6], Dúran and coauthors proved that (3.9) exists a unique solution, and
showed the following property of DN

‖v‖2
L2(SR)

≤−Re〈DNv,v̄〉SR≤‖v‖
2
H1/2(SR)

. (3.10)

A weak formulation of (3.7) reads: Find χ∈H1(ΩR) such that χ= f on Γ1 and

b(χ,v)=0, ∀v∈H1
Γ1
(ΩR) :={w∈H1(ΩR) : w=0 on Γ1}. (3.11)

By using (3.10) and the trace inequality, we know that there exist two constants τ>0,δ>0
which only depend on k, Z, ΩR such that

b(v,v)+τ‖v‖2
L2(ΩR)

≥δ‖v‖2
H1(ΩR)

, ∀v∈H1
Γ1
(ΩR).
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By the spectral theory of compact operators, we deduce that (3.11) is a Fredholm equation
and has a unique solution except possibly for a discrete set of values of k. Since our main
objective is to study the PML approximation of (1.1), we do not elaborate on the well-
posedness of the continuous problem (3.7) and merely assume that (3.7) has a unique
solution for any f ∈H1/2(Γ1). Therefore T is a well-defined linear continuous operator
on H1/2(Γ1).

Let the bilinear form a : H1(Ω1)×H1(Ω1)→C be defined by

a(v,w)=
∫

Ω1

(
∇v·∇w̄−k2vw̄

)
dx−〈Tv,w̄〉Γ1−ik〈βv,w̄〉Σ1 . (3.12)

From the continuity of T, we know that a(·,·) is continuous on H1(Ω1)×H1(Ω1). A weak
formulation of the scattering problem (1.1) reads: Find u∈H1(Ω1) such that

a(u,v)= 〈g,v̄〉Σp , ∀v∈H1(Ω1). (3.13)

Now Theorem 3.1 indicates that a(·,·) is coercive on H1(Ω1), namely, satisfies the follow-
ing inf-sup condition

sup
0 6=w∈H1(Ω1)

|a(v,w)|
‖w‖H1(Ω1)

≥CIS‖v‖H1(Ω1)
, ∀v∈H1(Ω1), (3.14)

where the constant CIS>0 only depends on k, Z and Ω1.

4 The uniaxial PML method

Now we introduce the absorbing PML layer. Let α1(t)=1+iσ1(t), α2(t)=1+iσ2(t) be the
model medium property which satisfy

σj≥0, σj(t)=σj(−t) and σj =0 for |t|≤Lj, j=1,2.

Denote by x̃j the complex coordinate stretching defined by

x̃j =
∫ xj

0
αj(t)dt, j=1,2. (4.1)

Notice that x̃j depends only on xj and for this reason the method is called the uniaxial
PML method.

We extend the distance function by r(x̃,ỹ) = [(x̃1− ỹ1)
2+(x̃2− ỹ2)2]1/2 for complex

variables and define the modified Green function by

G̃(x,y) :=G(x̃,ỹ), ∀x,y∈R2
+.

For any f ∈H1/2(Γ1) and λ∈H−1/2(Γ1), let the modified single-layer and double-layer
potentials be defined by

Ψ̃SL(λ)(x) :=ΨSL(λ)(x̃), Ψ̃DL( f )(x) :=ΨDL( f )(x̃), ∀x∈R2
Σ+\Ω1. (4.2)
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For any f ∈H1/2(Γ1), we introduce the PML extension as follows

E( f )(x)= Ψ̃DL( f )(x)−Ψ̃SL(T f )(x), ∀x∈R2
Σ+\Ω1. (4.3)

Usually E is called the PML wave propagation operator. It is clear that E( f ) is continuous
and satisfies

γΓ1E( f )=γΓ1 Ψ̃DL( f )−γΓ1 Ψ̃SL(T f )=γΓ1 ΨDL( f )−γΓ1 ΨSL(T f )= f , (4.4)

where γΓ1 : H1
loc(R

2
Σ+\Ω̄1)→H1/2(Γ1) is the trace operator.

Let ũ(x)=u(x̃) be the PML extension of the solution u of the scattering problem (3.13).
It is obvious that ũ satisfies

∂2ũ
∂x̃2

1
+

∂2ũ
∂x̃2

2
+k2ũ=0 in R2

Σ+\Ω̄1,

which yields the desired UPML equation by the chain rule

∇·(A∇ũ)+α1α2k2ũ=0 in R2
Σ+\Ω̄1,

where A = diag(α2(x2)/α1(x1),α1(x1)/α2(x2)) is a diagonal matrix. From the DtN op-
erator T defined by (3.7) and the integral representation (3.1a), we have ũ =E(u|Γ1) in
R2

Γ+\Ω1. The purpose of this section is to show that the PML extension E(u|Γ1) (or ũ)
will decay exponentially in the absorbing layer. We shall estimate the trace of E( f ) on
the truncated boundary for any f ∈H1/2(Γ1).

In the rest of this paper, we make the following assumption on the fictitious medium
property which is rather mild in practical applications of the UPML method:

(H1)
∫ L1+d1

0
σ1(t)dt=

∫ L2+d2

0
σ2(t)dt=: σ̄, σ̄≥1 is a constant.

Remark 4.1. For instance, we may choose σ1(t)=σ̂1(
|t|−L1

d1
)m, σ2(t)=σ̂2(

|t|−L2
d2

)m for |t|>Lj,
where m≥ 1 is an integer and σ̂j > 0 is a constant, j = 1,2. Then σ̄ can be enlarged by
increasing the constants σ̂1 and σ̂2.

4.1 Estimation of the modified Green function

First we present some preliminary lemmas for the estimation of the modified Green func-
tion.

Lemma 4.1 ([15]). For any ã= a1+ia2 and b̃= b1+ib2 with a1,a2,b1,b2∈R such that a1a2+
b1b2>0 and a2

1+b2
1 >0, we have

Im(ã2+ b̃2)1/2≥ a1a2+b1b2√
a2

1+b2
1

.
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Let Ω2={x∈R2
Σ+ :|x1|<L1+d1, x2<L2+d2} be the truncation domain which contains

Ω1 and denote Σ2=Σ∩∂Ω2, Γ2=∂Ω2\Σ2. In the following we will always denote

ã=
[
(x̃1−y1)

2]1/2
, b̃= x̃2+y2, ρ̃=ρ(x̃,y) :=

(
ã2+ b̃2)1/2

, (4.5)

for any x∈Γ2, y∈Ω1. From the convention (2.2), it is easy to see that ã=a1+ia2, b̃=b1+ib2
with

a1= |x1−y1|, a2=
∣∣∣∫ x1

0
σ1(t)dt

∣∣∣, b1= x2+y2, b2=
∫ x2

0
σ2(t)dt.

By Lemma 4.1 and (4.5), ρ̃=ρ(x̃,y) satisfy

Imρ̃≥ a1a2+b1b2√
a2

1+b2
1

≥γ0σ̄, ∀x∈Γ2, y∈Ω1, (4.6)

where we have used (H1) and γ0 =
min(d1,d2)√

(2L1+d1)2+(2L2+d2)2
. We remark that γ0∼O(1) for d1

and d2 have the same scale.
Write ρ̃ = ρ1+iρ2, then ρ̃2 = (ρ2

1−ρ2
2+2iρ1ρ2). Since ρ̃2 = ã2+ b̃2 = a2

1−a2
2+b2

1−b2
2+

2i(a1a2+b1b2), we have ρ1ρ2= a1a2+b1b2. Then by Lemma 4.1,

Reρ̃=ρ1=
a1a2+b1b2

ρ2
≤
√

a2
1+b2

1. (4.7)

Furthermore, we denote

b̃δ =(b̃2+δ2ρ̃2)1/2, ρ̃δ =(ã2+ b̃2
δ)

1/2. (4.8)

It’s easy to see that

ρ̃δ =(ã2+ b̃2+δ2ρ̃2)1/2=
√

1+δ2ρ̃, (4.9)

and then

Imρ̃δ≥
√

1+δ2γ0σ̄, ∀x∈Γ2, y∈Ω1. (4.10)

The following lemma is the complex counterpart of (2.8) and (2.10).

Lemma 4.2. For any ã= a1+ia2 and b̃=b1+ib2 with a1,a2,b1,b2≥0, define

ξ±(t)=


k
ρ̃

(
ãt±ib̃

√
t2−1

)
, if b1>δa1,

k
ρ̃δ

(
ãt±ib̃δ

√
t2−1

)
, if b1≤δa1,

∀t∈ [1,+∞). (4.11)
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Then µ(ξ±)=
(
k2−ξ2

±
)1/2 satisfies

µ±(t)=


k
ρ̃

(
b̃t∓iã

√
t2−1

)
, if b1>δa1,

k
ρ̃δ

(
b̃δ∓iã

√
t2−1

)
, if b1≤δa1,

∀t∈ [1,+∞). (4.12)

Proof. For any t ∈ [1,∞), let µ±0 = k(b̃t∓iã
√

t2−1)/ρ̃ for b1 > δa1 and µ±0 = k(b̃δt∓
iã
√

t2−1)/ρ̃δ for b1 ≤ δa1. Clearly (µ±0 )
2 = k2−ξ2

± = µ2
±. The lemma follows from the

convention (2.2) and Re(µ±0 )≥ 0 which can be proved by direct calculations. Here we
omit the details.

In the following, we will always denote z̃= z1+iz2 for z̃= ã,b̃,ρ̃ and z̃δ = zδ
1+izδ

2 for
z̃δ = b̃δ,ρ̃δ. Moreover, we make the following assumptions on the transform parameter δ
and the PML medium parameter σ̄:

(H2) 0<δ<
γ2

0
20

and σ̄≥9
(

Z
k
+1
)3

γ−5
0 (2L2+d2).

We remark that the above assumption of σ̄ is only used for theoretical analysis. Prac-
tically, σ̄ can be any constant large than one unit wavelength, while larger value of σ̄
meaning faster decay of the scattering solution in the PML.

In the rest of the paper, without specifications, we let C>0 be a generic constant which
may depend on k and Z, but is independent of σ̄ and d=max(d1,d2,L1,L2).

Lemma 4.3. Let ã, b̃, ρ̃, b̃δ and ρ̃δ be defined in (4.5) and (4.8) for any x∈ Γ2,y∈Ω1. For any
h∈L∞([1,∞)), define

F(h; ã,b̃)=
1

2π

∫ ∞

1

1√
t2−1

h(t)eikρ̃tdt, if b1>δa1,

F±1 (h; ã,b̃)=
1

2π

∫ ∞

1

1√
t2−1

h(µ±(t))ei(b̃−b̃δ)µ±(t)eikρ̃δtdt, if b1≤δa1.

Let (H1)-(H2) be satisfied. Then for any integer n,

|F(tnh; ã,b̃)|≤C‖h‖L∞([1,∞)) e−kγ0σ̄,

|F±1 (tnh; ã,b̃)|≤C‖h‖L∞([1,∞)) e−
1
2 kγ0σ̄.

Proof. We only prove the lemma for F±1 (h; ã,b̃). The case of F(h; ã,b̃) is similar and easier,
so we omit the details here.

First, we estimate µ±. Noting that when ρ(x,y)≥2σ̄,

|ρ(x̃,y)|≥ |Re(ã2+ b̃2)|1/2≥ (ρ(x,y)2−2σ̄2)1/2≥ 1√
2

ρ(x,y).
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Then by (4.9),

|ρδ(x̃,y)|=
√

1+δ2|ρ(x̃,y)|≥
√

1+δ2
√

2
ρ(x,y).

Thus for any x∈Γ2, y∈Ω1,

|ã|
|ρ̃δ|

=
|x̃1−y1|
|ρδ(x̃,y)| ≤

√
2(ρ(x,y)2+σ̄2)1/2
√

1+δ2ρ(x,y)
≤
√

10
2
√

1+δ2
, (4.13)

and

|b̃δ|
|ρ̃δ|
≤ |b̃||ρ̃δ|

+
|δρ̃|
|ρ̃δ|

=
|x̃2+y2|
|ρ̃δ|

+
δ|ρ̃|√

1+δ2|ρ̃|
≤
√

10
2
√

1+δ2
+

δ√
1+δ2

, (4.14)

where we have written ρ̃=ρ(x̃,y) and ρ̃δ =ρδ(x̃,y) for simplicity.
When ρ(x,y)≤2σ̄, (4.10) yields that for any x∈Γ2, y∈Ω1,

|ã|
|ρ̃δ|
≤ (ρ(x,y)2+σ̄2)1/2

Imρ̃δ
≤ (ρ(x,y)2+σ̄2)1/2

√
1+δ2γ0σ̄

≤
√

5√
1+δ2

γ−1
0 , (4.15)

and

|b̃δ|
|ρ̃δ|
≤
√

5√
1+δ2

γ−1
0 +

δ√
1+δ2

. (4.16)

Substitute the above estimates into (4.12), we have |µ±|≤5ktγ−1
0 for all t≥1.

Note that b1≤δa1, it implies that x2<L2 and b2=0. Then

|ρ̃|=[(a2
1−a2

2+b2
1−b2

2)
2+4(a1a2+b1b2)

2]1/4≤ [σ̄4+4a2
1σ̄2]1/4.

Using the above inequality and (H2), direct calculations show that

|b̃− b̃δ|≤2|b̃|+δ|ρ̃|=2b1+δ|ρ̃|≤2δa1+δ|ρ̃|<2δσ̄.

Then by (H2), it is easy to see that

|F±1 (tnh; ã,b̃)|≤C‖h‖L∞([1,∞))

∫ ∞

1

tn
√

t2−1
e|(b̃−b̃δ)µ±(t)|−ktImρ̃δ dt

≤C‖h‖L∞([1,∞))

∫ ∞

1

tn
√

t2−1
e(10δγ−1

0 −
√

1+δ2γ0)ktσ̄dt

≤C‖h‖L∞([1,∞)) e−
1
2 kγ0σ̄+1

∫ ∞

1

tne−t
√

t2−1
dt

≤C‖h‖L∞([1,∞)) e−
1
2 kγ0σ̄.

Then the proof is completed.
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Remark 4.2. Define b̃′=
[
(x̃2−y2)2]1/2. Using similar arguments as in (4.6), we find that

Imr(x̃,y)= Im
[
(x̃1−y1)

2+(x̃2−y2)
2]1/2≥γ0σ̄.

Then Lemma 4.3 also holds by replacing b̃ with b̃′.

The following lemmas on the estimate of the modified Green function G̃ will play an
important role in the following analysis.

Lemma 4.4. Let ã, b̃, ρ̃, b̃δ and ρ̃δ be defined in (4.5) and (4.8) for any x∈Γ2, y∈Ω1. Assume
b1>δa1. Let (H1)-(H2) be satisfied. Then

|G̃(x,y)|≤C[1+σ̄(d+σ̄)]e−γ0kσ̄+
Ze−Z(L2+d2)

√
Z2+k2

, ∀x∈Γ2, y∈Ω1.

Proof. By (2.5) and the method of Cagniard-de Hoop transform (cf. [19]) we know the
Green function Φ(x,y)= i

4 H(1)
0 (k|x−y|) satisfies

Φ(x,y)=
1

2π

∫ ∞

1

1√
t2−1

eik|x−y|tdt.

Thus by (2.6) and Lemma 4.3, we know that,

G̃(x,y)=
1
2

F
(
1; ã,b̃

)
− 1

2
F(1; ã,b̃′)+F( f ; ã,b̃)−S(x̃,y), (4.17)

where S is defined in (2.7), b̃′=
[
(x̃2−y2)2]1/2 and

f (t)=−i
(

µ+(t)
Z+iµ+(t)

+
µ−(t)

Z+iµ−(t)

)
. (4.18)

In Lemma A.3, we have proved that

| f (t)|≤1+Cσ̄(d+σ̄). (4.19)

Then from Lemma 4.3, there exists a constant C such that

|F( f ; ã,b̃)|≤C[1+σ̄(d+σ̄)]e−kγ0σ̄. (4.20)

An application of Lemma 4.3 and Remark 4.2 shows that

|F(1; ã,b̃)|+|F(1; ã,b̃′)|≤Ce−kγ0σ̄. (4.21)

By (2.7) and Assumption (H1), the term of surface waves satisfies

|S(x̃,y)|= Ze−Z(x2+y2)e−
√

Z2+k2 Im(ã)
√

Z2+k2
≤ Zmax(e−Z(L2+d2),e−

√
Z2+k2σ̄)√

Z2+k2
. (4.22)

The proof is completed by substituting (4.20), (4.21) and (4.22) into (4.17).
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Lemma 4.5. Let ã, b̃, ρ̃, b̃δ and ρ̃δ be defined in (4.5) and (4.8) for any x∈Γ2, y∈Ω1. Assume
b1≤δa1. Let (H1)-(H2) be satisfied. Then

|G̃(x,y)|≤C[1+(d+σ̄)]e−
1
2 γ0kσ̄, ∀x∈Γ2, y∈Ω1.

Proof. Let

I1(h; ã,b̃)=
1

2π

∫ ∞

1
h(ξ+(t))Λ+(t)ei(b̃−b̃δ)Λ+(t) eikρ̃δt

√
t2−1

dt,

I2(h; ã,b̃)=
1

2π

∫ √2

1
h(ξ−(t))Λ−(t)ei(b̃−b̃δ)Λ−(t) eikρ̃δt

√
t2−1

dt,

I3(h; ã,b̃)=
1

2π
kei
√

2kρ̃δ

∫ ∞

0
h(ξ̂(t))ei[b̃µ(ξ̂(t))−b̃δΛ−(

√
2))]eikãtdt,

where ξ±(t) are defined in (4.11) and ξ̂(t) := kt+ξ0 with

ξ0= ξ−(
√

2)=
k
ρ̃δ
(
√

2ã−ib̃δ).

Thus by (2.6) and Lemma 4.3, we know that

G̃(x,y)=
3

∑
i=1

(
1
2

Ii(1/µ; ã,b̃)− 1
2

Ii(1/µ; ã,b̃′)+ Ii( f ; ã,b̃)
)
−S(x̃,y), (4.23)

where S is defined in (2.7), b̃′=
[
(x̃2−y2)2]1/2 and

f =
−i

Z+iµ
with µ=µ(ξ+) in I1, µ=µ(ξ−) in I2, µ=µ(ξ̂) in I3. (4.24)

Since b1≤δa1, then Im ã= σ̄, the term of surface waves satisfies

|S(x̃,y)|= Ze−Z(x2+y2)e−
√

Z2+k2 Im ã
√

Z2+k2
≤ Ze−

√
Z2+k2σ̄

√
Z2+k2

. (4.25)

By arguments similar to those in Lemma 4.3, we obtain for any h∈L∞([1,∞)),

|I2(h; ã,b̃)|≤C‖µh‖L∞([1,∞)) e−
1
2 kγ0σ̄. (4.26)

An application of Lemma 4.3, Remark 4.2 and (4.26) shows that

2

∑
i=1
|Ii(1/µ; ã,b̃)|=

∣∣F+
1 (1; ã,b̃)

∣∣+∣∣I2(1/µ; ã,b̃)
∣∣≤Ce−

1
2 kγ0σ̄, (4.27)

2

∑
i=1
|Ii(1/µ; ã,b̃′)|=

∣∣F+
1 (1; ã,b̃′)

∣∣+∣∣I2(1/µ; ã,b̃′)
∣∣≤Ce−

1
2 kγ0σ̄. (4.28)
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By (4.24) and Lemma A.4, we have

|µ f |=
∣∣∣∣ −iµ
Z+iµ

∣∣∣∣≤1+
∣∣∣∣ Z
Z+iµ

∣∣∣∣≤1+C(d+σ̄).

Then from Lemma 4.3 and (4.26),

2

∑
i=1
|Ii( f ; ã,b̃)|= |F+

1 (µ f ; ã,b̃)|+|I2( f ; ã,b̃)|≤C[1+(d+σ̄)]e−
1
2 γ0kσ̄. (4.29)

Now we estimate I3. By Lemma A.2, Im ξ̂(t) = Imξ−(
√

2)< 0 for all t≥ 0. Then the
convention in (2.2) shows that

Reµ(ξ̂(t))≥0, sign[Imµ(ξ̂(t))]=−sign[Im ξ̂2(t)]=−sign[Im ξ̂(t)]>0,

which implies that b̃µ(ξ̂) has nonnegative imaginary part. Then similar argument as in
Lemma 4.3 yields∣∣∣ei[b̃µ(ξ̂)−b̃δΛ−(

√
2))]
∣∣∣≤ ∣∣∣e−ib̃δΛ−(

√
2)
∣∣∣≤ e|b̃δ||Λ−(

√
2)| ≤ e2δσ̄·5

√
2kγ−1

0 . (4.30)

By Lemma A.5, we have proved that∣∣∣∣ 1
µ(ξ̂(t))

∣∣∣∣≤C, | f (t)|=
∣∣∣∣ −i
Z+iµ(ξ̂(t))

∣∣∣∣≤C. (4.31)

Then from (4.30), (4.31) and the assumption that δ<
γ2

0
20 , we have∣∣∣I3(1/µ; ã,b̃)− I3(1/µ; ã,b̃′)+ I3( f ; ã,b̃)

∣∣∣
≤Ce−

√
2γ0kσ̄

∫ ∞

0
e10
√

2δσ̄kγ−1
0 e−kσ̄tdt≤Ce−

√
2γ0kσ̄. (4.32)

The proof is completed by inserting (4.25), (4.27)–(4.29) and (4.32) into (4.23).

Lemma 4.6. Let (H1)-(H2) be satisfied and let m,n≥ 0 be integers. Then for x=(x1,x2)∈Γ2,
y=(y1,y2)∈Ω1, if b1>δa1, for 1≤ i, j≤2,∣∣∣∣∣ ∂m+n

∂xm
i ∂yn

j
G̃(x,y)

∣∣∣∣∣≤αm
0

(
C[1+σ̄(d+σ̄)]e−γ0kσ̄+(

√
Z2+k2)m+n Ze−Z(L2+d2)

√
Z2+k2

)
,

and if b1≤δa1, for 1≤ i, j≤2,∣∣∣∣∣ ∂m+n

∂xm
i ∂yn

j
G̃(x,y)

∣∣∣∣∣≤Cαm
0 [1+(d+σ̄)]e−

1
2 γ0kσ̄,

where α0=maxx∈Γ2(|α1(x1)|,|α2(x2)|).
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Proof. For the surface wave S(x̃,y). By (2.7), it is easy to see that if b1>δa1,∣∣∣∣∣ ∂m+n

∂xm
i ∂yn

j
S̃(x,y)

∣∣∣∣∣≤αm
0 (
√

Z2+k2)m+n Ze−Z(L2+d2)

√
Z2+k2

,

and if b1≤δa1, ∣∣∣∣∣ ∂m+n

∂xm
i ∂yn

j
S̃(x,y)

∣∣∣∣∣≤αm
0 (
√

Z2+k2)m+n Ze−
√

Z2+k2σ̄

√
Z2+k2

.

For the propagating waves, we only consider the case of b1≤ δa1. The proof for the case
of b1>δa1 is similar and simpler. By direct calculations, we have∣∣∣∣∂m+nµ(ξ±(t))

∂ãm ∂b̃n

∣∣∣∣≤C
kt
|ρ̃|m+n ,

∣∣∣∣∣∂m+nµ(ξ̂(t))
∂ãm ∂b̃n

∣∣∣∣∣≤C
k

|ρ̃|m+n , ∀m,n≥0, (4.33)

where ξ±(t) are defined in (4.11) and ξ̂(t) := kt+ξ0 with ξ0= ξ−(
√

2)= k
ρ̃δ
(
√

2ã−ib̃δ).
By (4.33) and elaborate calculations,∣∣∣∣ ∂m+n

∂ãm ∂b̃n

(
f (ξ±(t))ei(b̃−b̃δ)Λ±(t)

)∣∣∣∣≤Ckt|ρ̃δ|·
∣∣∣ei(b̃−b̃δ)Λ±(t)

∣∣∣,∣∣∣∣ ∂m+n

∂ãm ∂b̃n

(
f (ξ̂(t))ei[b̃µ(ξ̂(t))−b̃δΛ−(

√
2))]
)∣∣∣∣≤Ck|ρ̃δ|·

∣∣∣ei[b̃µ(ξ̂(t))−b̃δΛ−(
√

2))]
∣∣∣,

where f (ξ)=−i/(Z+iµ).
Consider the representation of G̃(x,y) given by (4.23). By arguments similar to the

proof of Lemma 4.3, we obtain∣∣∣∣∂m+n Il( f ; ã,b̃)
∂ãm∂b̃n

∣∣∣∣≤C(d+σ̄)e−
1
2 kγ0σ̄, l=1,2,3.

Similarly, we derive that∣∣∣∣∂m+n Il(1/µ; ã,b̃)
∂ãm ∂b̃n

∣∣∣∣≤Ce−
1
2 kγ0σ̄, l=1,2,3.

Then by the chain rule,∣∣∣∣ ∂ f
∂x1

∣∣∣∣= ∣∣∣∣∂ f
∂ã

∂ã
∂x1

∣∣∣∣≤α0
∂ f
∂ã

,
∣∣∣∣ ∂ f
∂x2

∣∣∣∣= ∣∣∣∣∂ f
∂b̃

∂b̃
∂x2

∣∣∣∣≤α0
∂ f
∂b̃

,

and ∣∣∣∣ ∂ f
∂y1

∣∣∣∣= ∣∣∣∣∂ f
∂ã

∂ã
∂y1

∣∣∣∣≤ ∂ f
∂ã

,
∣∣∣∣ ∂ f
∂y2

∣∣∣∣= ∣∣∣∣∂ f
∂b̃

∂b̃
∂y2

∣∣∣∣≤ ∂ f
∂b̃

.

the proof is completed.
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Note that σ̄e−γ0kσ̄≤Ce−
1
2 γ0kσ̄ for some constant C. To simplify the notation, we use∣∣∣∣∣ ∂m+n

∂xm
i ∂yn

j
G̃(x,y)

∣∣∣∣∣≤αm
0

(
C[1+(d+σ̄)]e−

1
2 γ0kσ̄+(

√
Z2+k2)m+n Ze−Z(L2+d2)

√
Z2+k2

)

for both cases of b1>δa1 and b1≤δa1 in the rest of this paper.

4.2 Estimation of the PML wave propagation operator

Let Γ be any one-dimensional Lipschitz manifold. Throughout the paper we shall use the
following weighted norm ‖·‖

H
1
2 (Γ)

‖v‖2
H

1
2 (Γ)

= |Γ|−1‖v‖2
L2(Γ)+|v|

2
1
2 ,Γ , |v|21

2 ,Γ =
∫

Γ

∫
Γ

|v(x)−v(y)|2
|x−y|2 dSxdSy. (4.34)

Lemma 4.7. Let (H1)-(H2) be satisfied. Then for any f ∈H
1
2 (Γ1),∥∥∥Ψ̃DL( f )

∥∥∥
H

1
2 (Γ2)
≤α0

(
Cζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖ f ‖

H
1
2 (Γ1)

,

where ζp =1+(d+σ̄) and ζs =1+Z.

Proof. For convenience we denote v= Ψ̃DL( f ). Then from (4.2) and Lemma 4.6 we know
that, for any x∈Γ2,

|v(x)|≤
∣∣∣G̃(x,·)

∣∣∣
W1,∞(Γ1)

‖ f ‖L1(Γ1)
≤α0

(
Cζpe−

1
2 γ0kσ̄+

Ze−Z(L2+d2)

√
Z2+k2

)
‖ f ‖L1(Γ1)

,

|∇v(x)|≤
∣∣∣∇xG̃(x,·)

∣∣∣
W1,∞(Γ1)

‖ f ‖L1(Γ1)
≤α0

(
Cζpe−

1
2 γ0kσ̄+Ze−Z(L2+d2)

)
‖ f ‖L1(Γ1)

.

From (4.34), we deduce that

‖v‖
H

1
2 (Γ2)
≤‖v‖L∞(Γ2)

+|Γ2|‖∇v‖L∞(Γ2)
≤ ε‖ f ‖L1(Γ1)

≤ ε‖ f ‖
H

1
2 (Γ1)

,

where
ε=α0

(
Cζpe−

1
2 γ0kσ̄+(1+Z)e−Z(L2+d2)

)
.

This completes the proof.

Lemma 4.8. Let (H1)-(H2) be satisfied. Then for any λ∈H−
1
2 (Γ1),∥∥∥Ψ̃SL(λ)

∥∥∥
H

1
2 (Γ2)
≤α0

(
Cζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖λ‖

H−
1
2 (Γ1)

.
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Proof. For convenience we denote v= Ψ̃SL(λ). Then from (4.2) and Lemma 4.6 we know
that, for any x∈Γ2,

|v(x)|≤
∥∥∥G̃(x,·)

∥∥∥
H1/2(Γ1)

‖λ‖H−1/2(Γ1)

≤C
(∥∥∥G̃(x,·)

∥∥∥
L∞(Γ1)

+|Γ1|
∣∣∣G̃(x,·)

∣∣∣
W1,∞(Γ1)

)
‖λ‖H−1/2(Γ1)

,

|∇v(x)|≤
∥∥∥∇xG̃(x,·)

∥∥∥
H1/2(Γ1)

‖λ‖H−1/2(Γ1)

≤C
(∥∥∥∇xG̃(x,·)

∥∥∥
L∞(Γ1)

+|Γ1|
∣∣∣∇xG̃(x,·)

∣∣∣
W1,∞(Γ1)

)
‖λ‖H−1/2(Γ1)

.

We complete the proof by using Lemmas 4.5–4.6 and similar arguments as in the proof of
Lemma 4.7.

Theorem 4.1. Let (H1)-(H2) be satisfied. Then for any f ∈H
1
2 (Γ1),

‖E( f )‖
H

1
2 (Γ2)
≤α0

(
Cζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖ f ‖

H
1
2 (Γ1)

.

Proof. This theorem is a direct consequence of Lemmas 4.7–4.8 and the continuity of the
DtN operator T: H1/2(Γ1) 7→H−1/2(Γ1) which is defined by using the scattering problem
(3.7).

Remark 4.3. Theorem 4.1 implies that the solution u of problem (1.1) satisfies

‖ũ‖
H

1
2 (Γ2)

=‖E(u)‖
H

1
2 (Γ2)
≤α0

(
Cζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖u‖

H
1
2 (Γ1)

.

Thus ũ decays exponentially in the PML as we enlarge the thickness of the layer.
Heuristically, from (3.6) we know that, inside the PML, the propagating waves up

decays at the rate α0ζpe−
1
2 γ0kσ̄, the surface waves us decays at the rate α0ζpe−

1
2 γ0kσ̄ in the

horizontal direction but at the rate α0ζse−Z(L2+d2) in the vertical direction.

5 Exponential convergence of the UPML method

Since ũ decays exponentially in the PML, we define the approximation problem by setting
homogeneous Dirichlet boundary condition on the outer boundary:

∇·(A∇û)+α1α2k2û=0 in Ω2, (5.1a)
∂û
∂n
−ikβû= g on Σ2, (5.1b)

û=0 on Γ2, (5.1c)
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where we extend g by zero to Σ∞. The well-posedness of the PML problem (5.1) and the
convergence of the solution û to the solution of the original scattering problem will be
postponed to the end of this section.

A weak formulation of (5.1) reads: Find û∈H1(Ω1) such that

â(û,v)= 〈g,v〉Σp , ∀v∈H1(Ω1), (5.2)

where the bilinear form â: H1(Ω1)×H1(Ω1) 7→C is defined by

â(v,w)=
∫

Ω1

(
∇v·∇w̄−k2vw̄

)
dx−〈T̂v,w̄〉Γ1−ik〈βv,w̄〉Σ1 . (5.3)

The DtN operator T̂: H1/2(Γ1) 7→H−1/2(Γ1) is defined by T̂ f := ∂ŵ
∂n for any f ∈H1/2(Γ1),

where ŵ solves

∇·(A∇ŵ)+α1α2k2ŵ=0 in ΩPML :=Ω2\Ω̄1, (5.4a)
∂ŵ
∂x2

+Zŵ=0 on ΣPML :=Σ∞∩∂ΩPML, (5.4b)

ŵ= f on Γ1, ŵ=0 on Γ2. (5.4c)

The original problem (3.13) and the PML problem (5.2) only differ from the DtN operators
T,T̂. Now we shall study the well-posedness of (5.4) and estimate T− T̂.

Remark 5.1. The boundary conditions in (5.1b)-(5.1c) are compatible at the two points
p±=±(L1+d1,0). In fact, we have

− lim
x∈Σ2

x→p±

(∂û
∂n
−ikβû

)
(x)= lim

x∈Σ2
x→p±

( ∂û
∂x2

+Zû
)
(x)=0= lim

x∈Γ2
x→p±

( ∂û
∂x2

+Zû
)
(x),

where û is assumed to be piecewise smooth such that the above limits make sense.

5.1 The PML equation in the layer

From (3.7), (4.3) and (5.4), for any f ∈H1/2(Γ1), (T−T̂) f = ∂w
∂n , where w solves the bound-

ary value problem of the PML equation in the layer:

∇·(A∇w)+α1α2k2w=0 in ΩPML, (5.5a)
∂w
∂x2

+Zw=0 on ΣPML, (5.5b)

w=0 on Γ1, w=E( f ) on Γ2. (5.5c)

Introduce the bilinear form c: H1(ΩPML)×H1(ΩPML)→C as follows

c(φ,ϕ)=
∫

ΩPML

(
A∇φ·∇ϕ̄−α1α2k2φϕ̄

)
dx−Z〈α1φ, ϕ̄〉ΣPML , ∀φ,ϕ∈H1(ΩPML).
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Then a weak formulation of (5.5) reads: Find w∈H1(ΩPML) such that w=0 on Γ1, w=E( f )
on Γ2 and

c(w,φ)=0, ∀φ∈H1
Γ1∪Γ2

(ΩPML), (5.6)

where H1
Γ1∪Γ2

(ΩPML) is defined similarly as in (3.11).
In the reminder of this paper we make the assumption on the medium property:

(H3) σj(t)≡σ≥1, ∀|t|≥Lj, j=1,2, where σ is a constant.

This assumption is not restrictive in practical applications and allows us to prove
the coercivity of the bilinear form c. The assumption σ≥ 1 is just used to simplify the
constants in the convergence analysis. The following lemma shows that (5.4), (5.5) have
unique solutions and the DtN operator T̂ is well-defined.

Throughout the paper we will use the weighted H1-norm for any Ω⊂R2:

‖|ϕ‖|H1(Ω)=
(
‖∇ϕ‖2

L2(Ω)+‖kϕ‖2
L2(Ω)

)1/2
. (5.7)

Lemma 5.1. Let (H3) be satisfied. Then (5.6) has a unique solution and the bilinear form c(·,·)
satisfies, for any ϕ∈H1

Γ1∪Γ2
(ΩPML),

|c(ϕ,ϕ)|≥ ĈIS

24
‖|ϕ‖|2H1(ΩPML)

, Ĉ−1
IS =σ2(1+Zd+k2d2). (5.8)

Proof. It is clear that ΩPML=Ωc∪Ω1∪Ω2, where

Ωc ={x∈ΩPML : |x1|>L1, x2>L2},
Ω1={x∈ΩPML : |x1|>L1, x2<L2},
Ω2={x∈ΩPML : |x1|<L1, x2>L2}.

Since σ1=σ2=σ in Ωc, σ2=0 in Ω1 and σ1=0 in Ω2, it is easy to check that

Re[c(φ,φ)]=
∥∥∥∥ ∂ϕ

∂x2

∥∥∥∥2

L2(Ω1∪Ωc)

+

∥∥∥∥ ∂ϕ

∂x1

∥∥∥∥2

L2(Ω2∪Ωc)

+
1

1+σ2

2

∑
j=1

∥∥∥∥ ∂ϕ

∂xj

∥∥∥∥2

L2(Ωj)

+σ2‖kϕ‖2
L2(Ωc)

−‖kϕ‖2
L2(ΩPML)

−Z‖ϕ‖2
L2(ΣPML)

, (5.9a)

Im[c(ϕ,ϕ)]
σ

=

∥∥∥∥ ∂ϕ

∂x2

∥∥∥∥2

L2(Ω1)

+

∥∥∥∥ ∂ϕ

∂x1

∥∥∥∥2

L2(Ω2)

− 1
1+σ2

2

∑
j=1

∥∥∥∥ ∂ϕ

∂xj

∥∥∥∥2

L2(Ωj)

−2‖kϕ‖2
L2(Ωc)

−‖kϕ‖2
L2(Ω1∪Ω2)

−Z‖ϕ‖2
L2(ΣPML)

. (5.9b)

Then we observe that, for any γ>0,

Re[c(ϕ,ϕ)]+
γ−1

σ
Im[c(ϕ,ϕ)]

=‖∇ϕ‖2
L2(Ωc)

+γ

∥∥∥∥ ∂ϕ

∂x2

∥∥∥∥2

L2(Ω1)

+γ

∥∥∥∥ ∂ϕ

∂x1

∥∥∥∥2

L2(Ω2)

+
2−γ

1+σ2

2

∑
j=1

∥∥∥∥ ∂ϕ

∂xj

∥∥∥∥2

L2(Ωj)

+(1+σ2−2γ)‖kϕ‖2
L2(Ωc)

−γ‖kϕ‖2
L2(Ω1∪Ω2)

−γZ‖ϕ‖2
L2(ΣPML)

. (5.10)
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Since ϕ=0 on Γ2∪Γ1, from the trace theorem we deduce easily that

‖ϕ‖2
L2(ΣPML)

≤2d
∥∥∥∥ ∂ϕ

∂x2

∥∥∥∥2

L2(Ω1∪Ωc)

, ‖ϕ‖2
L2(Ωj)

≤d2
∥∥∥∥ ∂ϕ

∂xj

∥∥∥∥2

L2(Ωj)

, j=1,2. (5.11)

Substitute the above estimates into (5.10) we obtain

Re[c(ϕ,ϕ)]+
γ−1

σ
Im[c(ϕ,ϕ)]

≥‖∇ϕ‖2
L2(Ωc)

+γ
∥∥∥ ∂ϕ

∂x2

∥∥∥2

L2(Ω1)
+γ
∥∥∥ ∂ϕ

∂x1

∥∥∥2

L2(Ω2)

+
( 2−γ

1+σ2−2γk2d2−2γZd
) 2

∑
j=1

∥∥∥ ∂ϕ

∂xj

∥∥∥2

L2(Ωj)
−2γZd

∥∥∥ ∂ϕ

∂x2

∥∥∥2

L2(Ωc)

+(1+σ2−2γ)‖kϕ‖2
L2(Ωc)

+γ‖kϕ‖2
L2(Ω1∪Ω2)

.

Now taking γ=
[
4+4(k2d2+Zd+1)(1+σ2)

]−1, we have

]
2−γ

1+σ2−2γk2d2−2γZd≥ 1
1+σ2 ≥γ, 1+σ2−2γ≥γ, γZd<

1
4

.

Since 0<γ<1 and σ≥1, we have

2|c(ϕ,ϕ)|≥Re[c(ϕ,ϕ)]+(γ−1)σ−1 Im[c(ϕ,ϕ)]≥γ‖|ϕ‖|2H1(ΩPML)
.

This completes the proof.

5.2 Convergence analysis for the PML method

Now we present the main results of this paper.

Lemma 5.2. Let (H1)-(H3) be satisfied. Then for any f ∈H1/2(Γ1),∥∥(T− T̂) f
∥∥

H−
1
2 (Γ1)
≤CĈ−1

IS σ̄(σ2+dZ)2
(

ζpe−
1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖ f ‖

H
1
2 (Γ1)

.

Proof. Let w be the solution of (5.5) and define

X( f ) :={ζ∈H1(ΩPML) : ζ=0 on Γ1 and ζ=E( f ) on Γ2}.

We claim that there exists a constant C>0 independent of ΩPML such that

inf
ζ∈X( f )

‖|ζ‖|H1(ΩPML)
≤C‖E( f )‖H1/2(Γ2)

. (5.12)

In fact, by the Sobolev extension theorem, we can extend E( f ) by f̃ as follows

f̃ ∈H1/2(Γ̃2
)
, f̃ =E( f ) on Γ2, and ‖ f̃ ‖H1/2(Γ̃2)

≤C‖E( f )‖H1/2(Γ2)
, (5.13)
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where Γ̃2 := ∂B̃2 is the boundary of the box B̃2 := {x ∈R2 : |x1|< L1+d1, |x2|< L2+d2}.
The weighted H

1
2 -norm in (4.34) indicates that the constant C is independent of Γ2. Then

(5.12) follows from (5.13) and the following trace inequality:

inf
ζ∈X( f )

‖|ζ‖|H1(ΩPML)
≤ inf

v∈H1(B̃2)
v= f̃ on Γ̃2,v=0inΩ1

‖|v‖|H1(B̃2)≤C‖ f̃ ‖H1/2(Γ̃2)
.

Since ϕ=w−ζ∈H1
Γ1∪Γ2

(ΩPML) for any ζ∈X( f ), by (5.8) and (5.11), we have

ĈIS‖|w−ζ‖|2H1(ΩPML)
≤24|c(w−ζ,ϕ)|=24|c(ζ,ϕ)|

≤
[
24(1+σ)2+2dZ

]
‖|ζ‖|H1(ΩPML)

‖|ϕ‖|H1(ΩPML)
.

This proves

‖|w‖|H1(ΩPML)
≤CĈ−1

IS (σ2+dZ) inf
ζ∈X( f )

‖|ζ‖|H1(ΩPML)
. (5.14)

Now we test (5.5a) with any ϕ∈H1
Γ2
(ΩPML) and obtain∣∣∣〈∂w

∂n
,ϕ
〉

Γ1

∣∣∣≤|c(w,ϕ)|≤C(σ2+dZ)‖|w‖|H1(ΩPML)
‖|ϕ‖|H1(ΩPML)

, (5.15)

where we have used (5.11) in the second inequality. Thus by (5.12), (5.14) we have

∥∥(T− T̂) f
∥∥

H−1/2(Γ1)
=
∥∥∥∂w

∂n

∥∥∥
H−1/2(Γ1)

≤CĈ−1
IS (σ2+dZ)2‖E( f )‖H1/2(Γ2)

.

We complete the proof by using Theorem 4.1 and (H3).

Theorem 5.1. Let (H1)-(H3) be satisfied and let u be the solution of (1.1). For sufficiently large
σ̄≥ σ̄0, where σ̄0>0 is a constant independent of k and Z, the UPML problem (5.1) has a unique
solution û. Moreover,

‖u−û‖H1(Ω1)
≤CC−1

IS Ĉ−1
IS ζ

(
ζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖û‖H1/2(Γ1)

, (5.16)

where ζ := σ̄(σ2+dZ)2 and C−1
IS , Ĉ−1

IS are respectively the inf-sup constants in (3.14) and (5.8).

Proof. We prove the estimate (5.16) first. Suppose that the solution û of (5.1) exists. By
(3.13) and (5.2), simple integration by parts implies

a(u−û,ϕ)= â(û,ϕ)−a(û,ϕ)= 〈Tû− T̂û,ϕ〉Γ1 , ∀ϕ∈H1
ΓD
(Ω1).

Using (3.14) and Lemma 5.2, we obtain (5.16).
Now we turn to the well-posedness of the UPML problem. By the Fredholm alter-

native theorem we only need to show the uniqueness of û. For that purpose we assume
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(5.1) has a solution û for g= 0. By the uniqueness of the solution of (1.1), we know that
the corresponding scattering solution u=0 in Ω1. Thus (5.16) implies

‖û‖H1(Ω1)
≤CC−1

IS Ĉ−1
IS ζ

(
ζpe−

1
2 γ0kσ̄+ζse−Z(L2+d2)

)
‖û‖H1/2(Γ1)

.

Thus for sufficiently large σ̄ we conclude that û = 0 on Ω1. That û also vanishes in
ΩPML follows from Lemma 5.1 since û satisfies the PML equation (5.4) with homoge-
neous boundary conditions.

Appendix

A Some technical proofs

In this section, we present the proofs for some technical estimates which are used in our
analysis.

Lemma A.1. Let (H1)-(H2) be satisfied. Let ã, b̃, ρ̃, b̃δ and ρ̃δ be defined in (4.5) and (4.8) for
any x∈Γ2, y∈Ω1. Assume b1≤δa1. Then

δσ̄√
2+δ2

≤bδ
2≤21/4δσ̄ and 2−1/4δa1≤bδ

1≤δa1

√
2+δ2.

Proof. Let x̃δ =(x̃1,
√

1+1/δ2 x̃2), ỹδ =(ỹ1,−
√

1+1/δ2ỹ2), then

b̃δ =(b̃2+δ2ρ̃2)1/2=((x̃2+ ỹ2)
2+δ2(x̃1− ỹ1)

2+δ2(x̃2+ ỹ2)
2)1/2 (A.1)

=δ
(
(x̃1− ỹ1)

2+(1+1/δ2)(x̃2+ ỹ2)
2)1/2

=δρ(x̃δ,ỹδ).

Since b1≤δa1, namely, |x2+y2|≤δ|x1−y1|, it is easy to see that b2=0, a2=σ̄ and a1≥d1>0.
By (H2), it is easy to check that σ̄≥2a1. Then

|ρ(x̃δ,ỹδ)|
2=
∣∣(x̃1− ỹ1)

2+(1+1/δ2)(x̃2+ ỹ2)
2∣∣

=
√
(a2

1−σ̄2+(1+1/δ2)b2
1)

2+4(a1σ̄)2

≤
√
(σ̄2−(2+δ2)a2

1)
2+4(a1σ̄)2≤

√
2σ̄2.

By Lemma 4.1 and b1≤δa1, we have

Imρ(x̃δ,ỹδ)≥
|x1−y1|σ̄√

|x1−y1|2+(1+1/δ2)|x2+y2|2
≥ σ̄√

2+δ2
.

From the last two inequalities, we find that

σ̄√
2+δ2

≤ Imρ(x̃δ,ỹδ)≤21/4σ̄. (A.2)
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Note that Reρ(x̃δ,ỹδ)·Imρ(x̃δ,ỹδ)= a1σ̄, we deduce that

2−1/4a1≤Reρ(x̃δ,ỹδ)≤ a1

√
2+δ2. (A.3)

Then the proof is completed by combining (A.2)-(A.3) with (A.1).

Lemma A.2. Let (H1)-(H2) be satisfied. For any x∈Γ2, y∈Ω1, define

ξ=
k
ρ̃δ
(ãt−ib̃δ

√
t2−1), ∀t∈ [1,∞).

If b1≤δa1, then Imξ<0 for all t≥
√

2.

Proof. From the definition, it is easy to see that

Imξ=
k

|ρ̃δ|2
[t(ρδ

1a2−ρδ
2a1)−t′(ρδ

1bδ
1+ρδ

2bδ
2)].

For ρδ
1a2≤ρδ

2a1, using Lemma A.1 and (4.10), we have for t≥
√

2,

Imξ≤− k

|ρ̃δ|2
t′(ρδ

1bδ
1+ρδ

2bδ
2)≤−

k

|ρ̃δ|2
δσ̄√
2+δ2

√
1+δ2γ0σ̄<0.

For ρδ
1a2>ρδ

2a1, we write

|ρ̃δ|2

kt
Imξ=M1−M2,

with M1=ρδ
1a2 and

M2=ρδ
2a1+

t′

t
(ρδ

1bδ
1+ρδ

2bδ
2).

Obviously, M1>0 and M2>0.
Noting that (t′)2/t2≥1/2 for t≥

√
2, we have

2(M2
1−M2

2)≤2
[
(ρδ

1)
2a2

2−(ρδ
2)

2a2
1−

1
2

(
(ρδ

1)
2(bδ

1)
2+(ρδ

2)
2(bδ

2)
2
)]

=|ã|2Reρ̃2
δ−|ρ̃δ|2Re ã2− 1

2
(|ρ̃δ|2|b̃δ|2+Reρ̃2

δ Reb̃2
δ)

≤|ρ̃δ|2Reb̃2
δ−|b̃δ|2Reρ̃2

δ−
1
2
(|ρ̃δ|2|b̃δ|2+Reρ̃2

δ Reb̃2
δ)

≤1
2
|ρ̃δ|2|b̃δ|2−

1
2

Reb̃2
δ(Reρ̃2

δ−2|ρ̃δ|2)

≤1
2
|ρ̃δ|2(|b̃δ|2+2Reb̃2

δ).
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Using Lemma A.1 and (H2),

|b̃δ|2+2Reb̃2
δ =(bδ

1)
2+(bδ

2)
2+2[(bδ

1)
2−(bδ

2)
2]=3(bδ

1)
2−(bδ

2)
2<0.

Thus

2(M2
1−M2

2)≤
1
2
|ρ̃δ|2(|b̃δ|2+2Reb̃2

δ)<0.

Therefore,

|ρ̃δ|2

kt
(M1+M2)Imξ=M2

1−M2
2 <0.

The proof is completed.

The purpose of the following lemma is to prove inequality (4.19) in Lemma 4.4.

Lemma A.3. Let the assumptions in Lemma 4.4 be satisfied and let f (t) be defined by (4.18),
namely,

f (t)=−i
(

µ+(t)
Z+iµ+(t)

+
µ−(t)

Z+iµ−(t)

)
.

Then

| f (t)|≤1+Cσ̄(d+σ̄). (A.4)

Proof. For convenience we denote t′=
√

t2−1 for any t≥1. From (4.12) and (4.6), we have

|ρ̃|·|Z+iµ+|=|Zρ̃+ikb̃t+kãt′|
=|Zρ1+iZρ2+ikb1t−kb2t+ka1t′+ika2t′|
≥Zρ2+kb1t+ka2t′≥Zγ0σ̄. (A.5)

Next we estimate |ρ̃|·|Z+iµ−|. Note that

|ρ̃|·|Z+iµ−|= |Zρ̃+ikb̃t−kãt′|
=|Zρ1−kb2t−ka1t′+i(Zρ2+kb1t−ka2t′)|. (A.6)

Let Γ2,‖ be the part of Γ2 parallel to the horizontal direction and Γ2,⊥ be the part of Γ2
perpendicular to the horizontal direction, respectively.

For any x∈Γ2,‖, we have b2= σ̄. By (4.7) and (H2), we have

|ρ̃|·|Z+iµ−|≥|kb2t+ka1t′−Zρ1|

≥kσ̄−Z
√
(2L1+d1)2+(2L2+d2)2 (A.7)

≥kσ̄/3.
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For any x∈Γ2,⊥, we have a2 = σ̄. Let Zρ2+kb1t−ka2t′=0, then t′= Zρ2+kb1t
ka2

. Insert it into
(A.6) to get

|ρ̃|·|Z+iµ−|=
∣∣Zρ1−kb2t−ka1t′

∣∣= ∣∣∣∣kt
(

b2+
a1

a2
b1

)
−Z

(
ρ1−

a1

a2
ρ2

)∣∣∣∣. (A.8)

In the following, we prove that
∣∣∣Z(ρ1− a1

a2
ρ2)
∣∣∣ is much smaller than kt(b2+

a1
a2

b1), so there
exists a positive lower bound of |ρ̃|·|Z+iµ−|. We shall consider two cases.

Case 1. Suppose Z
k

√
a2

1+b2
1≤b2≤ σ̄. Then

kt
(

b2+
a1

a2
b1

)
≥ kb2+k

a1

a2
b1≥Z

√
a2

1+b2
1+k

a1

a2
b1. (A.9)

From (4.6) and (4.7), it is easy to see that

Z
(

ρ1−
a1

a2
ρ2

)
≤Z

√
a2

1+b2
1−Zd1γ0, (A.10)

where we have used that a1= |x1−y1|≥d1 and a2= σ̄ on Γ2,⊥.
Inserting (A.9) and (A.10) into (A.8), we obtain

|ρ̃|·|Z+iµ−|≥ k
a1

a2
b1+Zd1γ0≥Zd1γ0. (A.11)

Case 2. Suppose 0≤b2<
Z
k

√
a2

1+b2
1. Note that

Z
(

ρ1−
a1

a2
ρ2

)
=

Z(a2ρ1−a1ρ2)

a2
=

Z(a2
2ρ2

1−a2
1ρ2

2)

a2(a1ρ2+a2ρ1)
. (A.12)

Direct computations yield that

a2
2ρ2

1−a2
1ρ2

2=a2
2(|ρ̃2|+Reρ̃2)/2−a2

1(|ρ̃2|−Reρ̃2)/2

=
1
2
[|ρ̃2|(a2

2−a2
1)+Reρ̃2(a2

1+a2
2)]

=
1
2
(a2

2−a2
1)

2(|Reρ̃2|2+|Imρ̃2|2)−(a2
1+a2

2)
2|Reρ̃2|2

|ρ̃2|(a2
2−a2

1)+|Reρ̃2|(a2
1+a2

2)
=

D
H

,

where D := 2(a2
2b2

2−a2
1b2

1)(a2
2b2

1−a2
1b2

2)+4a1a2(a2
2−a2

1)(a2b1−a1b2)(a1b1+a2b2) and H :=
|ρ̃2|(a2

2−a2
1)+|Reρ̃2|(a2

1+a2
2).

Using a2= σ̄, b1>δa1, (4.6) and (H2), we deduce that

H= |ρ̃2|(a2
2−a2

1)+|Reρ̃2|(a2
1+a2

2)≥γ2
0σ̄4/2,

|D|≤2a4
2b2

1b2
2+2a2

1a2
2b4

1+4a1a4
2b1(a1b1+a2b2).



X. Jiang and X. J. Li / Adv. Appl. Math. Mech., 12 (2020), pp. 101-140 135

Using the above estimates, we obtain

∣∣a2
2ρ2

1−a2
1ρ2

2
∣∣= ∣∣∣∣DH

∣∣∣∣≤ 4b2
1b2

2+4b4
1+8a2

1b2
1+8a1a2b1b2

γ2
0

. (A.13)

Substituting (A.13) into (A.12) yields∣∣∣∣Z(ρ1−
a1

a2
ρ2

)∣∣∣∣≤ Z(4b2
1b2

2+4b4
1+8a2

1b2
1+8a1a2b1b2)

a1γ3
0σ̄2

.

Then from (H2), b1>δa1 and a1≥d1, we find that for any x∈Γ2,⊥,

|ρ̃|·|Z+iµ−|≥kt
(

b2+
a1

a2
b1

)
−
∣∣∣∣Z(ρ1−

a1

a2
ρ2

)∣∣∣∣
≥ Z

a1γ3
0σ̄2

(
k
Z

γ3
0σ̄a1(a1b1+a2b2)−(4b2

1b2
2+4b4

1+8a2
1b2

1+8a1a2b1b2)

)
≥ ka1b1

9σ̄
+

kb2

9
≥ kδd2

1
9σ̄

.

Finally, from (A.5), (A.7), (A.11) and (A.14), we conclude that∣∣∣∣ µ±(t)
Z+iµ±(t)

∣∣∣∣≤1+
∣∣∣∣ Z
Z+iµ±(t)

∣∣∣∣≤1+Cσ̄|ρ̃|≤1+Cσ̄(d+σ̄).

Then the proof is completed.

Lemma A.4. Let the assumptions in Lemma 4.5 be satisfied and let ξ±(t) be defined by (4.11).
Then ∣∣∣∣ 1

Z+iµ(ξ±(t))

∣∣∣∣≤C(d+σ̄). (A.14)

Proof. From (4.10) and (4.12), we find that

|ρ̃δ|·|Z+iµ+|=|Zρ̃δ+ikb̃δt+kãt′|
=|Zρδ

1+iZρδ
2+ikbδ

1t−kbδ
2t+ka1t′+ika2t′|

≥Zρδ
2+kbδ

1t+ka2t′≥Z
√

1+δ2γ0σ̄. (A.15)

Now we estimate |ρ̃δ|·|Z+iµ−|. Note that

|ρ̃δ|·|Z+iµ−|=|Zρ̃δ+ikb̃δt−kãt′|
=|Zρδ

1−kbδ
2t−ka1t′+i(Zρδ

2+kbδ
1t−ka2t′)|. (A.16)

Since b1≤δa1, by (H2), it is easy to see that x∈Γ2,⊥ and

b2=0, a2= σ̄, a1≥d1. (A.17)
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Using (H2), (A.17) and Lemma A.1, by arguments similar to Case 2 in Lemma A.3 and
careful calculations, we find that∣∣∣∣Z(ρδ

1−
a1

a2
ρδ

2

)∣∣∣∣≤ 4Z
a1γ3

0σ̄6

(
a4

2(b
δ
1)

2(bδ
2)

2+a2
1a2

2(b
δ
2)

4+2a2
1a4

2(b
δ
1)

2 (A.18)

+2a1a5
2bδ

1bδ
2+2a3

1a3
2bδ

1bδ
2+2a2

1a4
2(b

δ
2)

2
)
≤ 32Za1δ2

γ3
0

.

From (H2), it is easy to see that k
Z γ3

0σ̄≥9a1. Then using Lemma A.1 and (A.18), by careful
calculations and arrangements, we deduce that

|ρ̃δ|·|Z+iµ−|≥kt
(

bδ
2+

a1

a2
bδ

1

)
−
∣∣∣∣Z(ρδ

1−
a1

a2
ρδ

2

)∣∣∣∣
≥ Zδ

γ3
0

√
2+δ2

(
k
Z

γ3
0σ̄−32a1δ

√
2+δ2

)
≥ Zδd1

γ3
0

. (A.19)

From (A.15) and (A.19), it yields that∣∣∣∣ 1
Z+iµ±(t)

∣∣∣∣≤C |ρ̃δ|≤C(d+σ̄).

Then the proof is completed.

Lemma A.5. Let the assumptions in Lemma 4.5 be satisfied. Then∣∣∣∣ 1
µ(ξ(t))

∣∣∣∣≤C,
∣∣∣∣ 1
Z+iµ(ξ(t))

∣∣∣∣≤C,

where ξ(t)= kt+ξ0 and ξ0= ξ−(
√

2)= k
ρ̃δ
(
√

2ã−ib̃δ).

Proof. From the definition, it is easy to see that

ξ0=
k
ρ̃δ
(
√

2ã−ib̃δ)=
k
|ρ̃δ|2

(ρδ
1−iρδ

2)[
√

2(a1+ia2)−i(bδ
1+ibδ

2)]

=
k
|ρ̃δ|2

[
ρδ

1(
√

2a1+bδ
2)+ρδ

2(
√

2a2−bδ
1)+i

(
ρδ

1(
√

2a2−bδ
1)−ρδ

2(
√

2a1+bδ
2)
)]

.

From the assumptions in Lemma 4.5, a2= σ̄ and b2=0. Then using (H2),

|ρ̃δ|2=(1+δ2)|ρ̃|2=(1+δ2)
√
(a2

1−a2
2+b2

1−b2
2)

2+4(a1a2+b1b2)2

=(1+δ2)
√
(a2

2−a2
1−b2

1)
2+4a2

1a2
2≤
√

2(1+δ2)σ̄2. (A.20)
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Thus by (4.9), (4.10) and Lemma A.1, we find that

Reξ≥Reξ0=
k
|ρ̃δ|2

[ρδ
1(
√

2a1+bδ
2)+ρδ

2(
√

2a2−bδ
1)]

>
k

(1+δ2)
√

2σ̄2

[√
1+δ2 γ0σ̄

(√
2σ̄−δ

√
2+δ2 σ̄/2

)]
>

kγ0

2
√

1+δ2
, (A.21)

where we have used that δ<γ2
0/20<1/2.

By arguments similar to (A.18), we get

∣∣∣ρδ
2a1−ρδ

1a2

∣∣∣= ∣∣∣∣∣ (ρδ
2)

2a2
1−(ρδ

1)
2a2

2

ρδ
2a1+ρδ

1a2

∣∣∣∣∣≤ 32a1δ2

γ3
0σ̄

.

Then by (H2), (A.20) and Lemma A.1,

|Imξ|= |Imξ0|=
1
|ρ̃δ|2

∣∣∣ρδ
2(
√

2a1+bδ
2)−ρδ

1(
√

2a2−bδ
1)
∣∣∣

≥ 1
(1+δ2)2σ̄2

(
γ0σ̄

δσ̄√
2+δ2

− 32a1δ2

γ3
0σ̄

)
≥ γ0δ

6(1+δ2)
. (A.22)

Using (A.21) and (A.22), it is easy to see that

∣∣Imξ2∣∣= |2Reξ ·Imξ|≥
kγ2

0δ

6(
√

1+δ2)3
. (A.23)

By (A.23), we derive that

∣∣µ2∣∣= ∣∣k2−ξ2∣∣≥ ∣∣Imξ2∣∣≥ kγ2
0δ

6(
√

1+δ2)3
.

Then there exists a constant C>0 only depending on k such that∣∣∣∣ 1
µ(ξ(t))

∣∣∣∣≤C.

Now we estimate
∣∣∣ 1

Z+iµ

∣∣∣. Using (A.23), we have∣∣∣∣ 1
Z+iµ

∣∣∣∣= ∣∣∣∣ Z−iµ
Z2+µ2

∣∣∣∣= ∣∣∣∣ Z−iµ
Z2+k2−ξ2

∣∣∣∣≤ ∣∣∣∣Z−iµ
Imξ2

∣∣∣∣≤CZ+

∣∣∣∣ µ

Imξ2

∣∣∣∣. (A.24)
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Noting that∣∣∣∣ µ

Imξ2

∣∣∣∣2=
∣∣k2−ξ2

∣∣
|Imξ2|2

≤C+

∣∣ξ2
∣∣

|Imξ2|2
≤C+

√
(Reξ2)2+(Imξ2)2

|Imξ2|2
≤C+

∣∣Reξ2
∣∣

|Imξ2|2
.

Inserting Reξ2=k2t2+2ktReξ0+Reξ2
0 and Imξ2=2ktImξ0+Imξ2

0 into the last inequality,
we have for some constant T0>0, if t≤T0,∣∣∣∣ µ

Imξ2

∣∣∣∣2≤C+

∣∣Reξ2
∣∣

|Imξ2|2
≤C+

k2T2
0 +2kT0|Reξ0|+|Reξ2

0|
(Imξ2

0)
2

≤C, (A.25)

and if t>T0, ∣∣∣∣ µ

Imξ2

∣∣∣∣2≤C+

∣∣Reξ2
∣∣

|Imξ2|2
≤C+

k2t2+2kt|Reξ0|+|Reξ2
0|

4k2t2(Imξ0)2 ≤C. (A.26)

Here we have used that Reξ0 > 0 induced by (A.21), then Imξ0 and Imξ2
0 = 2Reξ0 Imξ0

have the same sign.
By taking the square root of (A.25) and (A.26), and inserting them into (A.24), we

obtain ∣∣∣∣ 1
Z+iµ

∣∣∣∣≤CZ+

∣∣∣∣ µ

Imξ2

∣∣∣∣≤C,

where C>0 is a constant only depending on k and Z. The proof is completed.
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