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Abstract

In order to effectively solve the low precision problem of the single gravity density inver-

sion and the magnetic susceptibility inversion, and the limitation of the gravity-magnetic

joint inversion method based on the petrophysical parameter constraint, this paper studies

the three-dimensional gravity-magnetic cross-gradient joint inversion based on the struc-

tural coupling and the fast optimization algorithm. Based on the forward and inversion

modeling of three-dimensional gravity density and three-dimensional magnetic susceptibil-

ity using the same underground grid, along with cross-gradient coupling as the structural

constraint, we propose a new gravity-magnetic joint inversion objective function including

the data fitting term, the total variation regularization constraint term and the cross-

gradient term induced by the structural coupling. The depth weighted constraint and the

data weighting constraint are included into the objective function, which requires different

physical property models to minimize their respective data residuals. At the same time,

the cross-gradient term tends to zero, so that the structure of the gravity and magnet-

ic models tends to be consistent. In realization, we address a fast and efficient gradient

algorithm to iteratively solve the objective function. We apply this new joint inversion

algorithm to the 3D gravity-magnetic model inversion test and compare it with the results

of a single inversion algorithm. The experimental tests of synthetic data indicate that

the gravity-magnetic cross-gradient joint inversion method can effectively improve the ac-

curacy of the anomaly position and numerical accuracy of the inverted anomaly physical

parameters compared with the single physical inversion method.

Mathematics subject classification: 86-08, 65J20, 65K10.
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1. Introduction

Gravimetric and magnetic explorations are two effective methods in geophysical exploration.

Both methods are volume exploration and can be performed quickly and economically. The

gravimetric method is widely used to dig out about the deep structure of the earth, to divide the

structural units, and to detect minerals. The magnetic method also plays an important role in

many aspects, a typical application is to find non-ferrous metal minerals. In the gravimetric and

magnetic exploration, it is necessary to invert the distribution of the underground anomalies
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according to the data to guide the follow-up work reasonably and effectively. Advances in the

gravimetric and magnetic techniques play a crucial role in the exploration technology, as the in-

version results can indicate important information such as the distribution of subsurface density

(or susceptibility) and the shape of the model. However, the geophysical exploration targets

which we are facing are much more complicated and difficult than before (such as complex

surface conditions and underground structures), making it difficult to obtain high-quality data

from geophysical methods such as gravity strategies [31]. In addition, different geophysical ex-

ploration methods have their own properties for the imaging of media underground. Especially

for the gravimetric and magnetic exploration, the most important problem for the inversion of

the field data is the inherent ill-posedness [19,20]. There are many reasons for the ill-posedness

of the inverse problem, including: different anomalous bodies can correspond to the same ob-

servation data, insufficient observation data, environmental interference and observation errors

caused by limited instrument accuracy [19,20]. To reduce the ill-posedness of the inverse prob-

lem and improve the accuracy of inversion results, joint inversion method become a tendency in

geophysics [7, 8, 12, 14, 23]. Joint inversion methods, which comprehensively using the informa-

tion obtained by various exploration methods, can effectively depict the underground geological

structure.

The joint inversion strategy between different physical parameters can be divided into two

categories. One is the coupling method of petrophysical parameters, which is a joint inversion

by establishing an empirical relationship between two or more physical parameters [18]. For

example, based on the empirical relationship between density and velocity, Jegen et al. in

[18] developed a joint inversion method for gravity, magnetism, and seismology. However,

in most cases, the empirical relationship between these physical parameters depends on the

specific geological conditions; therefore, the limitations of this kind of method are relatively

strong. The other type of method belongs to the model structure coupling method, which

performs joint inversion by finding the structural consistency of two or more physical models

[6, 15, 22, 26, 27]. Among the joint inversion methods, the representative method is the cross-

gradient joint inversion method based on the structural coupling proposed by Gallardo and

Meju in [7,8]. This method achieved satisfactory results in the joint inversion of seismic travel

time and direct current (DC) resistivity method. This approach is to make their structures tend

to be consistent by the cross-gradient values between the models tending to zero. This method

neither depends on the empirical relationship between physical parameters, nor on specific

geological conditions, and has received extensive attention [4,10,12,14,23,25,35]. For example,

Moorkamp et al. in [23] proposed a joint inversion framework for three-dimensional MT, gravity

and seismic refraction data based on cross-gradients; Abubakar et al. in [1] combined cross-

gradient method with petrophysical method to realize surface wave and magnetotelluric joint

inversion; Fregoso et al. in [5] combined Euler deconvolution with cross-gradient and applied it

to gravity-magnetic joint inversion, which achieved good results; Gao et al. in [13] developed

an efficient 3D seismic travel time and DC resistivity joint inversion strategy based on the

cross-gradient structure constraint, their synthetic model tests showed that the joint inversion

imaging results improve the resolution of the solution compared with single physical property

imaging.

In order to effectively solve the problem of the low precision of the single physical property

imaging method, e.g., the gravity inversion or the magnetic susceptibility inversion, and the

limitation of the gravity-magnetic joint inversion method based on the petrophysical parameter

constraint, in this paper, a three-dimensional gravity-magnetic cross-gradient joint inversion
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strategy based on the structural coupling theory is studied. Based on the forward and inversion

of the three-dimensional gravity density and three-dimensional magnetic susceptibility, and

the united mesh grid underground, together with the cross-gradient coupling as the structural

constraint, we propose a new gravity-magnetic joint inversion scheme, which includes the data

fitting term, the total variation regularization constraint term and the cross-gradient term. To

locate the anomaly position correctly, the depth weighted constraint and the data weighting

constraint are added to the objective function, which requires different physical parameter

models to minimize their residuals of the simulated data to the measurement data. Meanwhile,

as the cross-gradient term tends to zero, the structure of the gravity and magnetic models tends

to be consistent. In solving methodology, we apply an efficient gradient descent algorithm to

iteratively solve the minimization of the objective function. We give comparison of the two-

dimensional and three-dimensional joint inversion of gravity-magnetic models and the single

inversion scheme. The experimental tests indicate that the gravity-magnetic cross-gradient

joint inversion method can effectively improve the accuracy of the depth position and numerical

precision of the inverted anomaly comparing with the single physical inversion method.

2. Forward and Inverse Problems of Single Gravity and Magnetism

2.1. Forward and inverse problems of gravity

According to the law of universal gravitation, we calculate the gravity anomaly which gen-

erated by geological bodies beneath the ground at a certain point on the surface or in the air.

First, we calculate the gravitational potential generated by the residual mass of the geological

body at the measuring point, and then we calculate the gravity anomaly which is the first

derivative of the gravitational potential along the direction of gravity. We create a Cartesian

coordinate system and we take a point O on the ground as the coordinate origin, the Z axis is

vertically downward, and X axis and Y axis compose the horizontal plane. We assume that the

residual density of the abnormal body is σ, and the volume element in the abnormal body is

dv = dξdηdζ which has a coordinate (ξ, η, ζ), then the residual mass of every volume element is

dm = σdξdηdζ. Now, we need to calculate the gravity anomaly at the point A with coordinates

(x,y,z), and the distance from the residual mass dm to point A is

r =
[

(ξ − x)
2
+ (η − y)

2
+ (ζ − z)

2
]1/2

,

and the gravitational potential V (x, y, z) generated by the residual mass of the abnormal body

and measured at the point A is:

V (x, y, z) = λ

∫∫∫

v

σdξdηdζ

[(ξ − x)
2
+ (η − y)

2
+ (ζ − z)

2
]
1/2

, (2.1)

where λ is the gravitational parameter.

Since the Z axis direction is consistent with the direction of gravity, the first derivative of

the gravitational potential of the residual mass along the Z direction is the gravity anomaly:

∆g =
∂V

∂z
= Vz = λ

∫∫∫

v

σ(ζ − z)dξdηdζ

[(ξ − x)
2
+ (η − y)

2
+ (ζ − z)

2
]
3/2

=λ

∫∫∫

v

σ(ζ − z)

r3
dξdηdζ. (2.2)



Three-dimensional Gravity-magnetic Cross-gradient Joint Inversion 761

The formulation (2.2) can be written in simplified form as a compact form:

d1 = G1m1, (2.3)

where G1 is the integral operator maps the parameter m1 from model space to observation

space, the kernel function can be written as

G1 = λ
ζ − Z

[(ξ − x)
2
+ (η − y)

2
+ (ζ − z)

2
]
3/2

= λ
ζ − Z

r3
,

for simplicity of notation, we still use G1 to represent the kernel function, d1 is the gravity

anomaly and the parameter m1 is the residual density.

For the single gravity density inversion problem, we calculate the residual density value

by minimizing the residual between the observed data and the theoretical value of the gravity

anomaly. However, a principal difficulty with the inversion of gravity data (also for magnetic

data) is the inherent nonuniqueness that exists in any geophysical method based upon a static

potential field. Meanwhile, the gravity and magnetic methods have a relatively high resolution

in the lateral direction, but its longitudinal resolution is weak. To overcome these difficulties, we

have to introduce prior information into the inversion so that a unique solution is obtained [20].

Generally, we need to solve a least-squares problem. However, due to the ill-posedness of

the gravity (and magnetic) inversion problem, the calculation result is unstable [28–30]. To

solve this problem, we add regularization constraints in the objective function to reduce the

ill-posedness during the calculation. There are two main types of regularization constraints

used in the calculation of the potential field inversion. One is the smooth constraint regular-

ization defined by the smooth norm, such as the L2 norm; the other is non-smooth constrained

regularization defined by non-smooth norm such as L1 norm, total variation (TV) norm, and so

forth. Both types of regularization constraints have their own advantages and disadvantages.

If the inversion object is smooth, the Tikhonov smooth constrained regularization model

defined by L2 norm can be established. The objective function is defined as:

ϕTikh
g = 1/2

∥

∥

∥
W

1/2

d ·
(

G1 ·m1 − dobs1

)

∥

∥

∥

2

2
+ α1/2 ‖Wz ·m1‖

2

2 , (2.4)

where dobs1 is the observed gravemetric field anomaly, α1 > 0 is the regularization parameter,

Wd and Wz are the data and model weighting matrices, respectively; meanwhile, Wz is only

related with depth z.

The other formulation is the Tikhonov non-smooth constrained regularization model defined

by non-smooth norm. In the gravity inversion problem, the model is often piecewise constant

or piecewise continuous, and non-smooth regularization constraints have advantages for dealing

with this type of problem and the boundary of the model can be depicted more clearly. The

TV norm model is used here, and the objective function is defined as:

ϕTV
g = 1/2

∥

∥

∥W
1/2

d ·
(

G1 ·m1 − dobs1

)

∥

∥

∥

2

2
+ α̃1

∫

V

|∇m1(r)|dv, (2.5)

where ∇ is the differential operator, α̃1 > 0 is the regularization parameter. Considering the

model weighting factor, the formulation (2.5) is further changed to the following form

ϕg = 1/2

∥

∥

∥W
1/2

d ·
(

G1 ·m1 − dobs1

)

∥

∥

∥

2

2
+ α1/2 ‖Wz ·m1‖

2

2 + α̃1

∫

V

|∇m1(r)|dv. (2.6)
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In (2.6), the TV stabilizing functional can be approximated by wςTV(r) =

√

|m1(r)|
2
+ ς2,

where ς is a small constant number.

Total variation norm used in this formulation aims to keep edge structure of the anomaly.

The total variation term tries to punish oscillation on the boundary by “the norm of the gradi-

ent”. The parameter ς is set to be 0.001 during calculations. Instead of keeping edge structure,

if we consider “sparsity” of anomalies, the Huber function which yields the “Huber norm” [30],

can be considered as a hybrid l1-l2 error measure that is robust to outliers. Therefore, in con-

sideration of the “sparsity”, we believe that the Huber function may be a surrogate of the TV

term for proper values of the parameter ς , since it is good in dealing with “outliers”, and it will

be our next stage of study.

Considering the fact that the potential field function decays rapidly with increasing of the

depth, the inversion results tend to be concentrated near the surface; this may lead to the low

vertical resolution and the inaccurate inversion results. Here, the depth weighting function

proposed by Li et al. in [19] is added to offset the effect of the fast decay of the potential field

function as the depth increases. The depth weighting function is defined as:

w (z) =
1

(z + z0)
β/2

, (2.7)

where z is the buried depth of the center point of the block unit, z0 and β are constants.

Meanwhile, we consider that the potential field function also has the characteristic of rapid

attenuation with the increase of horizontal relative distance. In order to improve the stability

of the calculation, we add the data weighting function to the data fitting term of the objective

function [24]. The data weighting function is defined as:

W
1/2

d = diag





√

∑

i

(

G−1
ji

)2



 . (2.8)

To perform a gravity inversion, two steps are required: (1) we first mesh the model area and

carry out the forward simulation calculation of gravity anomaly; (2) we develop some efficient

optimization methods for solving the minimization problem.

2.2. Forward and inverse problems of magnetism

In our research, we assume that the effects of remanence and demagnetization are ignored,

only the homogeneous uniform magnetization phenomenon is considered. According to the basic

theory of the magnetic field, the relationship between the magnetization M and the external

magnetic field strength H can be expressed as:

M = κH, (2.9)

where H represents the background magnetic field and κ is the magnetic susceptibility.

According to the relationship between the magnetic field strength and the magnetic induc-

tion, the relationship between the magnetic potential U(rp) and the magnetic susceptibility κ

can be expressed as the form of the first type of Fredholm integral equation:

U(rp) =
1

4π

∫

v

κ ·H · ∇Q

(

1

rP − rQ

)

dv =
1

4π

∫

v

κ ·H · ∇Q
1

r
dv, (2.10)
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where v is the target area with a magnetic anomaly, rP and rQ represent the position of the

subsurface and observation point, respectively. We create the same coordinate system as is in

the gravity calculation before. The volume element in the abnormal body is dv = dξdηdζwhich

has a coordinate (ξ, η, ζ), and the observation point has a coordinate (x,y,z). And in (2.10), r

is defined the same meaning as before, i.e.,

r = rP − rQ =
[

(ξ − x)
2
+ (η − y)

2
+ (ζ − z)

2
]1/2

.

According to the magnetic potential formula (2.10), the magnetic anomaly of the geological

body underground is the first derivative of U(rP ). And it can be further expressed in the

operator form

d2 = G2m2, (2.11)

where d2 is the magnetic field anomaly, G2 is the integral operator acts as a mapping from

parameter (model) space to the observation space, again as in the gravimetric forward formula-

tion, the operator G2 is characterized by a kernel function and m2 is the magnetic susceptibility.

For simplicity of notation, we still denote the kernel function as G2 which is expressed in the

form:

G2 = Gx cos I cosA+Gy cos I sinA+Gz sin I, (2.12)

and the functions Gx, Gy and Gz have the following forms, respectively:

Gx =
µ0

4π

∫

ν

1

r5

{

Hx

[

2(x− ξ)2 − (y − η)2 − (z − ζ)2
]

+Hy3(x− ξ)(y − η) +Hz3(x− ξ)(z − ζ)
}

dν,

Gy =
µ0

4π

∫

ν

1

r5

{

Hy

[

2(y − η)2 − (x− ξ)2 − (z − ζ)2
]

+Hx3(x− ξ)(y − η) +Hz3(y − η)(z − ζ)
}

dν,

Gz =
µ0

4π

∫

ν

1

r5

{

Hz

[

2(z − ζ)2 − (x− ξ)2 − (y − η)2
]

+Hx3(x− ξ)(z − ζ) +Hy3(y − η)(z − ζ)
}

dν.

(2.13)

In which, µ0 is the vacuum permeability, Hx, Hy, and Hz represent the components of the

Earth’s background magnetic field strength in the three directions of x, y and z, respectively. In

(2.12), the parameter I represents the magnetic dip and A represents the magnetic declination.

Considering the individual magnetic susceptibility inversion problem, similar to the gravity

inversion, two inversion models can be established. One is the Tikhonov smooth constrained

regularization model defined by L2 norm:

ϕTikh
m = 1/2

∥

∥

∥W
1/2

d ·
(

G2 ·m2 − dobs2

)

∥

∥

∥

2

2
+ α2/2 ‖Wz ·m2‖

2

2 , (2.14)

where α2 > 0 is the regularization parameter, Wd and Wz are the data and model weighting

matrices, respectively.

For the magnetic inversion problem, considering irregular shape of the anomaly, the non-

smooth constrained regularization model can be applied. The TV-norm constrained model is

again used here. The objective function is defined as:

ϕTV
m = 1/2

∥

∥

∥W
1/2

d ·
(

G2 ·m2 − dobs2

)

∥

∥

∥

2

2
+ α̃2

∫

V

|∇m2(r)|dv, (2.15)

where dobs2 is the observed magnetic field anomaly, α̃2 > 0 is the regularization parameter and

∇ is the differential operator. Considering the model weighting factor, the above formulation
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is changed as the following form

ϕm = 1/2

∥

∥

∥W
1/2

d ·
(

G2 ·m2 − dobs2

)

∥

∥

∥

2

2
+ α2/2 ‖Wz ·m2‖

2

2 + α̃1

∫

V

|∇m2(r)|dv. (2.16)

Similarly, in (2.16), the TV stabilizing functional can be approximated by

wςTV(r) =

√

|m2(r)|
2 + ς2,

where ς is a small constant number.

To perform a magnetic inversion, two steps are required similarly as the gravity inversion

mentioned before: (1) we first mesh the target area and carry out the forward simulation of

the magnetic field anomaly; (2) we use the same efficient optimization methods as that in the

gravity inversion for finding an optimal solution.

3. Joint Inversion of Gravity and Magnetism Based on Cross-gradient

Constraint

3.1. Cross-gradient formulation

The cross-gradient function was first proposed by [3] and was subsequently widely used in

magnetotelluric data, DC data and seismic data, and gravity-magnetic joint inversion [4, 7–9,

11, 14, 16, 17, 21, 23].

The three-dimensional cross gradient function is defined as:

~t(m1,m2) := ~t (x, y, z) = ∇m1 (x, y, z)×∇m2 (x, y, z) . (3.1)

In the above formula, ∇ is the gradient operator,m1 andm2 represent density and susceptibility

parameters involved in the gravity-magnetic joint inversion, respectively. The cross-gradients

criterion requires the problem to satisfy the condition
−→
t (m) = 0 (m = (m1,m2)), where

any spatial changes occurring in both density and susceptibility must point in the same or

opposite direction irrespective of the amplitude. In a geological sense, this implies that if a

boundary exists, then it must be sensed by both methods in a common orientation regardless

of the amplitude of the physical property changes [6]. Taking the three-dimensional case as an

example, the ~t can be expanded in three directions:

tx =
∂m1

∂y
·
∂m2

∂z
−

∂m1

∂z
·
∂m2

∂y
, (3.2a)

ty =
∂m1

∂z
·
∂m2

∂x
−

∂m1

∂x
·
∂m2

∂z
, (3.2b)

tz =
∂m1

∂x
·
∂m2

∂y
−

∂m1

∂y
·
∂m2

∂x
. (3.2c)

In the case of a two-dimensional model, the partial derivative of the model with respect to

y-axis direction vanishes, and the two-dimensional cross-gradient function is defined as:

~t(m1,m2) := ~t (x, y) = ∇m1(x, y)×∇m2(x, y). (3.3)

In this situation, the expansion of ~t has only ty remained.

The definition of the above cross-gradient function is a continuous form. In the practical

inversion calculation, it needs to be discretized. In this paper, we use the finite difference
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X
X

Y
YZ

Z

Fig. 3.1. Three-dimensional space meshing diagram underground.

method to discretize the cross-gradient function based on a seven-point central stencil. For the

3D subsurface grid, as shown in Fig. 3.1, the discrete form is as follows:

tx =
m1(i, j + 1, k)−m1(i, j − 1, k)

2∆y
×

m2(i, j, k + 1)−m2(i, j, k − 1)

2∆z

−

m1(i, j, k + 1)−m1(i, j, k − 1)

2∆z
×

m2(i, j + 1, k)−m2(i, j − 1, k)

2∆z
, (3.4a)

ty =
m1(i, j, k + 1) −m1(i, j, k − 1)

2∆z
×

m2(i+ 1, j, k)−m2(i− 1, j, k)

2∆x

−

m1(i+ 1, j, k)−m1(i− 1, j, k)

2∆x
×

m2(i, j, k + 1) −m2(i, j, k − 1)

2∆z
, (3.4b)

tz =
m1(i+ 1, j, k)−m1(i− 1, j, k)

2∆x
×

m2(i, j + 1, k)−m2(i, j − 1, k)

2∆y

−

m1(i, j + 1, k)−m1(i, j − 1, k)

2∆y
×

m2(i+ 1, j, k)−m2(i− 1, j, k)

2∆x
. (3.4c)

The gradient and cross-product operations are involved in the cross-gradient function, and

it has the following properties:

(1) The gradient of a point in the scalar field points to the fastest growing direction, and

the magnitude of the gradient is equal to the rate of change of the scalar field at this point;

(2) The cross-product of two vectors is equal to the product of the two vector modules and

multiplied by sin θ, where θ is the angle between the two vectors. If the two vectors are parallel,

therefore the angle is equal to 0 or 180 degrees, and sin θ is equal to zero, at which time the

cross-product of the two vectors is equal to zero.

Taking the above properties into this geophysical joint inversion, and there are:

(1) When the two physical parameters which participate in the joint inversion change in

the same direction, or one of the physical parameters is unchanged, the value of cross-gradient

function is zero;

(2) When the gradient of the two physical parameters are not parallel, the cross-gradient

function is not equal to zero.

The above properties are the basis of the joint inversion of geophysics based on cross-gradient

function. The cross-gradient function is used to connect different physical parameters through
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the structure constraint. Then, we solve the inverse problem by minimizing the objective func-

tion with the structural consistency constraint which is defined by the cross-gradient function.
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Fig. 3.2. First model consists of two anomalies.
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Fig. 3.3. Second model with horizontal changes in X direction.

In this paper, we use synthetic models to verify the properties of the cross-gradient function.

Figs. 3.2 and 3.3 depict the models 1 and 2, respectively. In model 1, two block anomalies, a

negative anomaly on the left and a positive anomaly on the right, are constructed. In model

2, the model values increase laterally from left to right. Fig. 3.4 shows the results of cross-

gradient between the two models 1 and 2. It can be clearly seen from the Fig. 3.4 that

the cross-gradient function values of the two block anomalies are non-zero at the horizontal

boundary of the anomalous body, and the other parts are zero. This result means that when

the structures are consistent, the cross-gradient value is zero, and when they are not consistent,

the value is non-zero. It verifies that the two cross-gradient function properties described before

are meaningful. The property of the cross-gradient lays the foundation for using it to the joint

inversion, which requires that the cross-gradient value of the density and susceptibility tend to

zero during the inversion. Joint inversion based on cross-gradient requires different models to

be consistent in their structure and fit the corresponding data as well.
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Fig. 3.4. Cross-gradients of the two models in Figs. 3.2 and 3.3.

3.2. Regularizing joint inversion modeling based on cross-gradient constraint

The objective function in the gravity-magnetic joint inversion based on the total variation

regularization constraint and the cross-gradient constraint is expressed as:

ϕ = ϕ̃g + ϕ̃m + βϕcross, (3.5)

where ϕ̃g and ϕ̃m are approximations to the original functions ϕg and ϕm, respectively. In

equation (3.5):

ϕ̃g = 1/2

∥

∥

∥W
1/2

d ·
(

G1 ·m1 − dobs1

)

∥

∥

∥

2

2
+ α1/2 ‖Wz ·m1‖

2

2 + α̃1

Nm1
∑

i=1

√

|(D1m1)i|
2
+ ς2,

ϕ̃m = 1/2

∥

∥

∥W
1/2

d ·
(

G2 ·m2 − dobs2

)

∥

∥

∥

2

2
+ α2/2 ‖Wz ·m2‖

2

2 + α̃2

Nm2
∑

i=1

√

|(D2m2)i|
2
+ ς2,

ϕcross = 1/2 ‖t(m1,m2)‖
2

2 ,

(3.6)

wherein, the subscript 1 in the above formulae represents gravity data, and the subscript 2

represents magnetic data; ϕ̃g is the inversion objective function of gravity data, ϕ̃m is the

inversion objective function of magnetic data, ϕcross is the cross gradient term, t = [tx, ty, tz]
T
,

ti (i = x, y, z) is in the discrete form given in (3.4), α1, α2, α̃1, α̃2 are the regularization

parameters, G1 is the matrix derived from the gravity kernel function, m1 is the density value

to be calculated, dobs1 is the observed gravity anomaly, G2 is the matrix derived from the

magnetic kernel function, m2 is the magnetic susceptibility value to be calculated, dobs2 is the

observed magnetic field anomaly, ∇mi can be calculated by Dimi with Di the differential

operator (i = 1, 2), ς is a small constant, Wd is the data weighting matrix, and Wz is the depth

weighting matrix.

Linearize the cross-gradient function and perform the first-order Taylor series expansion on
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the three components, ignoring the second-order or higher terms, getting:

tx(m1,m2) ≈ tx(m10,m20) + [B1x, B2x]

[

m1 −m10

m2 −m20

]

, (3.7a)

ty(m1,m2) ≈ ty(m10,m20) + [B1y, B2y]

[

m1 −m10

m2 −m20

]

, (3.7b)

tz(m1,m2) ≈ tz(m10,m20) + [B1z, B2z]

[

m1 −m10

m2 −m20

]

, (3.7c)

, where t(m10,m20) is the cross gradient between the reference models m10 and m20.

The partial derivatives of the three cross-gradient components for each model parameter

are:

B1x =
∂tx(m1,m2)

∂m1

, B2x =
∂tx(m1,m2)

∂m2

, (3.8a)

B1y =
∂ty(m1,m2)

∂m1

, B2y =
∂ty(m1,m2)

∂m2

, (3.8b)

B1z =
∂tz(m1,m2)

∂m1

, B2z =
∂tz(m1,m2)

∂m2

. (3.8c)

These cross-gradient components can be formulated as a matrix:

B =







B1x B2x

B1y B2y

B1z B2z






= [B1 B2] . (3.9)

The gradient values at the density parameter m1 and susceptibility parameter m2 for the

objective function can be written as:

∂ϕ

∂m1

= G∗

1 ·Wd ·
(

G1 ·m1 − dobs1

)

+ α1W
T
z Wzm1 + α̃1 · L1 (m1) ·m1 + βB1 · t, (3.10)

∂ϕ

∂m2

= G∗

2 ·Wd ·
(

G2 ·m2 − dobs2

)

+ α2W
T
z Wzm2 + α̃2 · L2 (m2) ·m2 + βB2 · t, (3.11)

where G∗

i is the adjoint form of the operator Gi (i = 1, 2). Among them:

Li(m) = WT
z D∗Φ (mi)DWz , (3.12)

D =





Dx

Dy

Dz



 , A = diag





1
√

|(DWzm)i|
2
+ ς2



 , Φ (mi) =





A

A

A



 . (3.13)

3.3. An efficient gradient descent method

The two models m1 and m2 should be solved iteratively. If we set the values of the m1

and m2 in (3.12) and (3.13) as constants in advance, e.g., the former iterative points, then the

whole iterative processes reduce to solving a series of linear equations. However, this may be

time-consuming for large scale computation, e.g., the three-dimensional inversion.

The simplest and the easiest gradient method to program is the steepest descent method

mk+1 = mk + ωksk, (3.14)
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where m = (m1,m2), sk = −∇ϕk, ∇ϕk = ∇ϕ(mk), ωk is the steplength which can be obtained

by line search, i.e., optimal ωSD
k satisfies ωSD

k = argminωϕ(mk + ωsk). However, the steepest

descent method is slow in convergence and zigzagging after several iterations [32]. Usually

in calculations, the line search technique is based on the Armijo-Goldstein line search, which

requires the step-length ωk satisfying [32]

ϕ(mk)− ϕ(mk + ωksk) ≥ −b1τks
T
k∇ϕk, (3.15a)

ϕ(mk)− ϕ(mk + ωksk) < −b2τks
T
k∇ϕk, (3.15b)

where b1 < b2 are two positive parameters. Typical values of b1 and b2 in calculations are that

b1 = 0.4 and b2 = 0.9.

A lot of research works are developed in literature to improve the performance the gradient

descent method [2, 34]. In this paper, we consider the fast monotone gradient descent method

in the calculation. This method was proposed by Yuan in [33] for solving the unconstrained

optimization problem. The iteration formula is an extension of the steepest descent method

except that the stepsize is controlled by

ωY
k =

2
√

(

1/ωSD
k−1 − 1/ωSD

k

)2
+ 4‖∇ϕk‖

2

2/‖sk−1‖
2

2 + 1/ωSD
k−1 + 1/ωSD

k

, (3.16)

where sk−1 = mk −mk−1.

Dai and Yuan in [3] proposed a more efficient monotone gradient method based on modifi-

cation of the formula (3.15):

ωDY
k =

2
√

(

1/ωSD
k−1 − 1/ωSD

k

)2
+ 4‖∇ϕk‖

2

2/
(

ωSD
k−1‖∇ϕk‖2

)2
+ 1/ωSD

k−1 + 1/ωSD
k

(3.17)

and the specific iterative process can be expressed as:

ωk =

{

ωSD
k , if mod (k, 4) = 1 or 2,

ωDY
k , else.

(3.18)

In their paper, the method is initially designed for convex quadratic programming problem.

Noting that the objective functional ϕ is a composite function, the first two terms can be

written as a quadratic form, the third term plays a role of edge regularization which is typically

small, therefore, the deviation of the objective functional ϕ from a quadratic functional is small.

Hence, we can solve the minimization problem via the above fast monotone gradient descent

method. The effectiveness of the method works for problem is illustrated in Fig. 4.9.

The iterative algorithm can be outlined as Algorithm 3.1. The diagram of the separate and

joint inversion of the gravity and magnetism is shown in Fig. 3.5.
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Initial model m10

Forward modeling

Initial model m10

Forward modeling

Cross gradient Cross gradientInversion Inversion

Update density model m1k Update magnetic susceptibilty model m2k

Calculate the misfit of gravity date Calculate the misfit of magnetic data

k=k+1 k=k+1

k=1 k=1

No

Yes

No

End

Satisfy convergence condition

Fig. 3.5. Joint inversion scheme using gravity and magnetism.

Algorithm 3.1. Efficient gradient descent algorithm for joint inversion of gravity and

magnetism

Step 1. Input the initial gravity density and magnetic susceptibility models m1 and m2,

and calculate the cross gradient ~t(m1,m2) between the two models using the formula (3.3);

Step 2. Set the initial value mk = (m1,m2) as above, calculate the gradient of the

objective function ϕk using formulas (3.10)-(3.13); set sk = −∇ϕk; calculate the stepsize

ωSD
k = argminωϕ(mk + ωsk); set k := 0;

Step 3. Update the gravity density m1,k and the magnetic susceptibility m2,kbased on

the formula (3.14) with ωk chosen as (3.18);

Step 4. Calculate the residuals between the simulated and the measurement gravity

data and the magnetic data, respectively; and determine whether the residuals are small

enough. If it is, terminate the iteration and output the solution; If not, set k := k + 1 and

GOTO Step 2, iterate until the convergence condition is achieved or the maximum number

of iterations is reached.

4. Experimental Tests

In the numerical experiments, the observation area is set to be a plane area of 260m*260m,

the data grid is equally spaced, and the grid spacing in the X and Y directions is 20m. We set

the underground anomaly area to be a rectangular parallelepiped area of 240m*240m*240m,

and divide the area into cubic grid blocks with a side length of 30m. The distance between

the observation plane and the surface is 0m. In the synthetic test, it is assumed that the

magnetic anomaly source is located in a uniform non-magnetic bedrock environment, regardless

of the effects of demagnetization and remanence, the magnetic field strength of the background

magnetic field is set to 50000nT, and the magnetic dip angle is 90o, and the magnetic declination

is 90o.

We remark that in our numerical simulation, we divided the three-dimensional space with
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Table 4.1: Gravity density and magnetic susceptibility of common minerals.

Mineral Magnetite Hematite Magnesia Manganese spinel Pyrrhotite Maghemite

Density g/cm3 4.9 ∼ 5.2 3.4 ∼ 4.4 3.6 ∼ 4.7 3.57 ∼ 3.9 4.3 ∼ 4.8 4.88

Susceptibility κ 0.07 ∼ 0.2 10(−6)
∼ 10(−5) 0.08 2.0 10(−4)

∼ 10(−3) 0.03 ∼ 0.2

equal spacing. The reason we only consider equal-spacing strategy lies in that we do not know

where the anomaly exactly located underground. If we can guess the location of the anomaly,

the unequal spacing may be applied; accuracy of inversion will be improved. Currently, the

equal-spacing strategy has its advantage: it is simple to calculate in practice, especially in the

large-scale data calculation problem (note that it is 3d in our paper).

In the synthetic test, the constructed anomaly body is a rectangular parallelepiped model

with a cross-sectional area of 60m*60m, a thickness of 60m, and the buried depth is 60m. Its

residual density is 5.0g/cm3, and the magnetic susceptibility is 0.2. Table 4.1 lists the gravity

density and magnetic susceptibility of some common minerals.
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Fig. 4.1. Slices of the true gravity density model along three directions of X, Y and Z. (a) X=120m (b)

Y=120m (c) Z=120m.
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Fig. 4.2. Slices of the gravity density along X, Y and Z directions with separate inversion based on the

Tikhonov L2 norm regularization constraint. (a) X=120m (b) Y=120m (c) Z=120m.
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Fig. 4.3. Slices of gravity density along X, Y and Z directions with separate inversion based on the

total variation regularization constraint. (a) X=120m (b) Y=120m (c) Z=120m.
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Fig. 4.4. Slices of gravity density along X, Y and Z directions with joint inversion based on the

total variation regularization constraint and cross-gradient constraint. (a) X=120m (b) Y=120m (c)

Z=120m.
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Fig. 4.5. Slices of the true susceptibility model along three directions of X, Y and Z. (a) X=120m (b)

Y=120m (c) Z=120m.
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Fig. 4.6. Slices of the magnetic susceptibility along X, Y and Z directions from separate inversion based

on the Tikhonov L2 norm regularization constraint. (a) X=120m (b) Y=120m (c) Z=120m.

Fig. 4.1 is a slice diagram of the synthetic three-dimensional gravity density model in the X,

Y, and Z directions, and the residual density of the anomaly body is 5.0g/cm3. In all of the Figs.

4.1–4.4, the left-most refers to (a), the middle refers to (b) and the right-most refers to (c). Figs.

4.2 and 4.3 show the inversion results of the density with the separate inversion strategies, i.e.,

the Tikhonov smooth regularization and the total variation regularization, respectively. Fig.

4.4 gives the results of the inverted density using the joint inversion scheme. Compared with

the density model obtained by the separate inversion, the center position of the anomaly is

closer to the real model by the joint inversion, and the joint inversion can more accurately

describe the model boundary. As a result, the computed model parameter values well approach

the standard model residual density values with the joint inversion.

Fig. 4.5 is a slice diagram of the synthetic three-dimensional magnetic susceptibility model

in the X, Y, and Z directions, and the magnetic susceptibility of the anomaly body is 0.2.

Again, in all of the Figs. 4.5–4.8, the left-most refers to (a), the middle refers to (b) and the

right-most refers to (c). Figs. 4.6 and 4.7 show the inversion results of the susceptibility using

separate inversion strategies, i.e., the Tikhonov smooth regularization and the total variation
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Fig. 4.7. Slices of the true susceptibility model along three directions of X, Y and Z. (a) X=120m (b)

Y=120m (c) Z=120m.
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Fig. 4.8. Slices of the magnetic susceptibility along X, Y and Z directions with joint inversion based on

the total variation regularization constraint and cross-gradient constraint. (a) X=120m (b) Y=120m

(c) Z=120m.

regularization, respectively. Fig. 4.8 gives the result of the magnetic susceptibility based on

the joint inversion scheme. Compared with the susceptibility model obtained by the separate

inversion, the anomaly center position obtained by the joint inversion is closer to the real

model, and the joint inversion can more accurately describe the model boundary. As a result,

the computed model parameter values are closer to the standard model susceptibility values

with the joint inversion.

Fig. 4.9 shows the decreasing curve of the objective functions: the left figure refers to (a),

the right refers to (b). It indicates the fast convergence of our algorithm. To show the stability

of the inversion algorithm, we apply it to the noisy data, noise level is setting as 5%. The

inversion results for gravity data and magnetic data are illustrated in Figs. 4.10 and 4.11,
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Fig. 4.9. Variation curves of the objective function for gravity density and magnetic susceptibility

along with iteration numbers for separate and joint inversions: (a) gravity density data; (b) magnetic

susceptibility data.
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Fig. 4.10. Slices of gravity density along X, Y and Z directions with joint inversion based on total

variation regularization constraint and cross-gradient constraint, in which the gravity data contain 5%

random noise. (a) X=120m (b) Y=120m (c) Z=120m.
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Fig. 4.11. Slices of magnetic susceptibility along X, Y and Z directions with joint inversion based

on total variation regularization constraint and cross-gradient constraint, in which the magnetic data

contain 5% random noise. (a) X=120m (b) Y=120m (c) Z=120m.

respectively. Similarly, in all of the Figs. 4.10–4.11, the left-most refers to (a), the middle refers

to (b) and the right-most refers to (c). It indicates from the two figures that even with noisy

data, our algorithm can still generate satisfactory results.

From the perspective of the whole model space, after the joint inversion, the cross-gradients

values are relatively small, indicating that the structural constraints using the cross-gradients

make the models have better structural consistency, and the inversion results are consistent

with the unique characteristics of the geological model structure. Hence the joint inversion

strategy improves the rationality of the inversion results.

5. Discussion and Conclusion

Improving the reliability of inversion results is a hot topic in the field of geophysical prospect-

ing. Joint inversion technique is an inevitable tendency in geophysical inversion methodology.

The emergence of the cross-gradient principle provides a new way of solving the coupling prob-

lem of different parameters in the joint inversion. The joint inversion of multiple physical

attributes aims to reduce the multiplicity of the model by utilizing various petrophysical prop-

erties of the subsurface medium.

In this paper, the gravity-magnetic joint inversion is studied. We mainly focus on the densi-

ty attribute and magnetic susceptibility attribute of underground anomalies, and consider the

cross-gradient method to perform joint inversion experiments. We propose a nonsmooth mini-

mization model based on the cross-constraint and the total variation regularization constraint.

To solve the problem, an efficient monotone gradient algorithm is applied. The new inversion

scheme with the fast gradient method converges fast to the true solution, and can also balance

the data fitting and structural constraints. Based on a three-dimensional gravity density and

a magnetic susceptibility model, we tested it using the newly proposed joint inversion process.
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The results show that gravity density inversion imaging and magnetic susceptibility inversion

imaging are two effective complementary imaging methods. Gravity density and magnetic

susceptibility models can be better restored using joint inversion than the separate inversion

strategy.

At the same time, we draw the following conclusions:

(1) The inversion of the gravity/magnetic field is strongly ill-posed problem. The ill-

posedness of the inversion can be effectively reduced by the regularization term and the con-

straint condition. The inversion results obtained by different regularization terms are also

different. The classical Tikhonov smooth regularization method will make the boundary of the

inversion result appear excessively smooth. The total variation regularization will be clearer

and more accurate for the description of the discontinuous boundary.

(2) Cross-gradient joint inversion, using a variety of physical parameters information, can

effectively reduce the ill-posedness of the inversion and improve the quality of the inversion.

At the same time, in the joint inversion iteration process, we must pay attention to control the

convergence speed of the model. If a model converges faster or slower, the cross gradient of

the two models will be too small or too large around the anomaly, which will affect the inverse

result.
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