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Abstract. We introduce PyCFTBoot, a wrapper designed to reduce the barrier to entry
in conformal bootstrap calculations that require semidefinite programming. Symengine
and SDPB are used for the most intensive symbolic and numerical steps respectively.
After reviewing the built-in algorithms for conformal blocks, we explain how to use
the code through a number of examples that verify past results. As an application, we
show that the multi-correlator bootstrap still appears to single out the Wilson-Fisher
fixed points as special theories in dimensions between 3 and 4 despite the recent proof
that they violate unitarity.
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1 Introduction

The conformal bootstrap [1, 2] has joined holography [3] as one of the most important
tools for understanding strongly coupled conformal field theories (CFTs) in higher di-
mensions. Much of the progress comes from a numerical procedure initiated in [4], which
exploits the constraints of crossing symmetry and unitarity. This has been successfully
used to bound scaling dimensions and three point function coefficients in a wide range
of conformal [5–16] and superconformal [17–21] theories in dimensions between 2 and 6.
The first widely released code designed to perform these calculations was JuliBoots [22],
a conformal bootstrap package based around a linear program solver. Shortly afterward,
the solver SDPB [23] was released, giving the community access to the semidefinite pro-
gramming methods pioneered in [10, 18, 24]†.

∗Corresponding author. Email address: connor.behan@gmail.com (C. Behan)
†Readers interested in conformal blocks for their role in algebraic geometry might appreciate the [25] pack-
age.
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The advantages of the two are largely complementary. Semidefinite programming
has superior performance in systems with multiple crossing equations and it is currently
the only technique which extracts information from correlators of operators with dif-
ferent scaling dimensions [24]. As such, SDPB has become the standard code for most
numerical bootstrap studies in the last year [26–34]. Unlike JuliBoots however, it does
not provide simple methods for specifying important kinematics information. Included
in this are the crossing equations which depend on the type of CFT being studied and
conformal blocks, special functions that depend on the dimension of space and a number
of accuracy parameters. All of the above studies have performed these calculations using
customized scripts for Mathematica. A new program, aiming to reduce this duplication
of effort, is PyCFTBoot written in Python. Realizing a hope of [22], it handles the com-
puter algebra that goes into a numerical bootstrap entirely with free software. PyCFTBoot
may be downloaded from

https://github.com/cbehan/pycftboot,

where all future development is expected to take place. Besides SDPB, a few other depen-
dencies are required in order to use it.

In mathematical Python software, numpy [35] and sympy [36] are two widely used
packages that come to mind. Both of them are needed by PyCFTBoot. However, sympy
is not fast enough to generate large tables of conformal blocks. It is only used in a few
non-critical places that need to call Gegenbauer polynomials or the incomplete gamma
function. Instead, the bulk of the symbolic algebra is handled by a fast C++ library called
symengine. Python bindings have been chosen (over Ruby and Julia) because they are
the most mature at the time of writing. These less common packages are downloadable
from

https://github.com/symengine/symengine (last tested: 5427bbe),

https://github.com/symengine/symengine.py (last tested: 9d23ef7).

Surprises are most easily avoided by using PyCFTBoot with Python 2.7 on GNU / Linux,
but it has also been tested with Python 3.5. Descriptions of the important functions, in-
cluded in the source code, may be viewed with the Python documentation server. Addi-
tionally, readers who are anxious to try the bootstrap may follow the commented tutorial
distributed alongside the main file.

In Section 2 of this note, we describe the algorithms that have been chosen to generate
derivatives of conformal blocks and report some rough performance figures. Section 3
explains how semidefinite programs are formulated from these tables. In describing the
main SDP object, it contains a few parts that read like passages from a user manual. Some
examples, worked out in Section 4, demonstrate that most of the known bootstrap results
to date can in principle be reproduced with PyCFTBoot. Before we conclude, Section 5
extends a previous result in the literature by using PyCFTBoot to probe the ”islands” of
allowed critical exponents in dimensions between 3 and 4 [37].
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2 Conformal blocks

Unlike with two or three point functions, conformal kinematics only determine the four
point function up to an arbitrary dependence on two variables. Specifically for scalars‡,

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉=
( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34 g(u,v)

|x12|∆1+∆2 |x34|∆3+∆4
, (2.1)

where u=x2
12x2

34/x2
13x2

24 and v=x2
14x2

23/x2
13x2

24. As explained in the seminal works [50,51]
on (global) conformal blocks, g(u,v) may be expanded in a convergent series with each
term coming from a primary operator in the theory. This is done by way of the operator
product expansion (OPE):

φ1(x)φ2(0)=∑
O

λ12O
|x|∆1+∆2−∆

C
µ1···µℓ

O (x,∂)Oµ1 ···µℓ
(0). (2.2)

Using this in the (12)(34) channels for example produces

g(u,v)=∑
O

λ12Oλ34Og∆12 ,∆34

O (u,v),

where each function depends on the spatial dimension d or equivalently on ν= d−2
2 . The

subscript O is often written as (∆,ℓ) since all primary operators that couple to scalars
transform in some spin-ℓ representation of SO(d). Crossing symmetry is the statement
that all three choices for the OPE channels must agree. This is what leads to the bootstrap
but we will postpone a discussion of this to the next section.

2.1 Rational approximations

Rather than the cross-ratios u and v, conformal blocks are most often considered as func-
tions of z and z̄, defined by using conformal transformations to send x1, x3 and x4 to 0,
1 and ∞ respectively. The blocks are analytic for 0< z, z̄< 1 and most bootstrap studies
focus on the crossing symmetric point (z∗, z̄∗) = ( 1

2 , 1
2). Although there are other useful

variables [52], Table 1 shows all of the co-ordinates used by PyCFTBoot.
As observed in [10, 53], a block may be expanded in powers of r where each term

corresponds to a new descendant in the multiplet of O. As the scaling dimension ∆ is
varied, coefficients in the sum diverge at certain non-unitary values. When they do, the
residue is proportional to a conformal block itself. This motivated [10] to develop the
recurrence relations

h∆12 ,∆34

∆,ℓ (r,η)≡ r−∆g∆12,∆34

∆,ℓ (r,η), (2.3a)

h∆12 ,∆34

∆,ℓ (r,η)=h∆12 ,∆34

∞,ℓ (r,η)+∑
i

c∆12,∆34
i (ℓ)rni

∆−∆i(ℓ)
h∆12 ,∆34

∆i(ℓ)+ni,ℓi
(r,η). (2.3b)

‡We focus on the scalar correlators currently supported by PyCFTBoot but it would be very interesting to
incorporate the ongoing work regarding operators with spin [29, 38–49].



4 C. Behan / Commun. Comput. Phys., 22 (2017), pp. 1-38

Table 1: Useful variables for four point conformal blocks in terms of z and z̄.

First Second Crossing point

u= |z|2 v= |1−z|2 (u∗,v∗)=
(

1
4 , 1

4

)

a=z+ z̄ b=(z− z̄)2 (a∗,b∗)=(1,0)

ρ= z
(1+

√
1−z)2 ρ̄= z̄

(1+
√

1−z̄)2 (ρ∗, ρ̄∗)=(3−2
√

2,3−2
√

2)

r= |ρ| η=
ρ+ρ̄
2|ρ| (r∗,η∗)=(3−2

√
2,1)

Table 2: The three types of poles in ∆ for the meromorphic conformal blocks. Two of them have infinitely
many elements labelled by the integer k>0. The third type requires 0< k≤ ℓ.

ni ∆i(ℓ) ℓi c
∆12,∆34
i (ℓ)

k 1−ℓ−k ℓ+k c
∆12,∆34
1 (ℓ,k)

2k 1+ν−k ℓ c
∆12,∆34
2 (ℓ,k)

k 1+ℓ+2ν−k ℓ−k c
∆12,∆34
3 (ℓ,k)

The leading term is given by [24]

h∆12 ,∆34

∞,ℓ (r,η)=
ℓ!

(2ν)ℓ

(−1)ℓCν
ℓ
(η)

(1−r2)ν(1+r2+2rη)
1
2 (1+∆12−∆34)(1+r2−2rη)

1
2 (1−∆12+∆34)

. (2.4)

Table 2 describes the data needed to construct the poles and residues in (2.3). These
were noticed empirically in [24] but most of them were later proven in [54]. We must use

c∆12,∆34
1 (ℓ,k)=− k(−4)k

(k!)2

(ℓ+2ν)k

(ℓ+ν)k

(

1

2
(1−k+∆12)

)

k

(

1

2
(1−k+∆34)

)

k

, (2.5a)

c∆12,∆34
2 (ℓ,k)=

k(ν+1)k−1(−ν)k+1

(k!)2

ℓ+ν−k

ℓ+ν+k

(

ℓ+ν−k+1

2

)−2

k

(

ℓ+ν−k

2

)−2

k

×
(

1

2
(1−k+ℓ−∆12+ν)

)

k

(

1

2
(1−k+ℓ+∆12+ν)

)

k

×
(

1

2
(1−k+ℓ−∆34+ν)

)

k

(

1

2
(1−k+ℓ+∆34+ν)

)

k

, (2.5b)

c∆12,∆34
3 (ℓ,k)=− k(−4)k

(k!)2

(ℓ+1−k)k

(ℓ+ν+1−k)k

(

1

2
(1−k+∆12)

)

k

(

1

2
(1−k+∆34)

)

k

(2.5c)

to fill in the last column. One fact that can be seen from (2.5) is that c0,0
1 (ℓ,k) and c0,0

3 (ℓ,k)
are only non-zero when k is even. This means that when the external scalars are identical,
blocks of even and odd spin do not show up in each other’s recurrence relations. Conse-
quently, adjusting the overall normalization of h0,0

∆,ℓ(r,η) by (−1)ℓ is equivalent to simply

removing the factor of (−1)ℓ from (2.4). Indeed, for many studies involving identical
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scalars, it was not present. The generalization to non-zero dimension differences shows
us that more drastic changes would be needed if we still wanted to cancel the (−1)ℓ in
(2.4). Therefore PyCFTBoot keeps it around. The end of this paper points out the examples
in which this subtlety needs to be remembered.

For spins up to some ℓmax, we need to know several derivatives of h∆12 ,∆34

∆,ℓ evaluated

at (r∗,η∗)= (3−2
√

2,1). If we evaluated (2.3) for powers of r up to kmax and differenti-
ated after, we would suffer a large performance hit. This is because there would be many
appearances of (2.4)’s non-polynomial contributions all multiplied by different powers
of r. A better strategy is to compute all derivatives at the same time via matrix multi-
plication [11]. To this end, we define the vector h∞,ℓ with all desired derivatives of (2.4)
already evaluated at the crossing point. They are grouped into ”chunks” of ∂r powers
for a given number of ∂η powers§. For example, a computation going up to third order
would set

h∞,ℓ=

[

1,
∂

∂r
,

∂2

∂r2
,

∂3

∂r3
,

∂

∂η
,

∂2

∂η∂r
,

∂3

∂η∂r2
,

∂2

∂η2
,

∂3

∂η2∂r
,

∂3

∂η3

]T

h∞,ℓ. (2.6)

Seeing what happens when we differentiate rni h∆,ℓ several times, the matrix telling us
what linear combination of derivatives to take is

Rni =











rni∗ 0 0 ···
nir

ni−1
∗ rni∗ 0 ···

ni(ni−1)rni−2
∗ 2nir

ni−1
∗ rni∗ ···

...
...

...
. . .











=











r∗ 0 0 ···
1 r∗ 0 ···
0 2 r∗ ···
...

...
...

. . .











ni

. (2.7)

This is the matrix acting on a single chunk. Since η is unaffected, the full R is the tensor
product of (2.7) with the identity. There is a problem with simply writing

h∆,ℓ=h∞,ℓ+∑
i

ci(ℓ)R
ni

∆−∆i(ℓ)
h∆i(ℓ)+ni,ℓi

(2.8)

and repeating this calculation every time a new block appears. It is most easily seen if we
compare the number of matrix multiplications involved to the number of unique h∆i+ni,ℓi

terms introduced by the recursion. Looking at (2.5), we see a residue c2(ℓ,k) which may
vanish sometimes and a residue c3(ℓ,k) which only exists for certain spins. Therefore, the
best case scenario (only using c1(ℓ,k)) tells us that the number of matrix multiplications
# satisfies

#(0)=1, (2.9a)

#(kmax)>
kmax−1

∑
k=0

#(k). (2.9b)

§Although we describe the general case here, we will soon see that normal use of PyCFTBoot will only involve
one chunk.
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This is the same relation satisfied by the partition function which counts the number of
ways to write an integer as the sum of smaller ones. The well known asymptotics of this
function [55], tell us that duplicated matrix multiplications will abound by many orders
of magnitude with this naive method. Instead PyCFTBoot again follows [11] and predicts
which residues will be needed ahead of time. This is simply a matter of letting the spin
take values ℓ≤ ℓmax+kmax for a table whose final entries describe spins up to ℓmax. For
each value of ℓ, we let the index i run over all admissible poles in Table 2 and define the
residue vectors dℓ,i. All of these are initialized to h∞,ℓi

. It is then straightforward to iterate

dℓ,i= ci(ℓ)R
ni

[

h∞,ℓi
+∑

j

dℓi,j

∆i(ℓ)+ni−∆j(ℓi)

]

(2.10)

and stop once enough powers of R are introduced. Rather than updating the residues
right away, we consider all dℓ,i on the right hand side to be the ”old values” and replace
them with the ”new values” once everything on the left hand side has been calculated.
These go into the expression

h∆,ℓ=h∞,ℓ+∑
i

dℓ,i

∆−∆i(ℓ)
. (2.11)

It is clear that the entries in h∆,ℓ are rational functions of ∆. They all have different nu-
merators and the same denominator. Instead of computing (2.11) as written and taking
extra time to extract the numerator and denominator, PyCFTBoot stores them separately
from the start. The leading term of (2.11) is multiplied by ∏j(∆−∆j(ℓ)) and the ith term
of it is multiplied by ∏j 6=i(∆−∆j(ℓ)).

There is a modification to (2.11) that can be used to produce polynomials of smaller
degree. Described in [10], it slightly increases the time needed to generate a conformal
block table but it can greatly decrease the running time of SDPB. The idea is to split the
set of poles P into ”large and small” types and use the poles of P> to approximate those
in P<. As our criterion, we check whether the maximum component of dℓ,i is above or
below some cutoff θ. For ∆i ∈P<, we attempt to choose the ai,k coefficients optimally in

1

∆−∆i
≈ ∑

∆k∈P>

ai,k

∆−∆k
. (2.12)

Following the choice in [10], we demand that the first |P>|/2 derivatives of (2.12) hold
exactly at ∆=∆unitary+θ and ∆=θ−1. If |P>| is odd, the last of these derivatives will only
hold at one of the points. Once the ai,k are determined by this invertible linear system,
PyCFTBoot incorporates them into the calculation of (2.11). Whenever it needs to multiply
by ∏∆j 6=∆i

(∆−∆j) and ∆i ∈P<, it instead multiplies by ∑∆k∈P>
ai,k ∏∆j∈P>\{∆k}(∆−∆j).

After the (2.11) computation with the optional degree reduction step, one must obtain
a vector g∆,ℓ of true conformal block derivatives from its meromorphic version h∆,ℓ. This

is done by restoring the r∆
∗ singularity with another matrix. Specifically,

g∆,ℓ= r∆
∗ Sh∆,ℓ. (2.13)
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It is easy to see that r∆
∗ S must be the same matrix as Rni in (2.7) with ni replaced by ∆.

There is no need to build up S by repeatedly multiplying some simpler matrix by itself.
Its (i, j) element is immediately known to be

∆···(∆− j)

r
j
∗

(

i

j

)

.

Elements of the conformal block vector continue to be rational functions. However, if all
numerators in h∆,ℓ have the same degree, those in g∆,ℓ will have a degree that increases
with the order of the derivative. Looking at these numerators, the end result is something
of the form

∂m+n

∂ηm∂rn
g∆12,∆34

∆,ℓ (r∗,η∗)=χℓ(∆)P∆12,∆34;mn
ℓ

(∆), (2.14)

which is a polynomial times the positive function

χℓ(∆)= r∆
∗ ∏

j

(∆−∆j(ℓ))
−1.

This is precisely the form required for a task that involves semidefinite programming.

2.2 Further processing

Going from the (12)(34) to the (14)(23) channel switches u↔v and modifies the prefactor
in the four point function (2.1). Crossing equations are obtained by setting the differences
of these four point functions to zero. The simplest crossing equation with no global sym-
metry is

v
∆2+∆3

2 g1234(u,v)−u
∆1+∆2

2 g3214(v,u)=0

in [24]. As a result, functions of the form

F±,∆,ℓ(u,v)=v∆φ g∆12,∆34

∆,ℓ (u,v)±u∆φ g∆12,∆34

∆,ℓ (v,u), (2.15)

are the natural objects to consider once conformal blocks are known. These have come
to be called convolved conformal blocks [22]. In principle, convolved conformal blocks
and their derivatives could be calculated directly from the (2.14) result with its r and
η variables. However, the simple u ↔ v transformation is represented by r and η in a
much more complicated way. When the second half of (2.15) involves a new function

g∆12,∆34

∆,ℓ (r̃(r,η),η̃(r,η)), much of the work that goes into the ∂m+n

∂ηm∂rn F±,∆,ℓ(r∗,η∗) calculation

will be spent differentiating r̃ and η̃. This extra work during the convolution step can
be eliminated if we instead add extra work during the conformal block step to convert
(2.14) to (z, z̄) or (a,b) variables. At first glance, it might seem that the benefit of this
choice is purely organizational — it allows the fast and slow calculations in PyCFTBoot

to be conceptually separate. As we now discuss however, there is another recurrence
relation which gives us a much stronger incentive to change variables.
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Conformal blocks are eigenfunctions of the quadratic Casimir [51]:

[

Dz+Dz̄+2ν
zz̄

z− z̄

(

(1−z)
d

dz
−(1− z̄)

d

dz̄

)]

g∆12,∆34

∆,ℓ = c2g∆12,∆34

∆,ℓ . (2.16)

Here, the definitions

Dz=(1−z)z2 d2

dz2
+

(

1

2
∆12−

1

2
∆34−1

)

d

dz
+

1

4
∆12∆34z, (2.17a)

c2=
1

2
[ℓ(ℓ+2ν)+∆(∆−2−2ν)] , (2.17b)

are standard. The existence of a linear differential equation satisfied by the blocks sug-
gests the possibility of building up high order derivatives from lower ones. We may

pretend for a minute that g∆,ℓ,
∂g∆,ℓ

∂z and
∂2g∆,ℓ

∂z∂z̄ are all known at
(

1
2 , 1

2

)

. The content of (2.16)

is then to tell us what
∂2g∆,ℓ

∂z2 is at the same point. We could attempt to continue this pattern

by differentiating (2.16) with respect to z but then
∂3g∆,ℓ

∂z3 would not be the only unknown

derivative anymore. The presence of new unknowns like
∂3g∆,ℓ

∂z̄2∂z
forces us to use something

more clever.

Such cleverness was found by [56] in which the quadratic and quartic Casimirs of
the conformal group are used together. This reveals an ordinary differential equation
satisfied by the blocks on the z = z̄ diagonal. In terms of the a co-ordinate, this new
equation (which clearly keeps new derivatives under control) is

D
(4,3)
a g∆12,∆34

∆,ℓ =0, (2.18a)

D
(4,3)
a ≡

( a

2
−1
)3

a4 d4

da4
+p3

( a

2
−1
)2

a3 d3

da3
+p2

( a

2
−1
)

a2 d2

da2
+p1a

d

da
+p0. (2.18b)

The polynomials p0,··· ,p3 used by PyCFTBoot are the ones in [56] except with a slight
change: they are written with a

2 in place of z and multiplied by 8 to force as many coef-

ficients as possible to still be integers. Differentiating (2.18), a fifth derivative of g∆12,∆34

∆,ℓ
becomes the highest order term. However, the lowest order term continues to be a zeroth
derivative. Because p0(a) has degree 3, our equation only stops having non-derivative

terms once it goes up to
d8g∆,ℓ

da8 . This means that the mth diagonal derivative is calculated
from the min(m,7) lower ones using a handful of simple polynomials. One only needs m
to be at least 4 in order to start this process. Because of this, vectors in the slow original
recursion (2.10) only need to fit four ∂r powers. Once the a derivatives are known, more
recurrence relations determine the b derivatives. Defining

S=−1

2
(∆12−∆34) and P=−1

2
∆12∆34,
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we use

2(1−2n−2ν)
∂m+ng∆,ℓ

∂am∂bn

=2m(1−2n−2ν)

[

−∂m+n−1g∆,ℓ

∂am−1∂bn
+(m−1)

∂m+n−2g∆,ℓ

∂am−2∂bn
+(m−1)(m−2)

∂m+n−3g∆,ℓ

∂am−3∂bn

]

+
∂m+n+1g∆,ℓ

∂am+2∂bn−1
−(6−m−4n+2ν+2S)

∂m+ng∆,ℓ

∂am+1∂bn−1

−
[

4c2+m2+8mn−5m+4n2−2n−2

−4ν(1−m−n)+4S(m+2n−2)+2P]
∂m+n−1g∆,ℓ

∂am∂bn−1

−m
[

m2+12mn−13m+12n2−34n+22

−2ν(2n−m−1)+2S(m+4n−5)+2P]
∂m+n−2g∆,ℓ

∂am−1∂bn−1

+(1−n)

[

∂m+ng∆,ℓ

∂am+2∂bn−2
−(6−3m−4n+2ν−2S)

∂m+n−1g∆,ℓ

∂am+1∂bn−2

]

. (2.19)

This is the transverse derivative recursion found in [9] generalized to unequal external
dimensions with the different definition of c2 taken into account. It follows from going
back to the original Casimir PDE (2.16) in the (a,b) co-ordinates. The same coefficients
can also be found in recent versions of the [22] source code. The form of (2.19) tells us the
shape that will be taken by a lattice of derivatives we compute this way. When we make
m as high as possible for a given n, the right hand side shows that 2 must be added to
reach the highest possible m for n−1. This leads to the triangle

n∈{0,··· ,nmax}, (2.20a)

m∈{0,··· ,2(n−nmax)+mmax}, (2.20b)

depending on two user-defined parameters. As found in [57], a high nmax is more impor-
tant than a high mmax. An obvious point worth remembering is that (2.18) and (2.19) are
only satisfied by exact conformal blocks, not their rational approximations. As a result,
these recursions are only valid for computing derivatives if kmax is sufficiently large.

Returning to the task of convolution, we need to compute derivatives of

F±,∆,ℓ(a,b)=

(

(2−a)2−b

4

)∆φ

g∆12,∆34

∆,ℓ (a,b)±
(

a2−b

4

)∆φ

g∆12,∆34

∆,ℓ (2−a,b), (2.21)

at (a∗,b∗)=(1,0). We may immediately see that only one of the two terms in (2.21) needs
to be differentiated. If the number of a derivatives is even (odd), the other term will
contribute equally (oppositely) for F+,∆,ℓ and oppositely (equally) for F−,∆,ℓ. We there-
fore reduce one vector of derivatives to another vector of derivatives having roughly half
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the size. As in the unconvolved case, its components have the positive-times polyno-
mial form. Knowing that ∆φ will eventually be determined by the external dimensions
∆i,∆j,∆k,∆l , we write

∂m+n

∂am∂bn
F

ij;kl
±,∆,ℓ(a∗,b∗)=χℓ(∆)P

ij;kl;mn
±,ℓ (∆). (2.22)

The linear combinations we need to take in order to compute these polynomials are
known in closed form. For the following calculation, it is easiest to take all of the b
derivatives first and then set b=0. This allows us to treat all terms as being linear in a

∂m+n

∂am∂bn

(

(2−a)2−b

4

)∆φ

g∆,ℓ

=
m

∑
i=0

n

∑
j=0

(

m

i

)(

n

j

)

∂i+j

∂ai∂bj

(

(2−a)2−b

4

)∆φ ∂m+n−i−jg∆,ℓ

∂am−i∂bn−j

→
m

∑
i=0

n

∑
j=0

(

m

i

)(

n

j

)(

1

4

)j
(

−∆φ

)

j
, (2.23a)

∂i

∂ai

(

1− a

2

)2∆φ−2j ∂m+n−i−jg∆,ℓ

∂am−i∂bn−j

=
m

∑
i=0

n

∑
j=0

(

m

i

)(

n

j

)(

1

4

)j(1

2

)i
(

−∆φ

)

j

(

2j−2∆φ

)

i
, (2.23b)

(

1− a

2

)2∆φ−2j−i ∂m+n−i−jg∆,ℓ

∂am−i∂bn−j

→
m

∑
i=0

n

∑
j=0

(

m

i

)(

n

j

)(

1

4

)∆φ
(

−∆φ

)

j

(

2j−2∆φ

)

i

∂m+n−i−jg∆,ℓ

∂am−i∂bn−j
. (2.23c)

We may now summarize how the input parameters d, kmax, ℓmax, mmax, nmax, ∆12, ∆34 are
used to prepare a conformal bootstrap environment. PyCFTBoot,

1. Creates a vector h∞,ℓ containing r derivatives of (2.4) up to third order.

2. Calculates dℓ,i residues with kmax iterations that use the data in (2.5) and Table 2.

3. Combines these into ℓmax meromorphic blocks h∆,ℓ through (2.11), optionally ap-
proximating small poles with (2.12).

4. Converts these into genuine conformal blocks g∆,ℓ with the matrix (2.13).

5. Applies the chain rule to get min(mmax+2nmax,3) derivatives of all g∆12,∆34

∆,ℓ with
respect to a.
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6. Uses (2.18), (2.19) to calculate whatever a, b derivatives are left and then uses (2.23)
to take the convolution leaving ∆φ as a free variable.

Almost all of the time is spent on the first four steps. The most interesting parameter here
is kmax because these steps clearly have a running time which is sublinear in the number
of spins. Table 3 times the calculation of a few increasingly accurate conformal block
tables with the single spin ℓ=0.

Table 3: Running time in seconds for the d=3 calculation of g0,0
∆,0(a,b) and its first three derivatives with respect

to a. Three trials were done on one core of a 2.4GHz machine.

kmax Trial 1 Trial 2 Trial 3

10 1.106 1.119 1.111

15 3.146 3.151 3.127

20 6.859 6.856 6.873

25 13.731 13.844 13.682

30 23.062 23.058 23.131

2.3 Even dimensions

Unlike the exact expressions for conformal blocks [50, 51, 58] which are only known in
even dimension, the scheme based on (2.10) that we have described so far works best
when d is odd or fractional. This is because it assumes that all poles in ∆ for a conformal
block are simple. The breakdown of this assumption as ν becomes an integer can be seen
as certain poles approach each other and certain residues diverge. In order to handle
even dimensions, PyCFTBoot switches to a different method for calculating the initial
conformal block derivatives. The idea is to change variables in (2.18) to get a differential
equation in terms of r which may be solved by a power series. Since ∆ is a solution of the
indicial equation, the coefficients in

g∆12,∆34

∆,ℓ (r,1)= r∆
∞

∑
k=0

bkrk

may be determined recursively starting from bk = δk,0. Nothing stops us from applying
this method in general dimension but we avoid doing so because it typically leads to
polynomials of higher degree¶.

The Frobenius method tells us to solve

k(∆+ℓ+k−1)(∆−ℓ+k−2ν−1)(2∆+k−2ν−2)bk =
7

∑
i=1

γi,kbk−i. (2.24)

¶It is nevertheless true that this method generates tables more quickly than (2.10) since it omits the η 6= 1
information. We thank Slava Rychkov for pointing this out.
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The radial version of the operator (2.18) needed for this step was given in [56]. The γi,k

were not so we now list them for completeness

γ1,k=2c2(2ν+1)(4S+1)−c4+8Pν(2ν+1)

−2(∆+k−1)[c2(2ν+1)+2P(6ν−1)+8S(c2+ν−2ν2)]

+2(∆+k−2)2[c2+ν−2ν2+4P+12S(1−2ν)]

+2(∆+k−3)3(2ν−1+8S)−(∆+k−4)4 , (2.25a)

γ2,k=3c4−8P[2S(1−6ν)+6ν2−5ν]+2c2[4S(4S+2ν+1)+2ν−3]

−2(∆+k−2)[2P(16S−10ν+4)+8S(c2+ν−2ν2)+(1−2ν)(c2+2ν−2+32S2)]

−2(∆+k−3)2[3c2+7ν+2ν2−10+4P+4S(10S+6ν−3)]

+2(∆+k−4)3(7−2ν+8S)+3(∆+k−5)4 , (2.25b)

γ3,k=3c4+2c2(16S2+2ν−3)+16PS(8S+2ν+5)

−2(∆+k−3)[(1−2ν)(c2+2ν−2+32S2−4P)−8S(8S2+4P+4ν2+2c2−5)]

−2(∆+k−4)2[8P+40S2+48S+3c2+2ν2+7ν−10]

+2(∆+k−5)3(7−2ν−16S)+3(∆+k−6)4 , (2.25c)

γ4,k=2c2(3−2ν−16S2)−3c4−16PS(8S+2ν+5)

−2(∆+k−4)
[

12+4ν−8ν2−c2(2ν+5)

−8S(8S2+8Sν+6S+4ν2+2c2−5)+4P(2ν−5−8S)
]

−2(∆+k−5)2[3c2+2ν2+7ν−10+8P+S(40S−18ν+21)]

−2(∆+k−6)3(16S+2ν+11)−3(∆+k−7)4 , (2.25d)

γ5,k=8P(2S(1−6ν)+6ν2−5ν)−3c4−2c2[4S(4S+2ν+1)+2ν−3]

−2(∆+k−5)
[

12+4ν−8ν2−c2(2ν+5−8S)

+2P(3−10ν+16S)−8S(2ν2+5ν+3+8Sν+6S)
]

−2(∆+k−6)2[22+5ν−2ν2−3c2−4P−4S(10S+6ν+9)]

+2(∆+k−7)3(8S−2ν−11)−3(∆+k−8)4 , (2.25e)

γ6,k= c4−2c2(2ν+1)(4S+1)+8Pν(2ν+1)

−2(∆+k−6)[(2ν+3)(c2−2ν−2)+6P(2ν+1)+8S(c2−2ν2−5ν−3)]

−2(∆+k−7)2[c2+4P−(2ν+3)(ν+4+12S)]

+2(∆+k−8)3(2ν+5+8S)+(∆+k−9)4 , (2.25f)

γ7,k=(k+2ν−5)(2∆+k−7)(∆+k−ℓ−6)(∆+k+ℓ+2ν−6). (2.25g)

In order to continue the practice of storing numerators and denominators separately, we
use (2.24) to calculate bk coefficients multiplied by polynomials of degree 3k. After this,
the second last coefficient must be multiplied by three factors that are only in the last one.
The third last coefficient must be multiplied by six factors that are only in the last two,
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etc.. The case P= S= 0 is especially simple because we only have to use γ2,k, γ4,k and
γ6,k when our conformal block is an expansion in r2. In the rest of this section, we take a
closer look at how meromorphic conformal blocks remain finite as d approaches an even
integer. This is independent of the rest of the paper since there is no code in PyCFTBoot

that makes use of it‖.
From (2.5), we see that only c∆12,∆34

2 (ℓ,k) can ever be infinite. This reflects the fact that a
pair of coincident poles in Table 2 must always involve series 2. Problematic terms where
equal poles are subtracted may cancel in one of two ways:

1. A term like this that multiplies an expression with ∆ may combine with an infinite
residue that multiplies a similar expression with ∆. Consider

1

{ν}
1

∆−∆1
− 1

∆−∆2

1

∆2+n−∆3
,

where we have split ν=⌊ν⌋+{ν} into its integer and fractional part. If ∆2=∆1−{ν}
and ∆3=∆2+n−{ν}, we may rewrite this as

1

{ν}

(

1

∆−∆1
− 1

∆−∆1+{ν}

)

=
1

(∆−∆1)(∆−∆1+{ν}) ,

which has a finite limit.

2. The residue being divided by a difference of equal poles might be proportional to
{ν} itself.

To see the first type of cancellation, we may set ∆12, ∆34, ℓ and ⌊ν⌋ to zero. In this case
h∞,ℓ(r,1)= 1

1−r2 . Going up to r4,

h∆,0=
1

1−r2
+

c1(0,2)r2

∆+1
h1,2+

r4

1−r2

[

c1(0,4)

∆+3
+

c2(0,2)

∆+1−ν

]

=
1

1−r2
+

r2

1−r2

c1(0,2)

∆+1
+

r4

1−r2

c1(0,2)

∆+1

(

c1(2,2)

4
− c3(2,2)

2ν

)

+
r4

1−r2

[

c1(0,4)

∆+3
+

c2(0,2)

∆+1−ν

]

. (2.26)

We may now focus on what is proportional to r4. Terms in square brackets come from the
first level of the recurrence relation while terms in round brackets come from the second.
Taking one of each, we may form the combination

c2(0,2)

∆+1−ν
− c3(2,2)

2ν

c1(0,2)

∆+1
=

1

4ν

(

1

∆+1−ν
− 1

∆+1

)

=
1

4(∆+1)(∆+1−ν)
. (2.27)

‖An especially slow piece of code for this used to be present. Interested readers may find it in the program’s
git history.
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If all divergences were to cancel in this way, it would make sense to ignore all elements of
(2.5) that are 0 or ∞ and infer their effects later on. For instance, when two poles meant to
be subtracted in the denominator coincide, this can be taken as a signal to instead square
the pole difference that exists one level up. Unfortunately, because the second type of
cancellation is common as well, a robust implementation would have to keep all residues
and temporarily equip them with a free symbol for {ν}. A 4D recursion to order r6 shows
the other phenomenon

h∆,0=h∞,0+
r2c1(0,2)

∆+1
h1,2+

r2c2(0,1)

∆−1
h3,0+

r4c1(0,4)

∆+3
h1,4+

r4c2(0,2)

∆
h4,0

+
r6c1(0,6)

∆+5
h∞,6+

r6c2(0,3)

∆+1
h∞,0. (2.28)

The term in red is infinite and needs to be cancelled by something. This tells us to look at
the blue term because it also includes a 1

∆+1 . Expanding this meromorphic block and not
setting its dimension to 1 yet,

h∆,2=h∞,2+
r2c1(2,2)

∆+3
h−1,4+

r2c2(2,1)

∆−1
h3,2+

r2c3(2,2)

∆−3
h5,0

+
r4c1(2,4)

∆+5
h−1,6+

r4c2(2,2)

∆
h4,2. (2.29)

The term in magenta cannot be ignored. Even though c2(2,1) vanishes with {ν}, so does
∆−1 once we substitute the dimension. Using the fact that this is finite to plug (2.29)
into itself one more time, we see that the ∆−3 term provides the next divergence. This
is what gives the blue term a divergence two levels up allowing it to cancel the red one.
Since double poles appear at all levels of the recursion, algebraic simplifications need to
be performed repeatedly, slowing down the calculation. Moreover, they only work cor-
rectly if all terms are placed over a common denominator–not just the ones with the free
variable ∆. This causes exponentially large numerators and denominators to accumulate
during the calculation of dℓ,i even when the fractions themselves are small. Neglecting
the error introduced by this would require many more digits than those kept by [11, 23]
and other high precision studies.

3 Overall structure

We now describe the three objects in a typical PyCFTBoot session that involve tables of
polynomials in ∆. These include an object for the semidefinite program itself which is
most directly relevant for the user. The steps described so far ending with convolution
amount to two lines of code with mostly self-explanatory arguments

table1 = ConformalBlockTable(dim, k max, l max, m max, n max,

delta 12, delta 34, odd spins = True)

table2 = ConvolvedBlockTable(table1, symmetric = True)
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Table 4: These global variables of PyCFTBoot are symbols in the sense that they are treated as variables for
the computer algebra.

Symbol Description

delta The scaling dimension variable on which all polynomials depend.

delta ext A placeholder for ∆φ in ConvolvedBlockTable.

ell A variable for the few situations that need an unspecified spin.

A slower version of ConformalBlockTable which should almost never be needed is
ConformalBlockTableSeed (or ConformalBlockTableSeed2 in even dimension). Al-
though it is meant to be used internally to prepare a (2.18) recursion by calculating
the first three derivatives, it can be used to calculate more derivatives explicitly as well.
Global variables affecting these two lines of code are prec and cutoff. The default value
of prec (the binary precision) is 660, consistent with the 200 decimal digits of SDPB’s ex-
ample code. The θ variable in (2.12) is cutoff which must be set manually if the user
wants it to differ from 0. Another variable which should be set manually is sdpb path

unless the default value of /usr/bin/sdpb is correct. In addition to these global variables,
there are global symbols defined in Table 4.

Two optional parameters have been set to True. For odd spins, this indicates that
odd spins from 0 to ℓmax should not be skipped. For symmetric, it indicates that F+,∆,ℓ

is being calculated rather than the default F−,∆,ℓ. There are two other optional param-
eters that could have been passed above. For ConformalBlockTable, the name parame-
ter tells it to ignore all other arguments, avoid doing any calculation and instead pre-
pare a conformal block table by reading a file. These files are generated by calling
table1.dump("filename"). For ConvolvedBlockTable, the content parameter tells the
class to produce a linear combination of convolved conformal blocks with prescribed
coefficients if the operators are part of a larger (e.g., superconformal) multiplet. The el-
ements of this list need further explanation. If one term in the linear combination is a
regular convolved block, a subsequent term is specified by three things: an expression
for the coefficient, a number indicating how different its ∆ is and an integer indicating
how different its ℓ is. An artificial example is a multiplet which has conformal blocks
(and hence convolved conformal blocks) arranged as follows:

G∆,ℓ=
1

∆+ℓ
g∆,ℓ+∆g∆−1,ℓ+1, (3.1a)

F±,∆,ℓ=
1

∆+ℓ
F±,∆,ℓ+∆F±,∆−1,ℓ+1. (3.1b)

In this case, one needs to multiply everything by ∆+ℓ to avoid breakage due to non-
polynomial terms. Afterwards, this two element linear combination where each term has
three pieces of data, is passed as a pair of triples. One simply gives

content = [[1, 0, 0], [delta * (delta + ell), -1, 1]]

to ConvolvedBlockTable.
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3.1 Working with SDPs

The final class to discuss, the SDP, specifies the arrangement of convolved conformal
blocks that needs to vanish for crossing symmetry to hold. The fundamental objects
for these sum rules are

F
ij;kl
±,∆,ℓ(u,v)=v

∆ j+∆k
2 g

∆ij,∆kl

∆,ℓ (u,v)±u
∆ j+∆k

2 g
∆ij,∆kl

∆,ℓ (v,u). (3.2)

The ∆φ variable in (2.21) may be replaced with all possible values of
∆j+∆k

2 that can be
made from the correlator system under consideration. Linear combinations of the (3.2)
blocks need to give zero in all crossing equations. The weights for these are built out of
OPE coefficients which are real by unitarity. When i= j=k= l, we simply have squares of
OPE coefficients which are positive. In this case, the equation ∑Oλ2

OF−,∆,ℓ(u,v)=0 rules
out a CFT whenever some functional Λ is positive on all F−,∆,ℓ. In more complicated
cases, we do not necessarily have positive coefficients. One example [24] is the crossing
equation with no global symmetry:

∑
O

[

λijOλklOF
ij;kl
∓,∆,ℓ(u,v)±λkjOλilOF

kj;il
∓,∆,ℓ(u,v)

]

=0. (3.3)

Here, it is not useful to find a Λ sending all F
ij;kl
±,∆,ℓ to a positive number. What we must

do is find a Λ that sends particular groupings of them to a positive definite matrix. This
is an example of a polynomial matrix problem (a special case of semidefinite program)

maximize Λ·o
such that Λ·Pℓ,R(x)�0 for all x≥0,ℓ,R,

Λ·n=1, (3.4)

which is what SDPB solves. The objective o, the normalization n and the exact relation
between x and ∆ are not needed to initialize an SDP class. However, the representations
R and the groupings of blocks mentioned above need to be passed in a parameter. Let
us call this parameter info and imagine that our correlator system has two operators σ
and ǫ with (∆σ,∆ǫ)= (0.7,1.5). If table3 is another ConvolvedBlockTable instance like
table2 above, we may call

sdp = SDP([0.7, 1.5], [table2, table3], vector types = info)

to get a new SDP. The tables and dimensions above may be specified in an arbitrary
order but indices describing their positions in the list are obtained from info. The
vector types argument is required unless both of the first two arguments are single
elements. Suppose that the sum in (3.3) runs over one representation and all spins. Even
and odd spins are considered separately so from the point of view of PyCFTBoot, this
leads to two representations A and B which we label with 0 and 1 respectively

info = [[info1, 2, 0], [info2, 3, 1]].
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The 2 and 3 have been chosen because any even integer denotes even spin and any odd
integer denotes odd spin. Note that info = [[info2, 3, 1], [info1, 2, 0]] would
be wrong because the first representation must be the one containing the identity oper-
ator. Now suppose that there are three crossing equations with 2×2 matrices in the A
parts and 1×1 matrices in the B parts. They might look something like

∑
O∈A

(λσσOλǫǫO)



































0
1

2
Fσσ;σσ
−,∆,ℓ

1

2
Fσσ;σσ
−,∆,ℓ 0







(

Fσσ;σσ
−,∆,ℓ 0

0 Fσσ;σσ
−,∆,ℓ

)







0
1

2
Fǫǫ;ǫǫ
−,∆,ℓ

1

2
Fǫǫ;ǫǫ
−,∆,ℓ 0



































(

λσσO
λǫǫO

)

+ ∑
O∈B

λ2
σǫO







0
Fσǫ;σǫ
+,∆,ℓ

3

2
Fσǫ;σǫ
+,∆,ℓ






=0. (3.5)

Triples of matrices are easy to specify with Python but each matrix element is encoded by
four pieces of information: a real coefficient, an integer labelling the convolved conformal
block and integers labelling the inner two (j,k in the (3.2) notation) dimensions. If our SDP
is applicable to this system, its [table2, table3] list contains one symmetric convolved
block with ∆σǫ differences and one antisymmetric convolved block with 0 differences. If
they appear in this order, the innermost lists of info1 have a 1 in the second position
while those of info2 have a 0. Indeed, one may check that

info1 =[[[[0.0, 1, 0, 0], [0.5, 1, 0, 0]], [[0.5, 1, 0, 0], [0.0, 1, 0, 0]]],

[[[1.0, 1, 0, 0], [0.0, 1, 0, 0]], [[0.0, 1, 0, 0], [1.0, 1, 0, 0]]],

[[[0.0, 1, 0, 0], [0.5, 1, 1, 1]], [[0.5, 1, 1, 1], [0.0, 1, 0, 0]]]],

info2 =[[0.0, 0, 0, 0], [1.0, 0, 0, 1], [1.5, 0, 0, 1]],

fully describes this artificial example.
Before we describe the various ways in which SDPB can be called to do the heavy

lifting, it is useful to explore the structure of the allocated SDP. Most of the memory is
occupied by table, a three-dimensional list storing the polynomials in ∆. The first in-
dex runs over operators from the (3.3) sum rule meaning spins and representations. The
second and third indices label elements of the matrices that must become positive def-
inite under Λ. These come in the order given by vector types. In (3.5), consider two
indices a and b on either side of the ”middle” len(sdp.table) / 2 element. Since a cor-
responds to an A operator, it is perfectly valid for the user to type sdp.table[a][0][1]

or sdp.table[a][1][0]. With B operators however, only sdp.table[b][0][0] is a valid
query. Elements thus returned correspond to infinite-dimensional functions, but we have
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already gone to great lengths to approximate each of these with a finite-dimensional
vector of derivatives evaluated at the crossing symmetric point. The object storing
this type of truncation is called a PolynomialVector. It has three attributes of which
vector is the most important. This is what stores the actual polynomials in ∆. They
are essentially the convolved conformal block polynomials from (2.22) except they have
been multiplied by the appropriate coefficients in vector types. The length of some-
thing like sdp.table[b][0][0].vector depends on mmax and nmax since each element
is a derivative. However, derivatives are often repeated when the sum rule is vec-
torial. Looking at (3.5), instead of simply seeing infinite-dimensional functions, each
term is a triple of infinite-dimensional functions. PyCFTBoot concatenates the derivatives
used to approximate each one. This makes it difficult to remember what each poly-
nomial represents. For instance, if we were naive enough to include no b derivatives,
sdp.table[b][0][0].vectorwould be

[

0, 0, 0, Pσǫ;σǫ;00
+,b (∆), Pσǫ;σǫ;20

+,b (∆), Pσǫ;σǫ;40
+,b (∆),

3

2
Pσǫ;σǫ;00
+,b (∆),

3

2
Pσǫ;σǫ;20
+,b (∆),

3

2
Pσǫ;σǫ;40
+,b (∆)

]T

.

(3.6)
The SDP type includes two lists that remind us of where different derivatives are posi-
tioned. To see how many a and b derivatives are encoded by a given element, one only
needs to check the corresponding elements of sdp.m order and sdp.n order respectively.
The two other attributes of a PolynomialVector–poles and label–are also Python lists.
The elements of poles are the poles from Table 2 that must be used to reconstruct the
positive prefactor of (2.22). The label is a two element list with a spin first and a rep-
resentation label second∗∗. One more interesting attribute is sdp.unit, the contribution
of the identity. This is the one operator that is guaranteed to appear in every crossing
equation. To calculate this, SDP substitutes ∆= ℓ=0 into the table elements that have R
as the singlet representation. It also multiplies by the proper OPE coefficients. These are
known because the canonically normalized

〈

φi(x1)φj(x2)
〉

=
δij

|x12|∆i+∆j
, (3.7a)

〈

φi(x1)φj(x2)φk(x3)
〉

=
λijk

|x12|∆i+∆j−∆k |x23|∆j+∆k−∆i |x13|∆k+∆i−∆j
, (3.7b)

are only consistent with each other if all λijI =1.
When numerically excluding CFTs, the most obvious physical inputs are the allowed

ranges for the scaling dimensions in a trial spectrum. When ∆∈[∆min,∞), all polynomials
should have ∆ replaced by ∆min+x so that x satisfies the positivity requirement in (3.4).

∗∗The table attributes of ConformalBlockTable and ConvolvedBlockTable have very similar layouts. Be-
cause no vectors of matrices are present at this stage, no derivatives are repeated in the PolynomialVectors
and only one index is needed to iterate over them. Inspecting their label attributes, we see that the second
element is always 0. This is because no other labels have been given in vector types yet.
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In a CFT that is unitary but otherwise unconstrained, ∆min is equal to the unitarity bound,

∆unitary =







d−2

2
, ℓ=0,

d+ℓ−2, ℓ>0.
(3.8)

Although bounds for the SDP class are always initialized to (3.8), they may be changed
with a call to sdp.set bound([l, r], delta min). Here l is a spin and r is a representa-
tion label. These bounds continue to be enforced until they are undone manually. Reset-
ting a given (ℓ,R) to the unitarity bound is done with sdp.set bound([l, r]). Omitting
both arguments causes PyCFTBoot to reset the bounds of all operators. In the exact same
manner, individual points may be added with sdp.add point([l, r], delta value).
These are explicitly allowed dimensions at which PolynomialVectors should be eval-
uated. Calling sdp.add point([0, 0], 1.0) prepares us for bootstrapping a theory
with spin-0 singlets of dimension 1, even after something like sdp.set bound([0, 0],

1.2) has been called. Again, removing points for a given operator type or all operator
types may be accomplished by omitting arguments. The last persistently stored prop-
erty of an SDP is the list of options passed to SDPB. The options that PyCFTBoot correctly
chooses without user interaction are --precision and all options not passed as key-
value pairs. For everything else, a helper function is provided. As an example, one may
leave some processor resources unused by passing the key-value pair --maxThreads=2.
PyCFTBoot can be told to use this with the method sdp.set option("maxThreads", 2).
The line undoing this is sdp.set option("maxThreads") and the line undoing every-
thing is sdp.set option().

3.2 Writing XML files

SDPB learns everything that it needs to know about an optimization from an XML
file [23]. Knowing that the points and bounds determine x in (3.4) while sdp.table

determines the polynomials, only the objective o and the normalization n are needed
to write the XML. To rule out CFTs with a certain gap, one chooses an objective vec-
tor of zero and a normalization of sdp.unit. Another common task is maximizing
a squared OPE coefficient. For this, the objective vector must be sdp.unit with the
PolynomialVector for the (∆,ℓ,R) being maximized as the normalization. These are
specified using sdp.write xml(obj, norm, "name") but it is often not necessary to call
this function directly. A more convenient function is an implementation of the bisection
described in [4], which works for identical scalars. To bisect over gaps in an (ℓ,R) opera-
tor, one should call sdp.bisect(lower, upper, tol, [l, r]). Since this method finds
upper bounds, upper should be a gap where a Λ solving (3.4) exists and lower should
be a gap where such a Λ does not. The boundary between allowed and disallowed re-
gions is returned with a tolerance of tol. Since points on either side of the boundary
take different amounts of time to test, it is convenient to use a biased binary search. Once
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a long test taking time L and a short test taking time S have been performed, we may
approximate the optimal bias β by minimizing the time:

T=#(β)[βL+(1−β)S]∝
βL+(1−β)S

log
[

ββ(1−β)(1−β)
] . (3.9)

We have used the fact that β is also the probability that a given test will reduce our un-
certainty by a factor of β. Strictly speaking, when SDPB finishes finding a functional, the
problem is called primal-dual optimal (another word for ”primal and dual feasible”). The
bisection in PyCFTBoot does not wait for this to happen. Rather, it takes advantage of a
very safe assumption: when dual feasibility (time L) is achieved before primal feasibility
(time S) during SDPB’s iterations, it is only a matter of time before primal feasibility is
achieved as well††. If the full solution functional is desired after a bisection, it may be
found with sdp.solution functional(gap, [l, r]). For an excluded ∆, the returned
functional must turn (ℓ,R)’s matrix of PolynomialVectors into something positive def-
inite. It is therefore useful to tune ∆ until the determinant of this matrix is exactly zero.
These zeros, returned by sdp.extremal dimensions(functional, [l, r]), are exactly
the scaling dimensions in the spectrum of a CFT that lives on the boundary [57]. Rather
than obeying Λ·n= 1, the functionals used by these methods are normalized to have a
leading component of 1. This reflects the alternate definition of a semidefinite program
used by SDPB. Instead of (3.4), the program solves

maximize Λ· õ
such that Λ· P̃ℓ,R(x)�0 for all x≥0,ℓ,R,

Λ0=1, (3.10)

which is trivially equivalent [23]. One simply substitutes

Λ0=
1

n0

(

1−
N

∑
i=1

Λini

)

into (3.4). When we once again collect all terms proportional to Λi, we find that the ith

component of the reshuffled P̃ℓ,R involves components i and 0 of Pℓ,R. Finally, we should
describe PyCFTBoot’s built-in method for bounding OPE coefficients. The logic for this is
easiest to write in the single correlator case: ∑O6=I λ2

OF−,O=−F−,I . Normalizing Λ on the
convolved conformal block of some particular O′ [6],

λ2
O′ =Λ(F−,I)− ∑

O6=I,O′
λ2
OΛ(F−,O)≤Λ(F−,I). (3.11)

††One must be careful when assuming the converse: that only unsolvable problems will achieve primal
feasibility first. Sometimes when testing a point far from the boundary, a primal-dual optimal solution will
be approached with the opposite order.
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The last step of neglecting the strictly positive terms is still valid in the multi-correlator
case. However, if multiple OPE coefficients in the crossing equations involve the operator
O′, the left hand side of (3.11) will involve the quadratic form λT

O′Λ(MO′)λO′ . In this
case, only the length of the OPE coefficient vector will be bounded. Since Λ turns the
vector of matrices MO′ into a single positive definite matrix, we simply use the fact that
the inequality is preserved if we replace this matrix with the identity multiplied by its
smallest eigenvalue. This technique of using Λ(F−,I) to bound a squared OPE coefficient
is implemented by sdp.opemax(delta value, [l, r]). Here, (∆,ℓ,R) are the quantum
numbers of O′.

Users may notice a time delay when allocating an SDP class. This is used for a calcula-
tion involving the positive χℓ(∆) prefactors in (2.22) which have been largely ignored up
to this point. Even though the semidefinite program itself is not affected, incorporating
these into the XML file can significantly improve the performance and numerical stability
of SDPB [23]. The non-trivial step is the calculation of a bilinear basis–a set of polynomi-
als that are orthogonal with respect to the χℓ(∆min+x) measure on (0,∞). Since these
functions only change when the bounds change, the bases do not need to be recalculated
every time an XML file is written. After PyCFTBoot allocates an SDP and calculates all
bases, a particular ℓ’s basis is only recalculated when sdp.set bound([l, r]) is called.
This saves time during a bisection because the many XML files generated only have dif-
ferent bounds for a single operator type. Multi-correlator bootstraps, which cannot use
bisection, typically have all of their XML files generated by different instances of SDP. To
avoid a performance hit in this case, PyCFTBoot provides an optional argument to SDP

called prototype. This allows an existing SDP to have its bilinear basis recycled in the
allocation of a new one. For completeness, we now review the most direct method for
finding m+1 polynomials orthogonal under

χℓ(x)=
r

x+∆min(ℓ)∗
∏i(x+∆min(ℓ)−∆i(ℓ))

. (3.12)

We may clearly multiply by r∆min∗ and shift the poles so we will omit ∆min in what follows.
What we are trying to find is the matrix

L=











q00 0 0 ··· 0
q10 q11 0 ··· 0
...

...
...

. . .
...

qm0 qm1 qm2 ··· qmm











, (3.13)

where the ith polynomial is qi(x)= qi0+qi1x+···+qiix
i. The statement of orthonormality

is
∫ ∞

0
L







1
...

xm






[1···xm]LTχ(x)dx= I. (3.14)
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If we let Mij =
〈

xi,xj
〉

elements come from the positive definite matrix of inner products,

(3.14) says that LMLT = I. Since M = L−1L−1T, L is the inverse of the lower triangular
matrix in the Cholesky decomposition of M [59]. M has anti-diagonal bands because Mij

is fully determined by i+ j. Therefore, our problem reduces to the evaluation of 2m+1

∫ ∞

0

xnrx
∗

∏i(x−∆i)
dx=∑

i

1

∏j 6=i(∆j−∆i)

∫ ∞

0

xnrx
∗

x−∆i
dx

=∑
i

1

(−logr∗)n ∏j 6=i(∆j−∆i)

∫ ∞

0

yne−y

y+∆i logr∗
dy (3.15)

integrals. Above, we have used a partial fraction decomposition valid for simple poles
and made the substitution y=−xlogr∗. Allowing for incomplete gamma functions, the
integral in (3.15) may be evaluated explicitly. This is because the integral representation

Γ(−n,z)=
z−ne−z

Γ(1+n)

∫ ∞

0

yne−y

y+z
dy (3.16)

follows from the relation between the upper incomplete gamma function and the 1F1

hypergeometric function. A related expression which may arise in even d is

∫ ∞

0

yne−y

(y+z)2
dy=nzn−1ezΓ(n)[Γ(1−n,z)−zΓ(−n,z)] . (3.17)

This follows from partial integration. By handling the slightly more complicated partial
fraction decomposition, which PyCFTBoot and the SDPB example code can easily do, this
allows us to still find M when χℓ has double poles. We should note that the Cholesky de-
composition of M can only be found when all of its eigenvalues are significantly greater
than 0. Even if the desired polynomial precision is fairly low, this requirement forces us
to keep many digits before the polynomials can be found at all. It would be interesting
to see if indirect polynomial algorithms [60] can make this step less demanding.

4 Some examples

This section contains longer code snippets to show how the main tasks in the conformal
bootstrap can be accomplished. It can also be used for reference since examples are often
preferable to more verbose documentation. PyCFTBoot is four files at the time of writing
but importing bootstrap.pywill automatically import the others. They should be placed
in the working directory or one of the system directories searched by Python.

4.1 Identical scalars

We begin with the simplest bound: the dimension of φ2 in terms of the dimension of φ.
There must be a Z2 symmetry for these to be different. To set this up in PyCFTBoot, we
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run:

>>> from bootstrap import *

>>> table1 = ConformalBlockTable(3, 15, 15, 1, 3)

>>> table2 = ConvolvedBlockTable(table1)

Recall that this sets up a d=3 table with 15 poles, 15 spins and a 1×3 triangle of deriva-
tives. If we are interested in the ∆φ2 close to where the Ising model is known to live, we
should run:

>>> sdp = SDP(0.52, table2)

>>> result = sdp.bisect(0.7, 1.7, 0.01, 0)

>>> result

1.434375

Although we are limiting ourselves to an error of 1%, the error is more likely dominated
by missing derivatives. The last argument of 0 ([0, 0] is only necessary when there is
more global symmetry) states that we are bounding scalars in the φ×φ OPE rather than
operators of higher spin.

4.2 A faster approach

This bound may be bisected more quickly if we use [10]’s method to only increase the
polynomial degree for sufficiently large residues. Since the cutoff controlling this is a
global variable, it can only be altered if we keep it in its own namespace

>>> import bootstrap

>>> bootstrap.cutoff = 1e-10

>>> table1 = bootstrap.ConformalBlockTable(3, 15, 15, 1, 3)

>>> table2 = bootstrap.ConvolvedBlockTable(table1)

>>> sdp = bootstrap.SDP(0.52, table2)

>>> result = sdp.bisect(0.7, 1.7, 0.01, 0)

>>> result

1.434375

The output from SDPB (supressed above) shows that the iterations take less time and that
they are slightly fewer in number.

4.3 The next scalar

The results above state that consistent CFTs at ∆φ=0.52 stop existing once the scalar part
of the search space starts at 1.44. The search space is allowed to be both discrete and



24 C. Behan / Commun. Comput. Phys., 22 (2017), pp. 1-38

continuous, so even if it starts at 1.434375, we may still require that gaps for all other
operators are significantly greater. Beginning in the same way as before,

>>> sdp = SDP(0.52, table2)

>>> sdp.add point(0, 1.434375)

>>> result = sdp.bisect(1.44, 8.0, 0.01, 0)

>>> result

4.8225

where we have taken the extra step of adding a point. This tells us that one possible
CFT living near the edge of the ∆φ2 bound has 4.8225 as the dimension of its next Z2-
even scalar. However, spectra saturating these bounds are unique [57]. The extremal
functional method exploits this fact to find several low-lying dimensions at once with-
out having to repeat the above procedure. To use this in PyCFTBoot, we need to set ∆φ2

to something slightly larger than 1.434375 where crossing symmetry holds. By our bi-
section, the closest value where an extremal functional exists is at most 0.01 more than
this

>>> sdp = SDP(0.52, table2)

>>> func = sdp.solution functional(1.434375 + 0.01, 0)

>>> spec = sdp.extremal dimensions(func, 0)

>>> spec

[0.95491336461809961, 1.4442910577901338, 4.3268882750844018]

The 0 arguments above are again short for (ℓ,R) labels of [0, 0]. The three dimensions
returned in the spectrum include an inadmissible value, the bound we imposed and the
desired second scalar. This time, it appears much closer to the high precision estimate
obtained in [11].

4.4 Imposing another gap

The previous example shows us how to fix φ2 and then constrain higher scalars in φ×φ.
It is often just as useful to proceed in the other direction. For example, the allowed region
in (∆φ,∆φ2) space shrinks if we first make additional assumptions on the second Z2-even
scalar. This is particularly natural in the Ising model, which constrains this operator to
be irrelevant by definition. We need to increase the derivative order and kept pole order
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to see a noticeable effect:

>>> import bootstrap

>>> bootstrap.cutoff = 1e-10

>>> sig = 0.52

>>> eps = 1.42

>>> table1 = bootstrap.ConformalBlockTable(3, 20, 15, 2, 4)

>>> table2 = bootstrap.ConvolvedBlockTable(table1)

It only makes sense to bisect when the boundary of the allowed region is the graph of
some function. This is no longer the case when we demand that the dimensions of two
internal operators are a certain distance apart.

>>> sdp = bootstrap.SDP(sig, table2)

>>> sdp.set bound(0, 3.0)

>>> sdp.add point(0, eps)

>>> result = sdp.iterate()

>>> result

True

Clearly a point close to the Ising model is still allowed. However, if we start with (sig,

eps) = (0.52, 1.2) and keep the rest of the code the same, it can easily be seen that
sdp.iterate() returns False and begins to reveal a non-trivial shape. A repeated scan
over many different values is what produces the plot in [9] with a sharp corner.

4.5 OPE maximization

Non-trivial features also appear in OPE coefficient bounds. As explained in (3.11),
PyCFTBoot has a method for dealing with this part of the CFT data as well. Using the
same setup as before,

>>> sdp = bootstrap.SDP(0.52, table2)

>>> result1 = sdp.opemax(3.0, 2)

>>> float(result1)

18.76458372724582

Here, we have chosen to maximize the coefficient of a spin-2 operator evaluated ∆unitary=
3. In other words, this bounds λ2

T, the coefficient of the stress-energy tensor. The returned
value is careful to account for the positive prefactors χℓ(∆) but necessarily still depends
on our normalization convention for conformal blocks. The best way to extract the phys-
ical information is to compare this to another OPE coefficient. Below, we do this at the
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(almost) free field theory point

>>> sdp = bootstrap.SDP(0.5001, table2)

>>> result2 = sdp.opemax(3.0, 2)

>>> float(result2)

16.14053403869564

Dividing one result by the other causes any extra factors to cancel out. Because we are
dealing with the stress-energy tensor, we have enough information to find the central
charge

CT =
d

d−1

(

∆φ

λT

)2

. (4.1)

Checking that the one from result1 is about 93% of the one from result2, we have
verified the results of [9, 11] which studied the central charge in the vicinity of the Ising
point.

4.6 Global symmetry

The examples so far have all treated a single crossing equation. One way to go beyond
this is to give our external scalars flavour indices under some global Lie group symmetry.
Fundamentals of SO(N) provide a simple yet important example. Their OPE may be
written schematically as

φi×φj∼ ∑
O∈S

δijO+ ∑
O∈T

O{i,j}+ ∑
O∈A

O[i,j], (4.2)

in terms of singlet, traceless symmetric and antisymmetric tensor structures. Terms with
Fermi symmetry may only couple to odd spins just as Bose symmetry allowed us to only
consider even spins before. Keeping all spins in the tables we prepare, we also need to
perform symmetric and antisymmetric convolutions

>>> from bootstrap import *

>>> table1 = ConformalBlockTable(3, 15, 15, 1, 3, odd spins = True)

>>> table2 = ConvolvedBlockTable(table1, symmetric = True)

>>> table3 = ConvolvedBlockTable(table1)

Now that our tables include odd spins, our sign convention for conformal blocks becomes
especially important. Being careful with this, the sum rule that follows from (4.2) is

∑
O∈S

λ2
O





0
F−,∆,ℓ

F+,∆,ℓ



+ ∑
O∈T

λ2
O













F−,∆,ℓ
(

1− 2

N

)

F−,∆,ℓ

−
(

1+
2

N

)

F+,∆,ℓ













+ ∑
O∈A

λ2
O





F−,∆,ℓ

−F−,∆,ℓ

F+,∆,ℓ



=0. (4.3)
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The last vector differs from what appears in [10] by a sign. The presence of (−1)ℓ in
(2.4) is what tells us to introduce this sign when using PyCFTBoot. It can be seen in [26]
that the same authors have now switched to the normalization used here. Because the
dimensions of the φi are all the same, entries of these vectors may be specified with two
numbers instead of four. It is easy to do this after choosing an N and a list of tables

>>> N = 3.0

>>> table list = [table2, table3]

>>> vec1 = [[0, 1], [1, 1], [1, 0]]

>>> vec2 = [[1, 1], [1.0 - (2.0 / N), 1], [-(1.0 + (2.0 / N)), 0]]

>>> vec3 = [[1, 1], [-1, 1], [1, 0]]

To formulate (4.3) we just need to give these vectors (even, even, odd) spins and (0, 1, 2)
representation labels.

>>> info = [[vec1, 0, 0], [vec2, 0, 1], [vec3, 1, 2]]

>>> sdp = SDP(0.52, table list, vector types = info)

>>> result = sdp.bisect(0.7, 1.8, 0.01, [0, 0])

>>> result

1.6453125000000002

This value is approximately what it should be, looking at the bound on singlet scalars
produced in [10].

4.7 Mixed correlators

Applying the above methods when four point functions have arbitrary scaling dimen-
sions represents an important advance for the bootstrap. This can reveal a wealth of
information even for the simplest CFTs because OPEs with no dimension difference are
blind to Z2-odd operators. Following [24] where many more details can be found, we
present an example with only Z2 symmetry. The even ǫ ∈ E is now more than just an
internal operator being summed over. It is a member of the four point function on the
same level as the odd σ∈O. Letting the indices in (3.3) run over all combinations of σ
and ǫ, we derive a number of crossing equations that can be put into matrix form.

∑
O∈E,2|ℓ

(λσσOλǫǫO)VE,∆,ℓ

(

λσσO
λǫǫO

)

+ ∑
O∈O,2|ℓ

λ2
σǫOVO+,∆,ℓ+ ∑

O∈O,2∤ℓ

λ2
σǫOVO−,∆,ℓ=0, (4.4)
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where

VE,∆,ℓ=















































(

Fσσ;σσ
−,∆,ℓ 0

0 0

)

(

0 0
0 Fǫǫ;ǫǫ

−,∆,ℓ

)

(

0 0
0 0

)







0
1

2
Fσσ;ǫǫ
−,∆,ℓ

1

2
Fσσ;ǫǫ
−,∆,ℓ 0













0
1

2
Fσσ;ǫǫ
+,∆,ℓ

1

2
Fσσ;ǫǫ
+,∆,ℓ 0





















































, VO+,∆,ℓ=















0
0

Fσǫ;σǫ
−,∆,ℓ

Fǫσ;σǫ
−,∆,ℓ

−Fǫσ;σǫ
+,∆,ℓ















, VO−,∆,ℓ=















0
0

Fσǫ;σǫ
−,∆,ℓ

−Fǫσ;σǫ
−,∆,ℓ

Fǫσ;σǫ
+,∆,ℓ















.

(4.5)

The only difference with respect to [24] is our choice not to use factors of (−1)ℓ to com-
bine the O sums over even and odd spins in (4.4). Looking at all possible dimension
differences, there are three conformal block tables to make which give rise to five convo-
lutions.

>>> from bootstrap import *

>>> sig = 0.518

>>> eps = 1.412

>>> g tab1 = ConformalBlockTable(3, 20, 20, 2, 4)

>>> g tab2 = ConformalBlockTable(3, 20, 20, 2, 4, \
... eps - sig, sig - eps, odd spins = True)

>>> g tab3 = ConformalBlockTable(3, 20, 20, 2, 4, \
... sig - eps, sig - eps, odd spins = True)

>>> f tab1a = ConvolvedBlockTable(g tab1)

>>> f tab1s = ConvolvedBlockTable(g tab1, symmetric = True)

>>> f tab2a = ConvolvedBlockTable(g tab2)

>>> f tab2s = ConvolvedBlockTable(g tab2, symmetric = True)

>>> f tab3 = ConvolvedBlockTable(g tab3)

>>> dim list = [sig, eps]

>>> tab list = [f tab1a, f tab1s, f tab2a, f tab2s, f tab3]

Entering VO±,∆,ℓ is similar to our syntax for the vectors in (4.3). However, we need two
dim list indices after the tab list index to specify the inner σs and ǫs

>>> v2 = [[0, 0, 0, 0], [0, 0, 0, 0], [1, 4, 1, 0], [1, 2, 0, 0], [-1, 3, 0, 0]]

>>> v3 = [[0, 0, 0, 0], [0, 0, 0, 0], [1, 4, 1, 0], [-1, 2, 0, 0], [1, 3, 0, 0]]



C. Behan / Commun. Comput. Phys., 22 (2017), pp. 1-38 29

To continue with VE,∆,ℓ, each entry should be a 2×2 matrix in the standard Python nota-
tion

>>> m1 = [[[1, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0]]]

>>> m2 = [[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [1, 0, 1, 1]]]

>>> m3 = [[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0]]]

>>> m4 = [[[0, 0, 0, 0], [0.5, 0, 0, 1]], [[0.5, 0, 0, 1], [0, 0, 0, 0]]]

>>> m5 = [[[0, 1, 0, 0], [0.5, 1, 0, 1]], [[0.5, 1, 0, 1], [0, 1, 0, 0]]]

>>> v1 = [m1, m2, m3, m4, m5]

Folding these into the final argument of SDP and iterating can now be done in a familiar
way. We should also use an option to ensure that anything taking much longer than a
primal feasible problem is correctly recognized as a dual feasible problem

>>> info = [[v1, 0, 0], [v2, 0, 1], [v3, 1, 2]]

>>> sdp = SDP(dim list, tab list, vector types = info)

>>> sdp.set option("dualErrorThreshold", 1e-15)

>>> sdp.add point([0, 2], sig)

>>> sdp.set bound([0, 2], 3.0)

>>> sdp.set bound([0, 0], eps)

>>> result = sdp.iterate()

>>> result

True

The only Z2-even bound we have set is the one that defines ǫ. Instead, the power of
this bound comes from our Z2-odd statement, that every such operator except σ has
∆> 3. Repeating this example with (sig, eps) = (0.518, 1.2) returns False which
is exactly what we saw with the Z2-even gap before. However, this time we can also
rule out CFTs by going ”right” of the Ising model in (∆σ,∆ǫ) space. Since (sig, eps) =

(0.53, 1.412) also returns False, we begin to see hints that we are exploring an isolated
region of allowed scaling dimensions.

4.8 A superconformal example

Among the known constructions of conformal field theories, examples without super-
symmetry are relatively rare. In adapting our CFT bootstrap methods to handle SCFTs,
the main new step is combining conformal blocks for different operators in the same
multiplet. For the example of 4D N =1 chiral primaries, [17] found the following blocks
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adding to the results of [61]:

G∆,ℓ=g∆,ℓ−
(ℓ+2)(∆+ℓ)

(ℓ+1)(∆+ℓ+1)
g∆+1,ℓ+1−

ℓ(∆−ℓ−2)

(ℓ+1)(∆−ℓ−1)
g∆+1,ℓ−1

+
(∆+ℓ)(∆−ℓ−2)

(∆+ℓ+1)(∆−ℓ−1)
g∆+2,ℓ. (4.6)

The R-symmetry in this case is U(1)≃SO(2) which allows us to write

∑
O∈S,2|ℓ

λ2
O





F−,∆,ℓ

F−,∆,ℓ

F+,∆,ℓ



+ ∑
O∈T,2|ℓ

λ2
O





0
2F−,∆,ℓ

−2F+,∆,ℓ



+ ∑
O∈S,2∤ℓ

λ2
O





−F−,∆,ℓ

F−,∆,ℓ

F+,∆,ℓ



=0. (4.7)

One change compared to (4.3) is that we have recognized antisymmetric A operators as
simply being odd-spin singlets. The other is that we have replaced the middle row with
itself plus twice the top row and replaced the top row with the middle row. Due to the
(−1)ℓ factor in (2.4), we have paid attention to the middle two terms of (4.6) and the last
term of (4.7). Otherwise the normalization of our N =1 block is the same as that of [27].
Seeing the difference between the first two rows above, it becomes clear that a final sum
rule will also have to involve

G̃∆,ℓ=g∆,ℓ+
(ℓ+2)(∆+ℓ)

(ℓ+1)(∆+ℓ+1)
g∆+1,ℓ+1+

ℓ(∆−ℓ−2)

(ℓ+1)(∆−ℓ−1)
g∆+1,ℓ−1

+
(∆+ℓ)(∆−ℓ−2)

(∆+ℓ+1)(∆−ℓ−1)
g∆+2,ℓ. (4.8)

Lines that encode this in PyCFTBoot are

>>> import bootstrap

>>> c1 = (delta + ell + 1) * (delta - ell - 1) * (ell + 1)

>>> c2 = -(delta + ell) * (delta - ell - 1) * (ell + 2)

>>> c3 = -(delta - ell - 2) * (delta + ell + 1) * ell

>>> c4 = (delta + ell) * (delta - ell - 2) * (ell + 1)

>>> combo1 = [[c1, 0, 0], [c2, 1, 1], [c3, 1, -1], [c4, 2, 0]]

>>> combo2 = combo1

>>> combo2[1][0] *= -1

>>> combo2[2][0] *= -1

where each triple has a coefficient, a shift in ∆ and then a shift in ℓ. Uncharged opera-
tors in S come from OPEs of the form Φ×Φ†. These are the ones that have three other
operators related by supersymmetry. There are also the T operators from Φ×Φ OPEs
which only make use of regular conformal blocks. Allocating all of the tables we need,
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it is advisable to keep many derivatives because the convergence of 4D N =1 bounds is
notoriously slow

>>> g tab = ConformalBlockTable(3.99, 25, 26, 3, 5, odd spins = True)

>>> f tab1a = ConvolvedBlockTable(g tab)

>>> f tab1s = ConvolvedBlockTable(g tab, symmetric = True)

>>> f tab2a = ConvolvedBlockTable(g tab, content = combo1)

>>> f tab2s = ConvolvedBlockTable(g tab, symmetric = True, content = combo1)

>>> f tab3 = ConvolvedBlockTable(g tab, content = combo2)

>>> tab list = [f tab1a, f tab1s, f tab2a, f tab2s, f tab3]

With 26 spins kept above, the spins of our singlet operators will go up to 25 because
each superconformal block draws from the spin above it. The normalization in (4.6) is
convenient because the spin-0 expression gives a vanishing coefficient to its ℓ−1 term. If
this were not the case, PyCFTBoot would still skip any terms telling us to naively include
negative spin. The main remaining task is to write (4.7) in terms of superconformal blocks
and absorb a factor of 2 for convenience

∑
O∈S,2|ℓ

λ2
O





F̃−,∆,ℓ

F−,∆,ℓ

F+,∆,ℓ



+ ∑
O∈S,2∤ℓ

λ2
O





−F̃−,∆,ℓ

F−,∆,ℓ

F+,∆,ℓ



+ ∑
O∈T,2|ℓ

λ2
O





0
F−,∆,ℓ

−F+,∆,ℓ



=0. (4.9)

We will now enter this as an SDP at an external dimension of ∆φ=1.4.

>>> vec1 = [[1, 4], [1, 2], [1, 3]]

>>> vec2 = [[-1, 4], [1, 2], [1, 3]]

>>> vec3 = [[0, 0], [1, 0], [-1, 1]]

>>> info = [[vec1, 0, 0], [vec2, 1, 1], [vec3, 0, 2]]

>>> sdp = SDP(1.4, tab list, vector types = info)

Since T is constrained by more than just unitarity, we need to set the bound ∆min =
|2∆φ−3|+3+ℓ. The only dimensions lower than this in the charged sector belong to
BPS operators with ∆=2∆φ+ℓ. Finishing the computation of this bound,

>>> sdp.set option("dualErrorThreshold", 1e-22)

>>> for l in range(0, 27, 2):

... sdp.set bound([l, 2], abs(2 * 1.4 - 3) + 3 + l)

... sdp.add point([l, 2], 2 * 1.4 + l)

...

>>> result = sdp.bisect(3.0, 6.0, 0.01, [0, 0])

>>> result

3.966796875
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This is still about 20% away from the known value where a special theory is conjectured
to live. The properties of this kink have been studied extensively in [30].

5 A longer example

As a final demonstration, we use PyCFTBoot to investigate operator dimensions on the
line of critical theories interpolating between the Ising model in d=3 and the free boson in
d=4. The most standard argument for these theories comes from the perturbative analy-
sis of Wilson and Fisher [62]. Perturbation theory yields insight because φ4 theory, which
is infrared free in 4 dimensions, has a weakly coupled IR fixed point when the dimension
is analytically continued to 4−ε. Since they come from a theory with Z2 symmetry, all of
these fixed points should be in the Ising model’s universality class. The operators φ and
φ2 become what we have been calling σ and ǫ — the scalar of lowest dimension and the
first scalar appearing in the simplest OPE. Making only a unitarity assumption, [37] used
the bootstrap to go beyond perturbation theory and place upper bounds on ∆ǫ in terms of
∆σ over the whole range of dimensions. Our goal is to constrain (∆σ,∆ǫ) space further by
using the same assumptions that have been successful with the 3D Ising model [23, 24].
Namely, we demand that only a single Z2-odd scalar has a dimension below d.

Since only this gap and the conformal blocks depend on d, we use the same
crossing equations as (4.4). For our truncation parameters, we choose kmax = 30,
ℓmax = 20, mmax = 3 and nmax = 5. The only non-default parameters of SDPB are
--precision=660 --dualErrorThreshold=1e-15. Allowed CFTs return found primal

feasible solution well before this. Due to the number of points that must be checked,
it does not make sense to call ConformalBlockTable every time we get to a new point.
It is common for two different points in the region being scanned to have the same di-
mension differences. For this reason, we use PyCFTBoot to dump all of the tables before-
hand and then setup SDPs as a second step. Each SDP is allocated with the prototype =

old sdp argument since almost all parts of the bilinear basis are shared. The resolutions
chosen for our scans are given in Table 5. When a pair of anomalous dimensions is found
to be compatible with crossing symmetry, a pixel of the appropriate width and height is
drawn. Anomalous dimensions are defined via

γσ=∆σ−
d−2

2
, γǫ=∆ǫ−(d−2). (5.1)

Table 5: Horizontal and vertical spacing between points checked for primal / dual feasibility.

d Horizontal step Vertical step

3 0.0005 0.005

3.25 0.0001 0.001

3.5 0.0001 0.001

3.75 0.00005 0.0005
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Figure 1: Plot of allowed anomalous dimensions in d∈{3,3.25,3.5,3.75}. For each d, there is a closed region
of points that cannot be excluded using the constraints of the conformal bootstrap on the correlators 〈σσσσ〉,
〈σσǫǫ〉, 〈ǫǫǫǫ〉. Their positions have good agreement with the dimensions of the Wilson-Fisher fixed points
calculated with the ε-expansion.

Results of these scans are shown in Fig. 1. The well known 3D island occupies the top
right corner. In the bottom left corner is a barely visible island for d = 3.75. It consists
of just three points centred at (∆σ,∆ǫ)≈ (0.8757,1.839). Although it is likely that larger
regions of non-excluded points exist away from each island, we have not attempted to
search for them.

Numerical checks indicate that the islands shrink as we increase the dimension of
our search space. However, their characteristic sizes for a fixed number of derivatives
clearly depend on d. Whereas the error bar on ∆σ from our 3D Ising scan is about 0.005,
the same computational resources put toward the Wilson-Fisher fixed point in d = 3.75
give us an error bar that is two orders of magnitude smaller. It is in fact comparable
in size to the second smallest island found for the 3D Ising model in [23]. This makes
sense because increasing d brings us closer to the perturbative regime where error bars
from a numerical technique like the bootstrap are not needed at all. This trend is also
the reason why we have not decreased d further. Below 3, the islands continue to grow
until they merge with the unbounded regions. In the extreme case of d = 2, the same
plot that follows purely from crossing symmetry and unitarity is returned with the extra
assumptions here having no effect. We thank Anton de la Fuente for pointing this out.

6 Discussions

The last example, intended merely to demonstrate the capabilities of PyCFTBoot, was
done with much less CPU time than bootstrap calculations designed to break precision
records. Indeed, this has not been accomplished. Using Borel summation and agreement
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with 2D values as a boundary condition, [63] has calculated Wilson-Fisher critical expo-
nents up to fifth order in ε=4−d. Their values for d=3.75 converted to conformal scaling
dimensions are

∆σ =0.875718±0.000005, ∆ǫ =1.83943±0.00005. (6.1)

Our bootstrap result, which is in complete agreement, does not fix as many digits. More-
over, it is not necessarily true that our error bars, found by rigorously excluding points
are safer to use than those found by resummation techniques. The caveat that prevents
this interpretation is the tacit assumption that the Wilson-Fisher fixed point is unitary.
While this assumption has long been made, it is incorrect according to a recent analy-
sis which takes non-integer d seriously [64]. A striking result is their finding that four
descendants in the spectrum have the complex dimensions

∆=23+

(

λ

36
− 7

2

)

ε+O(ε2),

λ∈{16.93372103±5.59469106i,42.88540243±1.07557547i}. (6.2)

These evanescent operators, as they are called, have correlation functions with more fa-
miliar operators like φ and φ2 that only vanish when d is an integer. The primaries from
which they arise are guaranteed to have ∆≥15 [64].

Unlike some more approximate schemes [65], the methods used in SDPB and similar
codes cannot rule out trial spectra containing complex dimensions. Complex dimensions
would motivate us to consider polynomials in x+iy instead of just x. Since dimensions
occur in conjugate pairs, the only natural domain for y would be all of R. This is incom-
patible with the positivity conditions of (3.4) which have to be phrased on a half-line‡‡.
Even if this problem could be solved, adapting the method to non-unitary theories would
also require a way of dealing with complex OPE coefficients. It is important then to dis-
cuss why Figure 1 still appears to show four reasonable islands.

For d sufficiently close to 3, it is obvious that an island will still be found. The boot-
strap, like any well-posed computational problem, is robust to small changes in the pa-
rameters. These parameters include the spatial d and also the dimensionality of Lie group
symmetries that are present [16, 33]. On the other hand, there have already been situa-
tions where d is fractional enough for the bootstrap to rule out all unitary theories [66].
Parameters that impact our ability to make this distinction are the number of poles and
the number of derivatives. There are three possibilities for what happens as they are
increased:

1. The islands disappear when these parameters reach certain large but finite num-
bers.

‡‡When a polynomial has odd degree for example, it can never be positive for all x ∈R. Neglecting odd
degrees does not make sense because a conformal block approximation can never become worse when its
degree increases by one.
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2. The islands persist because some undiscovered unitary CFT has a low-lying spec-
trum very similar to that of the Wilson-Fisher fixed point.

3. The islands persist for some other reason.

We conjecture that the first option is realized. In particular, one’s ability to find a fake
”Wilson-Fisher island” with arbitrarily high precision would cast doubt on the conven-
tional wisdom for what happens to the Ising model’s island in d=3. A mixed correlator
bootstrap that lacks the power to rule out some crossing asymmetric points in 3< d<4,
would probably also cause the 3D island to converge to a finite size. While this is a possi-
ble topic for future work, it is also likely to be a difficult one. The island for d=3.75 is only
small compared to the scale of Fig. 1. We have no reason to believe that it is anywhere
close to disappearing.

Apart from this, there are still many unitary theories that can benefit from a confor-
mal bootstrap treatment. PyCFTBoot can allow these studies to happen more quickly and
serve as a starting point for those wishing to test modifications to the various algorithms.
Adding code to deal with more general conformal blocks is an important next step. Con-
straints from external tensor and spinor operators are expected to shed light on a number
of previously unexplored theories in 2<d<6. They could also help answer the still open
question of whether interacting CFTs above six dimensions can exist.

The list of example problems that PyCFTBoot can handle is already fairly large. We
expect this to grow as the community makes progress on important phenomenological
questions at an increasing rate. If bugs are encountered along the way, anyone can read
the code of PyCFTBoot or one of its dependencies in order to suggest a fix. A few flagship
results of the bootstrap have become widely known and the pool of introductory papers
is of course larger than it has ever been. Now that adequate software is available for
bootstrapping a CFT from start to finish, the time is ripe to get new people involved.
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