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Abstract. Recently, a new family of splitting methods, the so-called vector penalty-
projection methods (VPP) were introduced by Angot et al. [4, 7] to compute the solu-
tion of unsteady incompressible fluid flows and to overcome most of the drawbacks of
the usual incremental projection methods. Two different parameters are related to the
VPP methods: the augmentation parameter r≥0 and the penalty parameter 0< ε≤1.
In this paper, we deal with the time-dependent incompressible Stokes equations with
open boundary conditions using the VPP methods. The spatial discretization is based
on the finite volume scheme on a Marker and Cells (MAC) staggered grid. Further-
more, two different second-order time discretization schemes are investigated: the
second-order Backward Difference Formula (BDF2) known also as Gear’s scheme and
the Crank-Nicolson scheme. We show that the VPP methods provide a second-order
convergence rate for both velocity and pressure in space and time even in the pres-
ence of open boundary conditions with small values of the augmentation parameter r
typically 0≤ r≤1 and a penalty parameter ε small enough typically ε=10−10. The re-
sulting constraint on the discrete divergence of velocity is not exactly equal to zero but
is satisfied approximately as O(εδt) where ε is the penalty parameter (taken as small as
desired) and δt is the time step. The choice r=0 requires special attention to avoid the
accumulation of the round-off errors for very small values of ε. Indeed, it is important
in this case to directly correct the pressure gradient by taking account of the velocity
correction issued from the vector penalty-projection step. Finally, the efficiency and
the second-order accuracy of the method are illustrated by several numerical test cases
including homogeneous or non-homogeneous given traction on the boundary.
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1 Introduction

The numerical solution of incompressible flows has always been an important subject
in fluid dynamics. The major difficulty in numerically solving unsteady incompressible
Navier-Stokes equations in primitive variable form arises from the fact that the veloc-
ity and the pressure are coupled by the incompressibility constraint at each time step.
There are numerous ways to discretize these equations, see e.g., the short review in [4].
Undoubtedly, the most popular are operator-splitting discretization schemes known as
projection methods. This family of methods has been introduced by Chorin (1968) and
Temam (1969) [14,36]. The interest in projection methods arises from the fact that the com-
putations of the velocity and the pressure are decoupled by a two-step predictor-corrector
procedure which significantly reduces the computational cost. In the first step, an inter-
mediate velocity field is computed by solving momentum equations, ignoring the incom-
pressibility constraint. In the second step, the predicted velocity field is projected onto
a divergence-free vector field in order to get the pressure and the corrected velocity that
satisfies the mass equation using the Helmholtz-Hodge decomposition. However, this
process introduces a new numerical error, often named the splitting error, which must be
at worst of the same order as the time discretization error. These projection methods were
improved by Goda [18] in 1979 and named ”the standard incremental projection meth-
ods”; they were popularized by Van Kan [38] in 1986 who introduced a second-order
incremental pressure-correction scheme. It is well-known that in the projection step, a
difficulty arises from the existence of an artificial pressure Neumann boundary condition
which spoils the numerical solution of the pressure. This phenomenon was corrected by a
variant proposed by Timmermans et al. [37] and analyzed by Guermond et al. [19] under
the name ”rotational incremental projection methods”. A series of fractional step tech-
niques including pressure-correction and incremental projection methods can be found
in the review paper of Guermond et al. [20]. In 1992, Shen [35] introduced a modified
approach which consists in adding a penalty term built from the divergence constraint in
the first step of the scheme of the same form as in Augmented Lagrangian methods [17].
This approach is called ”penalty-projection method”. The same idea was suggested in-
dependently by Caltagirone and Breil [12] with some additional variants and was called
”vector-projection step”. In the same way, Jobelin et al. [30] proposed a numerical scheme
which falls in the category of the penalty-projection method. This scheme generalizes the
prediction step by an augmentation parameter totally independent of the time step and
modifies consistently the projection step; numerical results using finite element approx-
imation show that only small or moderate values of the augmentation parameter r are
sufficient to get accurate results. This numerical scheme was also theoretically analyzed
in [35] and later in [8].

Recently, a new family of methods, the so-called ”vector penalty-projection methods”
(VPP) was proposed in [4]. Two parameters are related to the VPP methods: the aug-
mentation parameter r>0 and the penalty-parameter 0< ε≤1. These methods represent
a compromise between the best properties of both classes: the Augmented Lagrangian
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methods (without inner iteration) and the splitting methods under a vector form. It was
derived to overcome most of the drawbacks of the projection methods, see [4]: in fact,
an original penalty-correction step for the velocity vector replaces the standard scalar
pressure-correction to calculate flows with divergence-free velocity. These VPP methods
are designed on the basis of both fast discrete Helmholtz-Hodge decompositions intro-
duced in [9] and on the splitting penalty method proposed in [5] to efficiently solve gen-
eral saddle-point problems. This allows us to easily impose the desired boundary con-
dition to the end-of-step velocity pressure variables. The VPP methods were improved
in [1, 6, 7, 13] where it is shown that such methods are also very efficient to compute in-
compressible multiphase viscous flows or Darcy flows whatever the density, viscosity
or permeability jumps. Indeed, they are shown to favorably compete with the best in-
cremental projection methods or Augmented Lagrangian methods in terms of accuracy,
cheapness and robustness.

In [1, 4, 7], the VPP methods were implemented using the first-order Euler implicit
scheme in time with Dirichlet conditions on the boundary. The authors found that the
scheme is O(h2) in space for velocity and pressure, where h is the spatial mesh step of the
Marker and Cells (MAC) scheme and O(δt) in time for velocity and pressure (δt is the
time step).

Many applications such as free surface problems and channel flows have to deal with
open (traction or pseudo-traction) boundary conditions on a part of the boundary. In this
paper, we are interested in the vector penalty-projection methods for open boundary con-
ditions. The ability of projection methods to correctly treat open boundary conditions has
been discussed in length in the literature. We report in this section some recent progress
made in this direction.

Guermond et al. [20] use the standard incremental projection method and prove that

the spatial convergence rate is between O(h) and O(h
3
2 ) for the velocity and O(h

1
2 ) for

the pressure. They also obtain that the temporal convergence rate is between O(δt) and

O(δt
3
2 ) for the velocity and O(δt

1
2 ) for the pressure. These results are improved by the

rotational incremental scheme. The convergence rates for both velocity and pressure are

expected to be between O(h) and O(h
3
2 ) in space and between O(δt) and O(δt

3
2 ) in time.

Févrière et al. [16] combine the penalty-projection method with a spatial discretization
by finite volume on staggered mesh. They obtain reasonably good results for moderate
values of r (typically r = 10). These results are similar to those obtained with a finite
element discretization [30]. Liu [32] presents a new numerical scheme using a pressure
Poisson equation formulation and proposes new conditions for the pressure on the open
or the traction boundaries. He proves the unconditional stability of a first-order semi-
implicit scheme and shows second-order accuracy in time on velocity and pressure for
the second-order scheme. Hasan et al. [23] present a new procedure for extrapolating ve-
locities at the open boundary for the computations of incompressible flows around rigid
bodies. Hosseini et al. [29] implement a rotational projection scheme to compute incom-
pressible flows using Smoothed Particle Hydrodynamics (SPH). The scheme produces
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more accurate results especially for pressure and drag. It facilitates simulation with open
boundaries and flow around solid obstacles. Poux et al. [33] propose a new numerical
scheme in the framework of pressure-correction methods to compute the numerical so-
lution of incompressible Navier-Stokes equations with open boundary conditions. They
obtain good results both for spatial and temporal convergence rates. In particular, their
method improves the standard incremental scheme to a spatial convergence of O(h2) for
velocity and pressure while remaining compatible with the rotational scheme. It also
improves the orders of the standard incremental scheme to a temporal convergence rate
of O(δt2) for the velocity and close to O(δt2) for pressure. Additionally, it slightly im-
proves the orders of the rotational scheme to a convergence rate of O(δt2) for velocity
and pressure. For the same purpose, Poux et al. [34] have recently suggested a new nu-
merical scheme in the framework of the velocity-correction methods with a proposed
open boundary condition. They obtain good numerical results: concerning the spatial
convergence, both the standard incremental and the rotational schemes lead to a second
order convergence rate for velocity and pressure with the proposed open boundary con-
ditions using the finite volume method. Concerning the temporal convergence, the ro-
tational form of their method with the proposed open boundary condition improves the
convergence rate to a second order convergence rate for velocity and pressure whereas it

remains at O(δt
3
2 ) for velocity and O(δt) for pressure with the standard open boundary

condition.

Finally, it is well-known that the Augmented Lagrangian method with Uzawa inner
iterations, see e.g., [17], yields accurate results with Dirichlet or open boundary condi-
tions, see e.g., [31]. However, this method suffers from locking effects when the augmen-
tation parameter r is large. In this case, many inner iterations are required and thus the
solution cost is expensive, especially in 3 dimensions (3-D). For this reason, the splitting
penalty methods proposed in [5] are very efficient by avoiding the locking effect with
r = 1/ε and for very small values of ε. The VPP methods presented in this paper are
based on this splitting penalty method.

In the literature, the VPP methods concern only the case of the first-order time dis-
cretization with Dirichlet boundary conditions. The present paper is devoted to the ex-
tension of such methods to a second-order time discretization, either with the second-
order Backward Difference Formula (BDF2) or with the Crank-Nicolson scheme. More-
over, we study the case of open boundary conditions with a given traction. We propose
two sets of open boundary conditions to naturally ensure the optimal second-order ac-
curacy in both space and time through different benchmark problems. We believe that
this paper provides an important progress since many formally second-order projection
methods suffer from a degradation of precision when open boundary conditions are con-
sidered.

The objective of the present work is to show the optimal convergence rate of the
vector-penalty projection methods when solving the unsteady incompressible viscous
flow problems including open boundary conditions. We study both Stokes and Navier-
Stokes problems since it is well-known that the degradation of accuracy also occurs for
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both linear and nonlinear viscous flows with most methods; see e.g. [20, 21].
The remainder of the paper is organized as follows. In Section 2, the unsteady incom-

pressible Navier-Stokes problem is stated and some notations are introduced. The VPP
methods with Dirichlet boundary conditions are described in Section 3. We numerically
justify the speed and the cheapness of the projection step in terms of iterations number
while maintaining the penalty parameter ε as small as possible. Section 4 is devoted to
the presentation of the VPP methods with open boundary conditions using two different
second-order schemes for time discretization: the BDF2 scheme and the Crank-Nicolson
scheme. In addition, we draw a special attention to the choice of r=0 for small values of
ε. In Section 5, various numerical results are presented, discussed and compared to the
results obtained by other projection methods. We conclude in Section 6.

2 Formulation of the continuous problem

Let Ω ⊂ R
d (d = 2 or 3 in practice) be an open, bounded and connected domain with

a Lipschitz continuous boundary Γ = ∂Ω. We suppose that Γ is partitioned into two
subsets ΓD and ΓN , of outward unit normal vector n, such that Γ=ΓD∪ΓN , ΓD∩ΓN =∅.
The generic point in Ω is denoted by x.

We denote L2(Ω)-norm by ‖.‖0, the H1(Ω)-norm by ‖.‖1, the H−1(Ω)-norm by ‖.‖−1

and L2(Ω)-inner product by (., .)0.
Let us introduce the following functional spaces:

L2(Ω)=
(

L2(Ω)
)d

,

H1(Ω)=
{

u∈L2(Ω);∇u∈ (L2(Ω))d×d
}

,

W(Ω)=
{

u∈H1(Ω)d;u=0onΓD andu·n=0onΓN

}
,

L2
0(Ω)=

{
q∈L2(Ω);

∫

Ω

qdx=0

}
.

For T>0, we consider the time-dependent incompressible Navier-Stokes equations in the
primitive variables on a finite time interval [0,T]:

ρ

(
∂v

∂t
+(v·∇)v

)
−µ∆v+∇p= f in Ω×]0,T[, (2.1)

∇·v=0 in Ω×]0,T[, (2.2)

v=vD on ΓD×]0,T[, (2.3)

−pn+µ∇v·n=g on ΓN×]0,T[, (2.4)

where v=(u,v)T denotes the fluid velocity of initial value v(t=0) = v0, p the pressure field,
ρ the fluid density (the density is taken to 1 and µ the dynamic viscosity (here, µ=1/Re
with Re a given Reynolds number). We impose Dirichlet boundary condition (2.3) on
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ΓD and a pseudo-traction condition (2.4) on ΓN which is derived from the pseudo-stress
tensor σ̃ given by:

σ̃=−pI+µ∇v.

The external body forces f, the pseudo-stress vector g and the Dirichlet boundary condi-
tion vD are known.

In this paper, we call (2.4) the open or natural boundary condition. In some situations,
the force acting on ΓN might be given by

σ(v,p)=−pn+µ(∇v+∇vT)·n=g (2.5)

instead of (2.4).

Finally, the reader will keep in mind that bold letters such as v, g, etc., indicate vector
valued quantities.

Remark 2.1 (Role of the pressure). In the incompressible flow, pressure is no longer a
thermodynamic quantity but a Lagrange multiplier and it just establishes itself instanta-
neously in a flow field so that the velocity vector field always remains divergence free.
Finally, we notice that the continuous Navier-Stokes problem does not need an initial
condition for the pressure in the incompressible case and only an initial condition for the
velocity is required.

3 Vector penalty-projection methods with Dirichlet boundary

conditions

Let 0= t0
< t1

< ···< tN =T be a partition of the time interval of computation [0,T] which
we suppose uniform for sake of simplicity. We denote by δt= tn+1−tn

>0 the time step.
Let φ0, φ1,··· ,φN be a sequence of functions in a Hilbert space H. We denote this sequence
by φδt and we define the following discrete norm: ‖φδt ‖l2(H):=(δtΣN

n=0 ‖φn ‖2
H)

1/2. The
notation vn is used to represent an approximation of v(tn), where tn =nδt.

3.1 Description of the VPP methods with Dirichlet boundary conditions

In this subsection, we present the vector penalty-projection methods for the incompress-
ible Navier-Stokes problem supplemented with Dirichlet boundary conditions on the
whole boundary Γ. Note that in this case, Γ=ΓD and ΓN =∅.

We use a semi-implicit time-integration scheme. We approximate the time derivative
by the Backward Difference Formula of second-order (BDF2). The convective term is
handled explicitly. Finally, the viscous term is treated implicitly. Hence, the VPP methods
reads as follows.

Let n≥ 1 such that (n+1)δt≤ T, ṽ0,ṽ1,v0,v1 ∈L2(Ω) and p0,p1 ∈ L2
0(Ω) given. Find

(vn+1, pn+1) such that:
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• Vector penalty-prediction step with an augmentation parameter r≥0:

3ṽn+1−4ṽn+ṽn−1

2δt
+NLT1−µ∆ṽn+1−r∇(∇·ṽn+1)

+∇p⋆,n+1= fn+1 in Ω×]0,T[, (3.1)

ṽn+1=vn+1
D on ΓD×]0,T[, (3.2)

where p⋆,n+1 is the second-order Richardson extrapolation for pn+1:

p⋆,n+1=2pn−pn−1,

and NLT1 is the second-order extrapolated nonlinear term:

NLT1 =2(vn ·∇)ṽn−(vn−1 ·∇)ṽn−1.

• Vector penalty-projection step with a penalty parameter 0< ε≤1:

3v̂n+1−4v̂n+v̂n−1

2δt
+NLT2−εµ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω×]0,T[, (3.3)

v̂n+1=0 on ΓD×]0,T[, (3.4)

where NLT2 is the second-order extrapolated nonlinear term:

NLT2 =2(vn ·∇)v̂n−(vn−1 ·∇)v̂n−1.

• Correction step for velocity and pressure:

vn+1= ṽn+1+v̂n+1, (3.5)

pn+1=2pn−pn−1−
1

ε
(∇·vn+1)−r∇·ṽn+1. (3.6)

At this stage, several comments can be made.

a. Using the second-order backward difference formula to discretize in time and
the second-order extrapolation for the pressure and for the nonlinear terms
leads to a formally 2nd-order scheme for both velocity and pressure.

b. Due to the explicit treatment of the nonlinear terms, the above scheme for non-
linear Navier-Stokes equations is subject to the usual CFL-like stability condi-
tion. We note that in order to ensure the unconditional stability of the semi-
discretized system, a linearly implicit treatment of the nonlinear term can be
also used, e.g. [6].
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c. Contrary to the pressure-correction scheme in standard form, there is no arti-
ficial Neumann boundary condition imposed on the pressure approximation.

Remark 3.1 (Initial conditions for the pressure). It is useful to note that in the VPP method
described above, we set p0 = p|t=0 which can be computed from the data and p1 which
can be computed by replacing BDF2 in the scheme above by the standard backward Euler
formula as in [20, 21].

Remark 3.2 (Nonlinear term in the projection step). Since the purpose of the velocity cor-
rection step is to perform an approximate divergence-free projection, it is not necessary
to include the discretization of the nonlinear term in this step, see [6, 9]. Thus, we can
take NLT2 = 0. In this case, it is more suitable to replace the nonlinear term NLT1 in the
prediction step by

NLT1=2(vn ·∇)vn−(vn−1 ·∇)vn−1,

which is better for the consistency of the scheme.

Remark 3.3 (Stability and convergence of some numerical schemes for Navier-Stokes
equations). Many works have been devoted to study the stability and convergence of
many numerical schemes for solving the time-dependent Navier-Stokes equations. For
example, see [27] for the Crank-Nicolson/Adams-Bashforth scheme, [26] for the semi-
implicit second order Crank-Nicolson extrapolation scheme based on the stabilized finite
element method, [24] for the two-level method based on finite element and the Crank-
Nicolson extrapolation scheme, [28] for the Euler implicit/explicit scheme and [25] for a
multilevel finite element method.

Remark 3.4 (Stability and convergence results for VPP methods). It is interesting to note
that a rigorous theoretical study of the VPP methods with Dirichlet boundary conditions
is provided in [3] where the authors show the stability of the scheme for r≥0 and prove
that the method yields O(δt2) accuracy for both the velocity and the pressure in the norm
of l∞(L2(Ω)) and l2(L2(Ω)) respectively. Furthermore, we provide (in a submitted pa-
per) a rigorous theoretical work concerning the VPP methods in the case of open bound-
ary conditions where we show that the scheme is stable for r≥ 0 and we prove that the
convergence rate of the error on the velocity and the pressure is of order 2 in l∞(L2(Ω))
and l2(L2(Ω)) respectively. Note that these theoretical results are in agreement with the
numerical results.

3.2 Space discretization and linear solvers

In this section, we give a brief description of the space discretization and the tools used
for the numerical simulations before presenting the numerical experiments. For the spa-
tial discretization, the VPP method is implemented with a finite volume solver on the
classical Marker and Cells grid (MAC mesh) of Harlow and Welch [22]. The MAC mesh
is chosen for several reasons: it avoids the spurious modes of pressure, it does not need
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artificial boundary conditions. In our implementations, pressure unknowns are calcu-
lated at the cell-center and velocity components at mid-faces. All simulations presented
are performed with a formally second-order scheme in time, i.e., a second-order Back-
ward Difference Formula (BDF2) or the Crank-Nicolson scheme. Besides, the second-
order Richardson’s extrapolation is used to extrapolate the pressure. Additionally, the
method is initialized with a first time step performed with a standard backward Euler
scheme. Finally, in order to solve the symmetric linear systems obtained in the prediction
and projection steps, we are running the Conjugate Gradient (CG) method either with
or without the zero-order Incomplete Cholesky (IC(0)) as a preconditioner. The stop-
ping criterion for the iterative (CG) method is chosen such that ||res||2 ≤10−6, where res
denotes the residuals at the current CG iteration.

3.3 Cost of the penalty-projection step

In this part, we try to highlight the ambiguity that can interfere the reader regarding the
perturbation of the viscous term in the second step by ε.

First, we write the implicit Euler scheme to discretize in time for sake of simplicity.
Now, by focusing on the projection step, we explain below the interest to solve

v̂n+1−v̂n

δt
−εµ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω×]0,T[ (with perturbation), (3.7)

instead of

v̂n+1−v̂n

δt
−µ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω×]0,T[ (without perturbation). (3.8)

We observe that the linear system associated to the projection step (with or without
perturbation) can be solved all the more easily if η = ε/δt is small enough. This is due
to the fact that the operator in the right-hand side in the projection step is adapted to
operator of the left-hand side. This leads to a fast and cheap vector correction step if
η=ε/δt is small enough as proved in [5, Theorem 1.1]. Moreover, the new projection step
(3.7), where the viscous term is perturbed by ε, is much faster and cheaper if η = ε/δt
is sufficiently small as proved in [5, Corollary 1.3]. In order to verify these theoretical
results in our case, we resort to a numerical test in which we compare the cost in terms of
the number of iterations of the penalty-projection step of (3.8) and (3.7). The mesh size is
fixed at 1/h=128, where h is the spatial mesh step, and we run the algorithm for different
values of ε with a stationary tolerance set to 10−6 for Conjugate Gradient solvers. In order
to solve the linear systems, we use and compare:
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• the standard Conjugate Gradient (CG) method;

• the Conjugate Gradient with IC(0) as a preconditioner (IC(0)-CG).

The representative curves of Fig. 1 show that the number of iterations decreases as
long as ε tends to zero. Moreover, in Fig. 1 (left), the cost of the projection step using
(3.8) with standard (CG) method is about 400 iterations for ε=10−10 whereas this cost is
about 350 iterations for ε=10−10 using (3.7). Furthermore, the cost of the projection step
without perturbation (3.8) using the preconditioned solver (IC(0) - CG) (see Fig. 1 (right))
is decreased significantly, reaching 15 iterations for ε= 10−10. However, the number of
iterations is reduced even more by using (3.7): only 4 iterations are required for ε=10−10,
i.e., about the quarter of the number of iterations obtained by the correction step (3.8) and
this becomes quasi-independent of the spatial mesh step. These results are in agreement
with the previous works [4, 5].
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Figure 1: Cost of the penalty-projection step with perturbation (Eq. (3.7)) and without perturbation (Eq. (3.8))
at T = 2δt with δt=1 and mesh size 1/h = 128. Iterations number versus ε using standard CG (left) and
(IC(0)-CG) (right).

Indeed, we present in Fig. 2 the residual Euclidian norm of (3.7) with standard and
preconditioned conjugate gradient iterations respectively. The result is clear: the conver-
gence is improved by the preconditioner. Furthermore, we observe in Fig. 2 (left) that
for the mesh size 16×16, the residual norm reaches approximately 10−8 for 100 itera-
tions with standard CG. However, in Fig. 2 (right), it reaches 10−15 for the first iteration
with preconditioned CG. Similarly, we found that for the mesh size 128×128, the resid-
ual norm is approximately of order 10−6 for 350 iterations with standard CG whereas
using preconditioned (CG), the residual norm attains approximately 10−9 starting from 4
iterations.
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Figure 2: Normalized residual (by initial residual) versus number of iterations for different mesh sizes using

Eq. (3.7) with standard CG (left) and (IC(0)-CG) (right) with η= ε/δt=10−10, T=2δt and δt=1.

4 Vector penalty-projection methods with open boundary

conditions

In many applications such as free surface problems and channel flows one has to deal
with a natural boundary condition on the part ΓN of the border of the type:

(−pn+µ∇v·n)|ΓN
=g.

Henceforth we assume that Dirichlet boundary condition is enforced on ΓD and an
open boundary condition is enforced on ΓN where the whole boundary Γ is defined as
Γ=ΓD∪ΓN (ΓN 6=∅).

4.1 Description of the (VPP) methods with the first kind of open boundary
condition OBC1 (see below) in the projection step

We describe the VPP methods using OBC1 (see below) as an open boundary condition
in the projection step with an augmentation parameter r ≥ 0 and a penalty parameter ε
such that 0< ε≪ 1. Let δt> 0 be the time step. For the time discretization, we use in a
first time the backward difference formula of second-order (BDF2) as in [2, 30, 31]. After
that, we address the method using the Crank-Nicolson scheme [15, 24, 26, 27] which can
be interpreted to be the average of the implicit and explicit Euler schemes.

4.1.1 BDF2 time scheme

Let n≥1 such that (n+1)δt≤T, ṽ0,ṽ1,v0,v1∈L2(Ω) and p0,p1∈L2
0(Ω) given. Find (vn+1,

pn+1) such that:
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• Vector penalty-prediction step with an augmentation parameter r≥0:

3ṽn+1−4ṽn+ṽn−1

2δt
−µ∆ṽn+1+NLT1−r∇(∇·ṽn+1)

+∇p⋆,n+1= fn+1 in Ω, (4.1)

ṽn+1=vn+1
D on ΓD, (4.2)

(−p⋆,n+1+r∇·ṽn+1)n+µ∇ṽn+1 ·n=gn+1 on ΓN, (4.3)

where p⋆,n+1 is the second-order Richardson extrapolation for pn+1:

p⋆,n+1=2pn−pn−1,

and NLT1 is the second-order extrapolated nonlinear term (see Remark 3.2):

NLT1 =2(vn ·∇)vn−(vn−1 ·∇)vn−1.

• Vector penalty-projection step with a penalty parameter 0< ε≤1:

3v̂n+1−4v̂n+v̂n−1

2δt
−εµ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω, (4.4)

v̂n+1=0 on ΓD, (4.5)

µ∇v̂n+1 ·n=0 on ΓN (OBC1). (4.6)

• Correction step for velocity and pressure:

vn+1= ṽn+1+v̂n+1, (4.7)

pn+1=2pn−pn−1−
1

ε
(∇·vn+1)−r∇·ṽn+1. (4.8)

Remark 4.1 (Effective discrete problem). Adding the prediction and projection steps
gives the discrete problem which is effectively solved by the above splitting scheme:

3vn+1−4vn+vn−1

2δt
+NLT1−µ(∆ṽn+1+ε∆v̂n+1)

+∇pn+1= fn+1 in Ω,

(εδt)
pn+1−p⋆,n+1

δt
+∇·vn+1+rε∇·ṽn+1=0 in Ω,

vn+1=vn+1
D on ΓD,

(−p⋆,n+1+r∇·ṽn+1)n+µ∇vn+1 ·n=gn+1 on ΓN .
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We note that the method has a weak lack of consistency compared to the (VPP) method
presented in [4]. This is due to the perturbation of the viscous term in the correction
step (4.4) step by ε. Nevertheless, the method can be fast and very cheap if η = ε/δt is
sufficiently small. In fact, the right-hand side in the projection step lies in the range of
the left-hand side as ε is taken small enough. This crucial property was already shown
theoretically in [5, Theorem 1.1 and Corollary 1.3] and in [6, Theorem 3.1] and also nu-
merically confirmed in [5,6,13]. Finally, the vector penalty-projection step (4.4) is the key
to get a cheap and fast method when ε is sufficiently small.

Remark 4.2 (Another possible variant). In the prediction step (4.1), it is possible to replace
the pressure gradient ∇p⋆,n+1 by ∇pn and then modify the pressure correction (4.8) con-
sistently by using pn instead of p⋆,n+1=2pn−pn−1. However, it is important to keep the
discretization of the traction boundary condition (4.6) in the second-order using Richard-
son’s extrapolation of pressure p⋆,n+1 in order to ensure the effective second-order accu-
racy in time of the method.

Remark 4.3. The initial condition on the velocity is v0 =v0 with ṽ0 =v0 =v0 and v̂0 = 0.
To start the second-order VPP scheme, we need v1 and p1. For this reason, we first solve
the VPP method using Euler scheme of first-order for a given v0 instead of the BDF2 (or
AB/CN) scheme. This permits to calculate ṽ1 and v̂1 and consequently to find v1 and p1.

4.1.2 Correction of the pressure gradient for r=0 and small values of ε

The augmentation parameter r is kept constant and within small values in order to avoid
to excessively degrade the conditioning of the linear system associated to the prediction
step choosing r = 10−4. However, when r = 0, we obtain the standard prediction step.
In this case, we observe a poor convergence in time for velocity and pressure with very
small values of ε: see the numerical results in Section 5.1. In fact, this phenomenon is
due to the cumulation of the round-off errors when ε is relatively small. To improve the
convergence rate, we hence reconstruct the pressure field itself very fast from its gradient.
This idea was proposed in [1,5,7] where the authors have observed that it is numerically
far better to update the pressure gradient directly to avoid the effect of round-off errors
when ε is very small. In this regard, the updating of the pressure in our case is as follows.
Starting from (4.8) and taking r=0:

pn+1=2pn−pn−1−
1

ε
(∇·vn+1).

Taking the gradient of the above equation, we find

∇pn+1=2∇pn−∇pn−1−
1

ε
∇(∇·vn+1). (4.9)

On the other hand, we have the following equality in the penalty-projection step:

3v̂n+1−4v̂n+v̂n−1

2δt
−εµ∆v̂n+1=

1

ε
∇(∇·vn+1).
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Now, replacing the term 1
ε∇(∇·vn+1) in (4.9) by the terms in the left side of the above

equality. Then, the following estimation of the gradient of the pressure can be used di-
rectly for the pressure gradient correction:

∇pn+1=2∇pn−∇pn−1−
3v̂n+1−4v̂n+v̂n−1

2δt
+εµ∆v̂n+1. (4.10)

4.1.3 Adams-Bashfort/Crank-Nicolson time scheme

The set of equations is discretized in time using the Crank-Nicolson scheme at time tn+ 1
2 .

However, since the continuity equation (2.2) should be satisfied at every time step, so it

is always defined at time tn+1. By definition, we have zn+ 1
2 := 1

2(z
n+1+zn).

Let n≥ 1 such that (n+1)δt≤ T, ṽ0,ṽ1,v0,v1 ∈L2(Ω) and p0,p1 ∈ L2
0(Ω) given. Find

(vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r≥0:

ṽn+1−ṽn

δt
+NLT1−

µ

2
∆(ṽn+1+ṽn)−r∇(∇·ṽn+1)

+∇p⋆,n+ 1
2 = f n+ 1

2 in Ω, (4.11)

ṽn+1=vn+1
D on ΓD, (4.12)

(
−p⋆,n+ 1

2 +
r

2
∇·(ṽn+1+ṽn)

)
n+

µ

2
∇(ṽn+1+ṽn)·n

=gn+ 1
2 on ΓN , (4.13)

where p⋆,n+ 1
2 is a linear combination of the pressures at the two previous time steps

tn and tn+1:

p⋆,n+ 1
2 =

3

2
pn−

1

2
pn−1

and NLT1 is the second-order Adams-Bashfort extrapolated nonlinear term:

NLT1=
3

2
(vn ·∇)vn−

1

2
(vn−1 ·∇)vn−1.

• Vector penalty-projection step with a penalty parameter 0< ε≤1:

v̂n+1−v̂n

δt
−

εµ

2
∆(v̂n+1+v̂n)−

1

2ε
∇
(
∇·(v̂n+v̂n+1)

)

=
1

2ε
∇
(
∇·(ṽn+1+ṽn)

)
in Ω, (4.14)

v̂n+1=0 on ΓD, (4.15)

µ

2
∇(v̂n+1+v̂n)·n=0 on ΓN. (4.16)
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• Correction step for velocity and pressure:

vn+1= ṽn+1+v̂n+1, (4.17)

pn+ 1
2 =

3

2
pn−

1

2
pn−1−

1

2ε
∇·(vn+1+vn)−r∇·ṽn+1. (4.18)

Remark 4.4. The expression of the pressure in (4.18) is approximated at time tn+ 1
2 . How-

ever, our goal is to find the pressure field at time tn+1. We can switch to the pressure at

time tn+1 easily since by definition: pn+ 1
2 = 1

2(pn+1+pn)+O(δt2). Hence

pn+1=2pn+ 1
2 −pn. (4.19)

Replacing pn+ 1
2 in (4.19) by the terms in the right side of (4.18), the approximation of the

pressure at time tn+1 yields

pn+1=2pn−pn−1−
1

ε
∇·(vn+1+vn)−2r∇·ṽn+1. (4.20)

4.2 Description of VPP methods with the second kind of open boundary
condition OBC2 (see below) in the projection step

The VPP methods with OBC1 (see (4.6)) yields good numerical results (see Section 5).
However, we observe that the well-posedness of the penalty-projection step using OBC1
is not straightforward. Thus, we propose to replace OBC1 by another version of open
boundary condition called OBC2 (see below) which clearly yields a well-posed penalty-
projection step (see Lemma 4.1).

4.2.1 BDF2 time scheme

Let n≥1 such that (n+1)δt≤T, ṽ0,ṽ1,v0,v1∈L2(Ω) and p0,p1∈L2
0(Ω) given. Find (vn+1,

pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter r≥0:

3ṽn+1−4ṽn+ṽn−1

2δt
+NLT1−µ∆ṽn+1−r∇(∇·ṽn+1)

+∇p⋆,n+1= fn+1 in Ω, (4.21)

ṽn+1=vD on ΓD, (4.22)

(−p⋆,n+1+r∇·ṽn+1)n+µ∇ṽn+1 ·n=gn+1 on ΓN , (4.23)

where p⋆,n+1 is the second-order Richardson extrapolation of pn+1:

p⋆,n+1=2pn−pn−1,

and NLT1 is the second-order extrapolated nonlinear term:

NLT1 =2(vn ·∇)vn−(vn−1 ·∇)vn−1.
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• Vector penalty-projection step with a penalty parameter 0< ε≤1:

3v̂n+1−4v̂n+v̂n−1

2δt
−εµ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω, (4.24)

v̂n+1=0 on ΓD, (4.25)

v̂n+1 ·n=0 and (µ∇v̂n+1 ·n)∧n=0 on ΓN (OBC2). (4.26)

• Correction step for velocity and reconstruction of the pressure from its gradient:

vn+1= ṽn+1+v̂n+1, (4.27)

∇pn+1=2∇pn−∇pn−1−
3v̂n+1−4v̂n+v̂n−1

2δt
+εµ∆v̂n+1−r∇(∇·ṽn+1). (4.28)

Remark 4.5. For any vector u ∈ R
d defined on Γ, the tangential component u∧n|Γ is

defined by u∧n|Γ = uτ∧n|Γ with uτ = u−(u · n)n. Thus, for d = 2, we simply have
u∧n|Γ =u·τ, where τ denotes the unit tangential vector on Γ.

Lemma 4.1 (Well-posedness of the projection step). For all ṽ
n+1 ∈ H

1(Ω), ε>0 and δt>0,
there exists a unique solution v̂

n+1 ∈W(Ω) to the velocity-correction step (4.24)-(4.26) at each
time step, where

W(Ω)=
{

u∈H
1(Ω)d; u=0 on ΓD and u·n=0 on ΓN

}

is an Hilbert space.

Proof. Starting from the continuous formulation of the vector penalty-projection step:

∂v̂

∂t
−εµ∆v̂−

1

ε
∇(∇·v̂)=

1

ε
∇(∇·ṽ).

Taking the inner product of the above equation with a test function ϕ∈W(Ω) and apply-
ing Green’s formula. This yields:

∫

Ω

∂v̂

∂t
·ϕdx+ε

∫

Ω

µ∇v̂ :∇ϕdx−ε
∫

Γ

(µ∇v̂·n)·ϕds

+
1

ε

∫

Ω

(∇·v̂)(∇·ϕ)dx−
1

ε

∫

Γ

(∇·v̂)(ϕ·n)ds

=−
1

ε

∫

Ω

(∇·ṽ)(∇·ϕ)dx+
1

ε

∫

Γ

(∇·ṽ)(ϕ·n)ds. (4.29)
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Since Γ=ΓD∪ΓN and by the fact that ϕ=0 on ΓD, ϕ·n=0 on ΓN and (µ∇v̂·n)∧n=0 on
ΓN, we obtain the following weak form:

∫

Ω

(
∂v̂

∂t
·ϕ+εµ∇v̂ :∇ϕ+

1

ε
(∇·v̂)(∇·ϕ)

)
dx

=−
1

ε

∫

Ω

(∇·ṽ)(∇·ϕ)dx. (4.30)

For sake of simplicity, we take the discrete form of (4.30) and we use the implicit Euler
scheme to discretize in time. We obtain the following bilinear form:

a(v̂,ϕ)=
ε

δt
(v̂,ϕ)0+ε2µ(∇v̂,∇ϕ)0+(∇·v̂,∇·ϕ)0.

It is clear that a(v̂,ϕ) is a continuous and coercive form in W(Ω)×W(Ω). Moreover,

L(ϕ) :=(∇·ṽ,∇·ϕ)0+
ε

δt
(v̂,ϕ)0

is a linear continuous form in W(Ω). Under these hypotheses, we can easily apply the
Lax-Milgram theorem which ensures that the penalty-projection step (4.24)-(4.26) is well-
posed and admits a unique solution v̂n+1 in the Hilbert space W(Ω) equipped with the
usual norm of H1(Ω) (as a closed subspace of H1(Ω)).

Remark 4.6 (Third set of open boundary condition). We propose a new set of open
boundary condition which we call (OBC3) in the projection step. To introduce the VPP
methods with (OBC3), we proceed as follows. In the prediction step, there are no modi-
fications to make. The step is exactly the same as proposed in VPP with (OBC2):

3ṽn+1−4ṽn+ṽn−1

2δt
+NLT1−µ∆ṽn+1−r∇(∇·ṽn+1)

+∇p⋆,n+1= fn+1 in Ω,

ṽn+1=vD on ΓD,

(−p⋆,n+1+r∇·ṽn+1)n+µ∇ṽn+1 ·n=gn+1 on ΓN.

For the projection step, we define the proposed open boundary condition (OBC3) on ΓN

as

3v̂n+1−4v̂n+v̂n−1

2δt
−µ∆v̂n+1−

1

ε
∇
(
∇·v̂n+1

)

=
1

ε
∇
(
∇·ṽn+1

)
in Ω,

v̂n+1=0 on ΓD,

µ∇v̂n+1 ·n+
1

ε
∇·vn+1=0 on ΓN (OBC3).
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We numerically test this scheme with a formally second-order in time. We roughly ob-
serve a second order convergence rate in time for both the velocity and the pressure
gradient (for case r=0). Moreover, a theoretical study including the well-posedness (see
Lemma. 4.1), the stability and the convergence analysis has been established. The theo-
retical results are in line with the numerical ones. These results are the subject of a work
in preparation.

Remark 4.7 (Theoretical analysis of VPP methods). The penalty-projection step in the
present methods is based on the fast discrete Helmholtz-Hodge decompositions of L2(Ω)
vector fields proposed in [9] for bounded domains. Some theoretical results of stability
and error estimates are given for the first-order version of VPP methods with Dirichlet
boundary conditions in [4, 5]. The proof of stability for Navier-Stokes problems with
such methods is stated in [1]. Moreover, the analogous continuous version of the VPP
methods, the so-called two-step artificial compressibility method, is analyzed in [11]. In
this case, the solutions are proved to converge to weak solutions of the Navier-Stokes
equations when the penalty parameter ε tends to zero.

In the case of open boundary conditions, it is stated that the Stokes problem with
the stress (or traction) vector given on the boundary is globally well-posed whatever
the dimension d. For the Navier-Stokes system, it is not at all clear that this boundary
condition guarantees global existence and uniqueness of weak solutions without any re-
striction on the data, even in two dimensions. More precisely, it is only possible to prove,
either global existence for a small Reynolds number (that is a quasi Stokes regime), or
local existence with a small time interval T. Therefore, it is probably necessary to con-
sider nonlinear boundary conditions which ensure the control of the kinetic energy at the
artificial boundary. For example, we refer the reader to the artificial boundary condition
taking account of the local inflow/open volume rate produced by a singular load, which
is recently proposed in [10]. Indeed, Angot’s open boundary condition for the Navier-
Stokes equations leads to global existence of weak solutions in 3−D and uniqueness in
2−D, as for the case of Dirichlet boundary conditions.

5 Numerical experiments

This section is organized in the following way. First, we focus on the behavior of the
spatial and temporal convergence rates in the case of open boundary conditions (homo-
geneous and nonhomogeneous). The numerical tests include the Stokes and the Navier-
Stokes problem. In addition, we estimate the L2-norm of the velocity divergence. Finally,
we conduct a comparative and qualitative study of the VPP methods presented in this
paper and some pressure-correction schemes used in the literature for the solution of
non-stationary incompressible flow problems, see, e.g., [20, 33]. Finally, we note that for
the numerical results concerning the case of Dirichlet condition on the whole boundary,
we refer to [3] where we have shown numerically as well as theoretically that the conver-
gence rate for the velocity and the pressure exhibits a second-order convergence rate in
time.
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5.1 Stokes flow with open boundary conditions

We consider the square domain Ω = ]0,1[2 and we enforce Dirichlet condition on Γ =
∂Ω except for the part included in the y-axis, where open boundary conditions (2.4) are
imposed. In this section, we illustrate the convergence properties of the VPP methods for
two manufactured test cases with open boundary conditions, homogeneous or not.

5.1.1 Homogeneous open boundary conditions (g=0)

We choose a test case already used in the literature [20, 21]. It consists of unstationary
Stokes problem, with a forcing term, an initial condition and boundary conditions corre-
sponding to the following analytical solutions.

u(x,y,t)=sin(x)sin(y+t),

v(x,y,t)=cos(x)cos(y+t),

p(x,y,t)=cos(x)sin(y+t).

Convergence rate in space. Since an optimal space convergence rate can be reached
using projection methods in the case of Dirichlet boundary conditions, we are interested
to study the space convergence rate for Stokes equations with open boundary conditions
which is a more sensitive case. In order to estimate the spatial error, we focus on the
stationary solution of the above numerical experiment. We take the time step δt= 10−2,
the penalty parameter ε= 10−10, the augmentation parameter r = 10−4, and we run the
algorithm for different values of the mesh space h. For more precision, we note that we
test the spatial convergence using VPP methods with OBC1.

In Fig. 3, the convergence rate of the error on the velocity is clearly O(h2) while the
convergence rate in space for the pressure is around O(h2).

As a conclusion concerning the spatial convergence rate, we observe that the results
obtained here conform with those reported by Poux et al. [33]. In addition, the optimal
convergence rate in space offered by VPP methods is also in concordance with the results
obtained by [34] in the framework of the velocity-correction methods. Besides, the VPP
method appears more efficient and accurate than the standard incremental scheme in
[20]; particularly, it improves the spatial convergence from O(h) to O(h2) for the velocity
and from O(h1/2) to O(h2) for the pressure.

Convergence rate in time. In order to study the accuracy in time in the presence of open
boundary conditions, we perform convergence tests with respect to δt. We consider the
unsteady homogeneous case. In all the following tests, the mesh is chosen fine enough
(128×128) to ensure that the consistency error in space is significantly smaller than the
one in time.

As one can see in Fig. 4, the convergence rate of the error for the velocity behaves
like O(δt2) and the one for the pressure is also like O(δt2) for different values of the
augmentation parameter r between 10−4 and 1. These rates are similar to those obtained
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Figure 3: Homogeneous open boundary conditions. OBC1 – Spatial convergence rates for the velocity (left)

and the pressure (right) at T=2, δt=10−2, ε=10−10 and r=10−4.

by Poux et al. [33] for the rotational form of their method proposed in the framework
of pressure-correction. Furthermore, in [34], the authors obtain an optimal convergence
rate in the framework of the velocity-correction method (in standard incremental and ro-
tational form) with a proposed open boundary condition. Their results are also in agree-
ment with what we obtained here by the VPP methods. On the other hand, the errors of
velocity and pressure for the VPP methods are smaller than those computed in [33] even
if the mesh we have used is coarser. Moreover, the VPP methods improve the conver-
gence rates of the standard BDF2 pressure-correction scheme from O(δt) to O(δt2) for
the velocity and from O(δt1/2) to O(δt2) for the pressure [19]. In [19], the second-order
rotational pressure-correction yields O(δt3/2) accuracy for the velocity in the L2-norm
and O(δt) accuracy for the pressure.

Fig. 5 illustrates the errors of the L2-norm of the velocity divergence as a function of
the penalty parameter ε and the time step δt. In Fig. 5 (left), the L2-norm of the divergence
of the velocity vanishes as O(εδt) when the penalty parameter ε is chosen as small as
desired. In Fig. 5 (right), the L2-norm of the velocity divergence is around O(εδt) for ε
small enough.

As a conclusion on the temporal convergence using VPP methods with OBC1, we
notice that the convergence rate in the presence of open boundary conditions is brought
to the level observed with the Dirichlet boundary conditions in [3] and guarantees a
second-order accuracy in time for velocity and pressure. Moreover, the L2-norm of the
divergence of the velocity vanishes as O(εδt) with a penalty parameter ε too small.

Remark 5.1. We emphasize that the pseudo-stress tensor is commonly used in this kind
of numerical experiments (see [20, 21, 32, 34]). This is why we choose to restrict our test
cases using the pseudo-traction boundary condition (2.4) to compare our results with
those obtained by these previous works.
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Figure 4: Homogeneous open boundary conditions. OBC1 – Temporal convergence rates for the velocity (left)

and the pressure (right) at T=2, mesh size 1/h=128 and ε=10−10.
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Figure 5: Homogeneous open boundary conditions. OBC1 – Velocity divergence L2-norm versus ε (left) at

T=2, mesh size 1/h=128 and r=10−4 - Velocity divergence L2-norm versus time step (right) at T=2, mesh

size 1/h=128 and ε=10−6.

To complete the study, we have performed convergence tests for the VPP methods
using the Crank-Nicolson scheme to approximate in time using the same analytical so-
lution described above. We recall that the Crank-Nicolson scheme is also a second-order
scheme in time.

Fig. 6 represents the L2-norm of the error on the velocity and the pressure respectively
as a function of the time step δt. The results of the error exhibit approximately a second-
order convergence rate for both unknowns. In addition, the slopes for both the velocity
and the pressure error obtained by using the Crank-Nicolson scheme are slightly lower
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Figure 6: Homogeneous open boundary conditions. Crank-Nicolson – Temporal convergence rates for the
velocity (left) and the pressure (right) at T=2, mesh size 1/h=128 and ε=10−10.
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Figure 7: Homogeneous open boundary conditions. OBC2 – Temporal convergence rates for the velocity (left)

and the gradient pressure (right) at T=2, mesh size 1/h=128, ε=10−10 and r=0.

than the slopes obtained by using the BDF2-scheme. We also obtain an order of O(εδt) for
the L2-norm of the velocity divergence.We did not show the figures for sake of shortness.

Finally, in order to check the VPP methods with the OBC2 (4.26) in the projection
step, we numerically simulate the test case presented above. Fig. 7 displays the errors of
the computed velocity and pressure gradient in the L2-norm at ε= 10−10 and r= 0. The
numerical results show that a second-order accuracy in time is recovered for both the
velocity and the pressure gradient. The slopes in Fig. 8 exhibit again that the L2-norm of
the velocity divergence is of order O(εδt).
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Figure 8: Homogeneous open boundary conditions. OBC2 – Velocity divergence L2-norm versus ε (left) at

T=2, mesh size 1/h=128 and r=0 – Velocity divergence L2-norm versus time step (right) at T=2, mesh size

1/h=128 and ε=10−6.

Remark 5.2. We numerically check the value of v̂·n on the boundary ΓN in the vector
penalty-projection step with OBC2 (4.26). We obtain that v̂·n is of order 10−12 which
means that this condition is approximately satisfied naturally on ΓN in the projection
step.

Convergence rate in time at r=0 for the VPP methods with OBC1 (4.6) and the pressure
gradient given by (4.10)

In this section, we study the temporal convergence of the special case: r = 0 and ε too
small. For this purpose, we use the same test as for the case of homogeneous open bound-
ary conditions above. We study the method with the proposed open boundary condition
OBC1 (4.6) on ΓN in the projection step. This study also allows a comparison with the
case 10−4≤ r≤1 already tested in the previous section.

Fig. 9 (left) displays the errors of the computed velocity in the L2-norm at r= 0 and
ε=10−10. In contrast to the case 10−4≤r≤1, we do not have a second-order convergence
rate: the slope of the velocity error appears to be rather of first order. Moreover, we
observe in Fig. 9 (right) a sharp degradation of the pressure convergence (order 1/2 only).
This degradation is due to the cumulation of round-off errors when we use the standard
pressure-correction (4.8) with very small values of ε.

Using the pressure gradient correction (4.10) explained in Section 4.1.2, i.e, we repeat
the same tests for the velocity and the pressure gradient for r = 0. Fig. 10 (left) shows
that we recover a second-order convergence rate in time for the velocity as in the case of
10−4≤r≤1. In Fig. 10 (right), the pressure gradient reaches the order of O(δt1.8). Finally,
these positive results confirm the interest in updating the pressure by its gradient and are
in a agreement with [1].
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Figure 9: Homogeneous open boundary conditions. OBC1 – Velocity error L2-norm (left) and pressure error
L2-norm (right) versus time step with the standard pressure correction (4.8) at mesh size 1/h=128, r=0 and

ε=10−10.
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Figure 10: Homogeneous open boundary conditions. OBC1 – L2-norm of the error for the velocity (left) and the
pressure gradient (right) versus time step with the pressure gradient correction (4.10) at mesh size 1/h=128,

r=0 and ε=10−10.

5.1.2 Nonhomogeneous open boundary conditions (g 6=0)

To further assess the influence of open boundary conditions on the accuracy of BDF2-
VPP methods, we have performed temporal convergence tests for the nonhomogeneous
case. To this end, we consider the same problem as in [32, 33]:

u(x,y,t)=cos2
(πx

2

)
sin(πy)cos(2πωt),

v(x,y,t)=−cos2
(πy

2

)
sin(πx)cos(2πωt),
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p(x,y,t)=cos
(πx

2

)
sin

(πy

2

)
cos(2πωt).

Convergence rate in time. We take a mesh size 1/h=128 and we suppose ω=1. The rep-
resentative curves of Fig. 11 show that the convergence rates of the error on the velocity
and the pressure is of order 2 for an augmentation parameter 10−4 ≤ r≤1. This result is
in line with the results reported in [33]. We observe that the errors are not very different
from those computed with the homogeneous case studied above. Besides, the L2-norm
of the velocity divergence vanishes roughly as O(εδt) for ε too small (see Fig. 12).
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Figure 11: Nonhomogeneous open boundary conditions. OBC1 – Temporal convergence rates for the velocity
(left) and the pressure (right) at T=2, mesh size 1/h=128 and ε=10−10.
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Figure 12: Nonhomogeneous open boundary conditions. OBC1 – L2-norm of the divergence of the velocity
versus ε (left) at T=2, mesh size 1/h=128 and r=10−4 – L2-norm of the velocity divergence versus time step

(right) at T=2, mesh size 1/h=128, ε=10−6.
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Figure 13: Nonhomogeneous open boundary conditions. OBC2 – Temporal convergence rates for the velocity
(left) and the gradient pressure (right) at T=2, mesh size 1/h=128, ε=10−10 and r=0.
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Figure 14: Nonhomogeneous open boundary conditions. OBC2 – Velocity divergence L2-norm versus ε (left)

at T=2, mesh size 1/h=128 and r=0 – Velocity divergence L2-norm versus time step (right) at T=2, mesh

size 1/h=128, ε=10−6 and r=0.

We now present the same test using the VPP methods with (OBC2). Let r = 0 and
ε=10−10. As one can see in Fig. 13 (left), the convergence rate of the error on the velocity is
clearly of order O(δt2). Fig. 13 (right) shows the error on the pressure gradient measured
in L2-norm. The results reveal clearly that the pressure gradient approximation is roughly
of order 1.7 in time. We note that the saturation observed here for small time steps is due
to the approximation error in space which becomes dominant for very small time steps.
In this case, the velocity divergence is almost of order O(εδt) as ε tends to zero (see
Fig. 14).



1034 P. Angot and R. Cheaytou / Commun. Comput. Phys., 26 (2019), pp. 1008-1038

5.2 Numerical results for Navier-Stokes problem

In order to validate the accuracy of the method for the nonlinear Navier-Stokes equa-
tions, we present the temporal convergence studies on two manufactured test cases: first,
with homogeneous open boundary conditions and second, with nonhomogeneous open
boundary conditions. To this end, we consider the VPP methods with the open boundary
condition OBC2 (4.26). For the approximation of the time derivative, the BDF2 scheme is
used. The convective terms of the Navier-Stokes equations are treated explicitly then the
second order central difference scheme is applied to its conservative form. This choice en-
sures overall second order accuracy. The finite volume scheme on a MAC staggered grid
arrangement is adopted in order to remove the odd-even decoupling. Simulations are
performed using a range of time steps 10−5≤δt≤5×10−3 at T=2 with a Reynolds number
Re=100. Note that δt is chosen sufficiently small to satisfy the Courant-Friedrichs-Lewy
condition (CFL condition). We choose r= 0 and ε= 10−10. The linear systems obtained
are solved with the preconditioned conjugate gradient CG-IC(0). To check the temporal
accuracy, we carry out the following tests.

• For the homogeneous open boundary conditions (g= 0), the Navier-Stokes equa-
tions are augmented with a forcing term in order that the solution is

u(x,y,t)=−sin(π x)cos(πy)exp(−µt),

v(x,y,t)=cos(π x)sin(πy)exp(−µt),

p(x,y,t)=−µπcos(π x)cos(πy)exp(−µt).

• For the nonhomogeneous open boundary conditions (g 6= 0), the source term f is
adjusted such that the Navier-Stokes problem verify the following problem

u(x,y,t)=cos2
(πx

2

)
sin(πy)exp(−2πµt),

v(x,y,t)=−cos2
(πy

2

)
sin(πx)exp(−2πµt),

p(x,y,t)=cos
(πx

2

)
sin

(πy

2

)
exp(−2πµt).

Convergence rate in time. In Fig. 15 (left), we plot the L2-norm error on the velocity and
the pressure gradient as function of the time step δt for the homogeneous test case. Er-
rors are calculated at the time T=2 and for r=0 after computations on a square domain
with the mesh size h equal to 1/128. As expected, the nonlinear term in the Navier-
Stokes equations does not really affect the convergence rate for both the velocity and the
pressure gradient. We obtain an order of 1.85 in time for both unknowns. For the nonho-
mogeneous case, the temporal error of the velocity and the pressure gradient computed
on 128×128 grids are plotted in Fig. 15 (right). The results reveal an order of 1.85 in time
for both unknowns. The accuracy saturation observed for small time steps results from
the spatial discretization error.
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Figure 15: Homogeneous (left) and nonhomogeneous (right) open boundary conditions. OBC2 – L2-norm of
the error for the velocity and the pressure gradient versus δt at T = 2 and Re = 100, mesh size: 1/h = 128,
ε=10−6, r=0 for Navier-Stokes problem.

In conclusion, we deduce that for the Navier-Stokes problem, the nonlinear term does
not really damage the convergence rate. However, we do not have an optimal conver-
gence of second-order in time.

5.3 Summary of the numerical results and discussion

We summarize in this section the advantages of the VPP methods.

1. The open boundary conditions were naturally extended on the boundary ΓN. Con-
sequently, as shown numerically in the above sections, the velocity and the pressure
(or the pressure gradient) reach approximately a second order convergence rate in
space and time even in the presence of the open boundary conditions.

2. The nonlinear terms in the Navier-Stokes problem does not affect the convergence
rate in time for the velocity and the pressure. We note that the convergence rate is
slightly degraded but we obtain approximately a second order in time.

3. The VPP methods appear fast, cheap and require only few iterations for small
penalty parameter ε.

6 Conclusions

In this article, we have naturally extended the VPP methods to the case of incompressible
viscous flows with open boundary conditions using two kinds of second-order schemes
for time discretization: the BDF2 scheme and the Crank-Nicolson scheme. The numerical
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experiments show that the VPP methods yield a considerable gain in accuracy compared
to the pressure-correction schemes [19]. The convergence rate in time for velocity and
pressure obtained using VPP methods are also in agreement with those obtained by the
standard and rotational form of the velocity-correction method with a proposed bound-
ary condition [34]. Moreover, we show that for both second-order schemes used for time
discretization (BDF2 or Crank-Nicolson), the VPP methods yield approximately O(δt2)
for both the velocity and the pressure for the homogeneous as well as and nonhomo-
geneous open boundary conditions. The loss of spatial convergence in the case of open
boundary conditions does not occur anymore. We obtain O(h2) convergence in the L2-
norm of the velocity and the pressure. Indeed, the optimal second-order accuracy in
time and space is achieved because of the fully vector formulation of the VPP methods,
without degrading it by a scalar pressure Poisson equation. This inherently ensures the
consistency with respect to the continuous Navier-Stokes problem with a traction bound-
ary condition. The counterpart is that the divergence of the velocity at each time step is
not exactly zero, as for the projection methods (at least in the semi-discrete setting in
time), since the VPP velocity correction step is proved to be an approximate divergence-
free projection [1, 9]. However, it is not really a drawback since the velocity divergence
is in practice of order O(εδt) with a penalty parameter ε taken as small as desired up
to machine precision. Finally, the method proves to be very efficient: it is fast, cheap,
and provides very accurate results with optimal spatial and temporal convergence rates
despite the existence of open boundary conditions. Moreover, this family of methods
opens the way to the splitting methods with an order of time convergence greater than
2 since the splitting error for velocity and pressure varies as O(ε) which can be made
negligible with respect to the consistency error of higher-order schemes when ε is chosen
sufficiently small.

References

[1] Ph. Angot, J.-P. Caltagirone, and P. Fabrie, Analysis for the fast vector penalty-
projection solver of incompressible multiphase Navier-Stokes/brinkman problems, Numer.
Math.(2016), submitted for publication.

[2] Ph. Angot and R. Cheaytou, Vector penalty-projection methods for incompressible fluid
flows with open boundary conditions, in Algoritmy 2012- (A. Handlovicočá et al. Eds), Slo-
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[30] M. Jobelin and C. Lapuerta and J.C Latché and Ph. Angot and B. Piar, A finite element
penalty-projection method for incompressible flows, J. Comput. Phys., 217 (2006), 502-518.

[31] Kh. Khadra and Ph. Angot and S. Parneix and J.P. Caltagirone, Fictitious domain approach
for numerical modelling of Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 34
(2000), no. 8, 651-684.

[32] J. Liu, Open and traction boundary conditions for the incompressible Navier-Stokes equa-
tions, J. Comput. Phys., 228 (2009), 7250-7267.

[33] A. Poux and S. Glockner and M. Azaı̈ez, Improvements on open and traction boundary con-
ditions for Navier-Stokes time-splitting methods, J. Comput. Phys., 230 (2011), 4011-4027.

[34] A. Poux, S. Glockner, E. Ahusborde, and M. Azaı̈ez, Open boundary conditions for the
velocity-correction scheme of the NavierStokes equations, Comput. Fluids, 73 (2012), no. 70,
29-43.

[35] J. Shen, On error estimates of some higher order projection and penalty-projection methods
for Navier-Stokes equations, Numer. Math., 62 (1992), 49-74.

[36] R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la
méthode des pas fractionnaires (II), Arch. Rational Mech. Anal., 33 (1969), 377-385.

[37] L.J.P. Timmermans, P.D. Minev, and F.N. Van De Vosse, An approximate projection scheme
for incompressible flow using spectral elements, Internat. J. Numer. Methods Fluids, 22
(1996), no. 7, 673-688.

[38] J.Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible
flow, SIAM J. Sci. Comput., 7 (1986), no. 3, 870-891.


