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Abstract. We consider the existence and regularity of a weak solution to a class of
systems containing a p-curl system in a multi-connected domain. This paper extends
the result of the regularity theory for a class containing a p-curl system that is given in
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in a multi-connected domain.

AMS Subject Classifications: 35A05, 35A15, 35D05, 35D10, 35J20

Chinese Library Classifications: O175.27

Key Words: Regularity of a weak solution; variational problem; p-curl system.

1 Introduction

In this paper, we consider the existence and regularity of a weak solution to a class of
systems containing a p-curl system in a bounded multi-connected domain Ω in R3.

In a bounded simply connected domain Ω in R3 without holes, Yin [1] considered the
existence of a unique solution for the so-called p-curl system

curl[|curlv|p−2curlv]= f in Ω,
divv=0 in Ω,
n×v=0 on Γ,

(1.1)

where Γ denotes the C2+α (α∈(0,1)) boundary of Ω, p>1, n the outer normal unit vector
field to Γ, and f is a given vector field satisfying div f=0 in Ω. If f is a Cα-vector function,
then he showed the optimal C1+β-regularity for some β ∈ (0,1) of a weak solution in
Yin [2], see also Yin et al. [3].
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Eq. (1.1) is a steady-state approximation of Bean’s critical state model for type II
superconductors. For further physical background, see [3], Chapman [4] and Prigozhin
[5].

Aramaki [6] extended the result of [2] on the C1+β regularity of a weak solution to
a more general equation, in a simply connected domain without holes to the following
system. 

curl[St(x,|curlv|2|)curlv]= f in Ω,
divv=0 in Ω,
n×v=0 on ∂Ω,

(1.2)

where the function S(x,t)∈C2(Ω×(0,∞))∩C0(Ω×[0,∞)) satisfies some structure condi-
tions. Now and from now on, we denote ∂

∂t S(x,t) and ∂2

∂t2 S(x,t) by St(x,t) and Stt(x,t),
respectively.

However, in a multi-connected domain, the systems (1.1) and (1.2) are not well posed.
In fact, if the second Betti number is positive, for a weak solution v of (1.1) or (1.2), v+z,
where z satisfies curlz=0,divz=0 in Ω and z×n=0 on Γ, is also a weak solution. Thus
it is necessary to add some conditions to (1.1) and (1.2).

In this paper, we show the unique existence and optimal C1+β-regularity of a weak
solution to the system (1.2) with additive conditions.

The paper is organized as follows. In Section 2, we give some preliminaries and the
main theorem. In Section 3, we give the existence of a weak solution of (2.10) below.
Section 4 is devoted to the regularity of the weak solution obtained in Section 3.

2 Preliminaries and the main theorem

Since we allow that Ω is a multi-connected domain, we assume that Ω has the following
conditions as in Amrouche and Seloula [7] (cf. Amrouche and Seloula [8], Dautray and
Lions [9] and Girault and Raviart [10]). Let Ω⊂R3 be a bounded domain of class C2+α

with the boundary Γ and Ω be locally situated on one side of Γ.

(1) Γ has a finite number of connected components Γ0,Γ1,. . .,Γm with Γ0 denoting the
boundary of the infinite connected component of R3\Ω.

(2) There exist n connected open surfaces Σj, (j= 1,.. .,n), called cuts, contained in Ω
such that

(a) Σj is an open subset of a smooth manifold Mj.

(b) ∂Σj ⊂ Γ (j = 1,.. .,n), where ∂Σj denotes the boundary of Σj, and Σj is non-
tangential to Γ.

(c) Σi∩Σj =∅(i ̸= j).

(d) The open set Ω̇=Ω\(∪n
i=1Σi) is simply connected and pseudo C1,1 class.
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The number n is called the first Betti number which is equal to the number of handles of
Ω, and m is called the second Betti number which is equal to the number of holes. We
say that if n=0, Ω is simply connected, and if m=0, Ω has no holes.

From now on we use the notations Lp(Ω),Wm,p(Ω) (m≥ 0,integer), Ws,p(Γ) (s∈R),
and so on, for the standard Sobolev spaces of functions. For any Banach space B, we
denote B×B×B by the boldface character B. Hereafter, we use this character to denote
vectors and vector-valued functions, and we denote the standard inner product of vectors
u and v in R3 by u·v.

Define two spaces by

K
p
N(Ω)={v∈Lp(Ω);divv=0,curlv=0 in Ω,v×n=0 on Γ},

K
p
T(Ω)={v∈Lp(Ω);divv=0,curlv=0 in Ω,v·n=0 on Γ}.

For any function q∈W1,p(Ω̇), we write an extension of ∇q∈Lp(Ω̇) to Lp(Ω) by ∇̃q. Let
qT

j (j=1,.. .n) be the unique solution in W2,p(Ω̇) of the system


−∆qT

j =0 in Ω̇,
n·∇qT

j =0 on Γ,[
qT

j
]

Σk
=const.,

[
n·∇qT

j
]

Σk
=0 k=1,.. .,n

⟨n·∇qT
j ,1⟩Σk =δjk k=1,.. .n,

(2.1)

where
[
qT

j
]

Σk
is the jump of the function of qT

j across Σk. Then according to [7, Corollary

4.1], {∇̃qT
j ; j=1,.. .,n} is a basis of K

p
T(Ω). In fact, ∇̃qT

j ∈C1+α(Ω).
On the other hand, let qN

i (i=1,.. .m) be the unique solution in W2,p(Ω) of the system
−∆qN

i =0 in Ω,
qN

i

∣∣
Γ0
=0, qN

i

∣∣
Γk
=const. k=1,.. .m,

⟨n·∇qN
i ,1⟩Γk =δik (k=1,.. .n) ⟨n·∇qN

i ,1⟩Γ0 =−1.
(2.2)

Then {∇qN
i ;i=1,.. .m} is a basis of K

p
N(Ω) (cf. [7, Corollary 4.2]). In fact, ∇qN

i ∈C1+α(Ω).
Thus we can see that dimK

p
T(Ω)=n and dimK

p
N(Ω)=m.

We assume that a function S(x,t)∈C2(Ω×(0,∞))∩C(Ω×[0,∞)) satisfies the following
structural conditions: There exist a constant 1< p<∞ and positive constants 0<λ<Λ
such that for all x∈Ω

S(x,0)=0 and λt(p−2)/2≤St(x,t)≤Λt(p−2)/2 for t>0. (2.3)

λt(p−2)/2≤St(x,t)+2tStt(x,t)≤Λt(p−2)/2 for t>0. (2.4)

If 1< p<2,Stt(x,t)<0, and if p≥2,Stt(x,t)≥0 for t>0. (2.5)

There exists a constant C>0 such that |Stx(x,t)|≤Ct(p−2)/2 for t>0. (2.6)
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We note that from (2.3), we have

2
p

λtp/2≤S(x,t)≤ 2
p

Λtp/2 for t≥0.

When S(x,t) = tp/2, system (1.2) becomes (1.1), and by elementary calculations, we see
that S(x,t)=ν(x)tp/2, where ν∈C2(Ω) and 0<ν∗≤ν(x)≤ν∗<∞ and |∇ν(x)|≤C for all
x∈Ω, satisfies (2.3)-(2.6).

We note from (2.3) that S(x,t) is a strictly increasing function with respect to t∈ [0,∞),
and from (2.3) and (2.4), |Stt(x,t)|≤Λt(p−4)/2 for x∈Ω,t>0. Define

Φ(x,t)=
{

t(St(x,t))2 for x∈Ω,t>0,
0 for x∈Ω,t=0.

(2.7)

Then Φ∈C1(Ω×(0,∞))∩C0(Ω×[0,∞)), and from (2.4), we see that Φ satisfies

Φt(x,t)=St(x,t)(St(x,t)+2tStt(x,t))>0 for x∈Ω,t>0. (2.8)

Thus let t=Ψ(x,ρ)∈C1(Ω×(0,∞)) be the implicit function of ρ=Φ(x,t) and define

f (x,ρ)=
1

St(x,Ψ(x,ρ))
. (2.9)

Then we obtain the following lemma whose proof is given in [6, Lemma 2.1].

Lemma 2.1. Assume that the hypotheses (2.3)-(2.6) hold and let q= p/(p−1) be the conjugate
exponent to p. Then we have the following.

(i) Λ−(q−1)ρ(q−2)/2≤ f (x,ρ)≤λ−(q−1)ρ(q−2)/2 and | fx(x,ρ)|≤Cρ(q−2)/2.
(ii) There exist positive constants c and C depending only on λ and Λ such that

cρ(q−2)/2≤ f (x,ρ)+2ρ fρ(x,ρ)≤Cρ(q−2)/2.

Since we allow that Ω is multi-connected, thus (1.2) is not well posed, we consider
the following system instead of (1.2).

curl[St(x,|curlv|2)curlv]= f in Ω,
divv=0 in Ω,
v×n=0 on Γ,
⟨v·n,1⟩Γi =0 for i=1,.. .m,

(2.10)

where ⟨·,·⟩Γi denotes the duality bracket of W−1/p.p(Γi) and W1−1/q,q(Γi).
We are in a position to state the main theorem.
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Theorem 2.1. Assume that Ω is a bounded domain in R3 with C2+α boundary satisfying (1) and
(2) for some α∈ (0,1), and that a function S(x,t) satisfies the conditions (2.3)-(2.6). Moreover,
assume that f ∈Lq(Ω) satisfies

div f =0 in Ω and ⟨ f ·n,1⟩Γi =0, i=1,.. .,m. (2.11)

Then the system (2.10) has a unique weak solution v ∈ W1.p(Ω) in the sense of (3.3) below.
Furthermore, if f ∈Cα(Ω) satisfies (2.11), then the weak solution v belongs to C1+β(Ω) for some
β∈ (0,1), and there exists a constant C>0 depending only on α,Ω and ∥ f∥Cα(Ω) such that

∥v∥C1+β(Ω)≤C.

This theorem contains [2, Theorem] and [6, Theorem 1.1] as a corollary.

Corollary 2.2. Assume that Ω is a bounded, simply connected domain in R3 without holes, and
with C2+α boundary Γ for some α∈ (0,1). Assume moreover that f satisfies that f ∈Cα(Ω) and
div f = 0 in Ω. Then the weak solution v of (1.2) belongs to C1+β(Ω) for some β∈ (0,1). In
addition, there exists a constant C depending only on p,Ω and ∥ f∥Cα(Ω) such that

∥v∥C1+β(Ω)≤C.

3 Existence of a weak solution

In order to obtain the existence of a weak solution of (2.10), we consider the space

V p(Ω)={v∈Lp(Ω);curlv∈Lp(Ω),divv=0 in Ω, v×n=0 on Γ,⟨v·n,1⟩Γi=0,i=1,.. .m}.

Then we have

Lemma 3.1. Let 1< p<∞. Then V p(Ω) is a closed subspace of W1,p(Ω), and we can regard
V p(Ω) as a separable, reflexive Banach space with the norm

∥v∥V p(Ω) :=∥curlv∥Lp(Ω)

which is equivalent to ∥v∥W1,p(Ω).

Proof. By [7, Corollary 3.2], we can easily see that V p(Ω) is a closed subspace of W1,p(Ω)
and that the norm ∥curlv∥Lp(Ω) is equivalent to the norm ∥v∥W1,p(Ω). Since W1,p(Ω) is
separable and reflexive and V p(Ω) is a closed subspace, V p(Ω) is separable and reflexive
(see, e.g., Brezis [11]).

We consider the following minimization problem: to find v∈V p(Ω) such that v is a
minimizer of

inf
u∈V p(Ω)

I[u],
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where
I[u]=

∫
Ω

S(x,|curlu|2)dx−2
∫

Ω
f ·udx

for some given f . Then we have the following.

Proposition 3.2. Let f ∈ Lq(Ω), where q is the conjugate exponent of p. Then the functional I
on V p(Ω) has a unique minimizer v∈V p(Ω).

Proof. From the Hölder inequality, for any u∈V p(Ω), we have

I[u]≥ 2
p

λ
∫

Ω
|curlu|pdx−2∥ f∥Lq(Ω)∥u∥Lp(Ω).

By Lemma 3.1 and the Young inequality, there exists a constant c> 0 such that for any
ε>0, there exists C(ε)>0 such that

I[u]≥2c∥u∥p
V p(Ω)

−C(ε)∥ f∥q
Lq(Ω)

−ε∥u∥p
V p(Ω)

.

Choosing ε= c>0,
I[u]≥ c∥u∥p

V p(Ω)
−C(c)∥ f∥q

Lq(Ω)
. (3.1)

Thus the functional I is coercive, that is,

lim
u∈V p(Ω),∥u∥V p(Ω)→∞

I[u]=∞.

Now if we put F(x,t)=S(x,t2), it follows from (2.3) and (2.4) that

Ft(x,t)=2tSt(x,t2)≥2λtp−1>0 for x∈Ω, t>0,

Ftt(x,t)=2(St(x,t2)+2t2Stt(x,t2))≥2λtp−2>0 for x∈Ω, t>0.

Thus I is a strictly convex functional on V p(Ω). We claim that I is lower semicontinu-
ous. In fact, let wj →w in V p(Ω). Then curlwj → curlw in Lp(Ω). Thus there exists a
subsequence {wjk} of {wj} such that

lim
k→∞

∫
Ω

S(x,|curlwjk |
2)dx= liminf

j→∞

∫
Ω

S(x,|curlwj|2)dx,

and curlwjk →curlw a.e. in Ω. Since S is continuous, S(x,|curlwjk |2)→S(x,|curlw|2) a.e.
in Ω. Since S(x,t)≥0, it follows from the Fatou lemma that∫

Ω
S(x,|curlw|2)dx≤liminf

k→∞

∫
Ω

S(x,|curlwjk |
2)dx= lim

k→∞

∫
Ω

S(x,|curlwjk |
2)dx

=liminf
j→∞

∫
Ω

S(x,|curlwj|2)dx.
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Therefore
I[w]≤ liminf

j→∞
I[wj],

so I is lower semicontinuous. We note that a convex, lower semi-continous functional
on non-empty Banach space is weakly lower semi-continous, so I is weakly lower semi-
continuous. From (3.1), I is lower semi-continuous, coercive and strictly convex on the
reflexive Banach space V p(Ω). Hence infu∈V p(Ω) I[u] is attained by a unique u0 ∈V p(Ω),
that is,

I[u0]= inf
u∈V p(Ω)

I[u].

For example, see Ekeland and Témam [12, Chapter 2, Proposition 1.2].

Define a space

Hp
0 (Ω,curl,div)=

{
v∈Lp(Ω); curlv∈Lp(Ω), divv∈Lp(Ω), v×n=0 on Γ

}
.

Then we claim the following lemma.

Lemma 3.3. Assume that f ∈Lq(Ω),div f =0 in Ω and ⟨ f ·n,1⟩Γi =0 for i=1,.. .,m. Then we
have

inf
u∈V p(Ω)

I[u]= inf
w∈Hp

0 (Ω,curl,div)
I[w].

Proof. Since V p(Ω)⊂Hp
0 (Ω,curl,div), it is trivial that

inf
u∈V p(Ω)

I[u]≥ inf
w∈Hp

0 (Ω,curl,div)
I[w].

For any u∈Hp
0 (Ω,curl,div), we consider the following div-curl system.

curlv=curlu in Ω,
divv=0 in Ω,
v×n=0 on Γ.

(3.2)

Since div(curlu)=0 in Ω, n·curlu=n·curluT=0 on Γ, where uT is the tangent component
of u (cf. Monneau [13]), it follows from Aramaki [14, Theorem 3.5] that (3.2) has a solution
v∈W1,p(Ω). Define w=v−∑m

k=1⟨v·n,1⟩Γk ek, where ek =∇qN
k . Since ⟨ek ·n,1⟩Γi = δki from

(2.2), we have, for i=1,.. .,m,

⟨w·n,1⟩Γi = ⟨v·n,1⟩Γi −
m

∑
k=1

⟨v·n,1⟩Γk⟨ek ·n,1⟩Γi =0.

Since divw=0,curlw=curlv=curlu in Ω and w×n=v×n=0 on Γ, we see that w∈V p(Ω)
and curlw=curlu. Since f ∈Lq(Ω) satisfies div f =0 in Ω and ⟨ f ·n,1⟩Γi =0 for i=1,.. .,m,
it follows from the divergence theorem that

0=
∫

Ω
div f dx=

∫
Γ

f ·ndS=
m

∑
i=0

⟨ f ·n,1⟩Γi = ⟨ f ·n,1⟩Γ0 =0.
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Therefore it follows from [7, Lemma 4.1] that there exists g∈W1,q(Ω) such that f =curlg
in Ω. By integration by parts,∫

Ω
f ·wdx=

∫
Ω

curlg ·wdx=
∫

Γ
(g×n)·w)dS+

∫
Ω

g ·curlwdx

=
∫

Γ
g ·(n×w)dS+

∫
Ω

g ·curludx=
∫

Ω
g ·curludx

=
∫

Ω
curlg ·udx=

∫
Ω

f ·udx.

Hence I[w]= I[u]. So

inf
w∈V p(Ω)

I[w]≤ I[u] for all u∈Hp
0 (Ω,curl,div).

Thus we have
inf

w∈V p(Ω)
I[w]≤ inf

u∈Hp
0 (Ω,curl,div)

I[u].

Therefore we get the conclusion.

Let v∈V p(Ω) be the minimizer of

inf
u∈V p(Ω)

I[u]

and w∈Hp
0 (Ω,curl,div). Then by the Euler-Lagrange equation, we have

d
dε

I[v+εw]
∣∣
ε=0=2

∫
Ω

(
St(x,|curlv|2)curlv·curlw− f ·w

)
dx=0.

Hence v is a weak solution in the sense of
∫

Ω St(x,|curlv|2)curlv·curlwdx=
∫

Ω f ·wdx for all w∈Hp
0 (Ω,curl,div),

divv=0 in Ω,
v×n=0 on Γ,
⟨v·n,1⟩Γi =0 for i=1,.. .,m.

(3.3)

Since C∞
0 (Ω)⊂Hp

0 (Ω,curl,div), v satisfies (in the distribution sense),
curl[St(x,|curlv|2)curlv]= f in Ω,
divv=0 in Ω,
v×n=0 on Γ,
⟨v·n,1⟩Γi =0 for i=1,.. .,m.

(3.4)

If we choose a test function w=v in (3.3), it follows from the Hölder inequality that for
any ε>9,

λ∥curlv∥p
Lp(Ω)

≤∥ f∥Lq(Ω)∥v∥Lp(Ω)≤C(ε)∥ f∥q
Lq(Ω)

+ε∥v∥p
Lp(Ω)

.
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Here if we note that ∥v∥Lp(Ω)≤C∥curlv∥Lp(Ω), then choosing ε>0 small enough, we have

∥v∥V p(Ω)≤C∥ f∥q−1
Lq(Ω)

,

where C>0 is a constant depending only on λ and p.

Remark 3.4. If Ω has no holes, the last conditions of (3.3) and (3.4) are unnecessary.

We get the following proposition.

Proposition 3.5. Assume that f∈Lq(Ω) satisfies div f=0 in Ω and ⟨ f ·n,1⟩Γi=0 for i=1,.. .,m.
Then the system (3.4) has a unique weak solution v∈V p(Ω), and there exists a constant C> 0
depending only on λ and p such that

∥v∥V p(Ω)≤C∥ f∥q−1
Lq(Ω)

.

To complete the proof, it suffices to prove the uniqueness of the weak solution of (3.4).
In order to do so, we use the following lemma with respect to monotonicity.

Lemma 3.6. There exists a constant c>0 such that for all vectors a,b∈R3,

(
St(x,|a|2)a−St(x,|b|2)b

)
·(a−b)≥

{
c|a−b|p if p>2,
c(|a|+|b|)p−2|a−b|2 if 1< p≤2.

Proof. Put J(x,p)=
(
St(x,|a|2)a−St(x,|b|2)b

)
·(a−b). Then

J(x,p)=
∫ 1

0

d
ds

St(x,|sa+(1−s)b|2)(sa+(1−s)b)ds·(a−b)

=
∫ 1

0
St(x,|sa+(1−s)b|2)ds|a−b|2

+
∫ 1

0
2Stt(x,|sa+(1−s)b|2)

(
(|sa+(1−s)b)·(a−b)

)2ds.

When p>2, since Stt(x,t)≥0, we have

J(x,p)≥
∫ 1

0
St(x,|sa+(1−s)b|2)ds|a−b|2≥λ

∫ 1

0
|sa+(1−s)b|p−2|a−b|2ds.

From DiBenedetto [15, p. 14], we can show that J(x,p)≥ c|a−b|p for some c>0.
When 1< p<2, since Stt(x,t)<0, we have

J(x,p)≥
∫ 1

0
St(x,|sa+(1−s)b|2)|a−b|2ds

+
∫ 1

0
2Stt(x,|sa+(1−s)b|2)|sa+(1−s)b|2|a−b|2.
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From (2.4), we have

J(x,p)≥λ
∫ 1

0
|sa+(1−s)b|p−2ds|a−b|2≥ c(|a|+|b|)p−2|a−b|2

for some c>0.

End of the proof of Proposition 3.5
Assume that v1 and v2 are weak solutions in V p(Ω) of (3.4). Choosing w=v1−v2 as

a test function of the first equation of (3.3), we have∫
Ω

St(x,|curlv1|2)curlv1 ·curl(v1−v2)dx=
∫

Ω
f ·(v1−v2)dx,∫

Ω
St(x,|curlv2|2)curlv2 ·curl(v1−v2)dx=

∫
Ω

f ·(v1−v2)dx.

Thus ∫
Ω

(
St(x,|curlv1|2)curlv1−St(x,|curlv2|2)curlv2

)
·curl(v1−v2)dx=0.

By Lemma 3.6,∫
Ω
|curl(v1−v2)|pdx=0, if p>2,∫

Ω
(|curlv1|+|curlv2|)p−2|curl(v1−v2)|2dx=0, if 1< p≤2.

This implies curl(v1−v2)=0. Since v1−v2∈V p(Ω), we get v1=v2 in Ω. This completes
the proof of Proposition 3.5. �

4 Regularity of the weak solution of (3.4)

In this section, we consider the regularity of the solution of (3.4). Throughout this section,
we assume that

f ∈Cα(Ω),div f =0 in Ω and ⟨ f ·n,1⟩Γi =0 for i=1,.. .,m (4.1)

and q denotes the conjugate exponent of p. We consider the following div-curl system.
curlG= f in Ω,
divG=0 in Ω,
ν·G=0 on ∂Ω.

(4.2)

By hypotheses (4.1) and the divergence theorem, it holds that ⟨ f ·n,1⟩Γi =0 for i=0,1,.. .,m
as in the preceding arguments. Therefore from Pan [16, Lemma 5.7 (ii)], the system (4.2)
has a solution G∈C1+α(Ω) and there exists a constant C=C(Ω,α) such that

∥G∥C1+α(Ω)≤C
(
∥ f∥Cα(Ω)+∥G∥C0(Ω)

)
.



Existence and Regularity of a Weak Solution 11

Here G is uniquely determined up to an additive element of K
p
T(Ω). Thus the weak

solution v∈W1,p(Ω) of (3.4) satisfies
curl[St(x,|curlv|2)curlv−G]=0 in Ω,
divv=0 in Ω,
ν×v=0 on Γ,
⟨v·n,1⟩Γi =0 i=1,.. .m.

(4.3)

By hypothesis (2.3), we have

St(x,|curlv|2)|curlv|≤Λ|curlv|p−1∈Lq(Ω).

Put h=St(x,|curlv|2)curlv−G∈Lq(Ω). Then h satisfies curlh=0 in Ω. By the Helmholtz
decomposition of h (cf. [7, Theorem 6.1]), we can write

h=z+∇ψ+curlw,

where z∈K
q
T(Ω) is unique, ψ∈W1,q(Ω) is unique up to an additive constant and w∈

W1,q(Ω) satisfies divw = 0 in Ω and w×n = 0 on Γ, and is unique up to an additive
element of K

q
N(Ω). However, since curlh=0 in Ω, we have curl2w=0 in the distribution

sense in Ω. Therefore

0=
∫

Ω
curl2w·wdx=

∫
Γ
(n×curlw)·wdS+

∫
Ω
|curlw|2dx

=
∫

Γ
(w×n)·curlwdS+

∫
Ω
|curlw|2dx=

∫
Ω
|curlw|2dx,

where dS denotes the surface element of Γ. So we have curlw=0 in Ω. Thus we can write

h=z+∇ψ, (4.4)

and the following estimate holds.

∥z∥Lq(Ω)+∥ψ∥W1,q(Ω)/R
≤C

(
∥ f∥Cα(Ω)+∥G∥C0(Ω)

)
.

Since Γ is C2+α class, we note that K
q
T(Ω)⊂C1+α(Ω). Hence we can write

St(x,|curlv|2)curlv=G+z+∇ψ,

where G,z∈C1+α(Ω). By (2.7), we have

Φ(x,|curlv|2)=St(x,|curlv|2)2|curlv|2= |G+z+∇ψ|2.

Therefore we can write
|curlv|2=Ψ

(
x,|G+z+∇ψ|2

)
.
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Moreover, we can write

curlv=
G+z+∇ψ

St(x,|curlv|2) = f (x,|G+z+∇ψ|2)(G+z+∇ψ).

Since n·curlv=n·curlvT=0 on Γ, ψ∈W1,q(Ω) is a weak solution of the following system.{
div[ f (x,|G+z+∇ψ|2)(G+z+∇ψ)]=0 in Ω,
n· f (x,|G+z+∇ψ|2)(G+z+∇ψ)=0 on Γ.

(4.5)

If we show that ψ∈C1+β(Ω) for some β∈ (0,1), then v is a solution of the following
div-curl system

curlv= f (x,|G+z+∇ψ|2)(G+z+∇ψ) in Ω,
divv=0 in Ω,
n×v=0 on Γ,
⟨v·n,1⟩Γi =0 i=1,.. .,m.

(4.6)

Since f (x,|G+z+∇ψ|2)(G+z+∇ψ)∈Cβ(Ω), it follows from the regularity of the div-curl
system (cf. Bolik and Wahl [20]) that v∈C1+β(Ω), and

∥v∥C1+β(Ω)≤C
(
∥ f (x,|G+z+∇ψ|2)(G+z+∇ψ)∥Cβ(Ω)+∥v∥Lp(Ω)

)
.

If we put F=G+z∈C1+α(Ω), then we note that

∥G∥C1+α(Ω)+∥z∥C1+α(Ω)≤C
(
∥ f∥Cα(Ω)+∥G∥C0(Ω)

)
.

Now we consider the regularity of weak solution ψ∈W1,q(Ω) of the equation (4.5). In
order to do so, we define

A(x,p)= f (x,|F(x)+p|2)(F(x)+p), (p=(p1,p2,p3)∈R3).

Then (4.5) is written by {
divA(x,∇ψ)=0 in Ω,
n·A(x,∇ψ)=0 on Γ.

(4.7)

We show the following structure conditions in [15]: There exist positive constants c,C>0
such that {

A(x,p)·p≥ c|p|q−Cg1(x),

|A(x,p)|≤C(|p|q−1+g2(x)),
(4.8)

where gi ≥0 and gi ∈L∞(Ω) for i=1,2. In fact,

A(x,p)·p= f (x,|F(x)+p|2)(F(x)+p)·p
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= f (x,|F(x)+p|2)(F(x)+p)·(F(x)+p)− f (x,|F(x)+p|2)(F(x)+p)·F(x)

≥ f (x,|F(x)+p|2)|F(x)+p|2− f (x,|F(x)+p|2)|F(x)+p||F(x)|.

It follows from Lemma 2.1 and the Young inequality that

A(x,p)·p≥Λ−(q−1)|F(x)+p|q−ε|F(x)+p|q−C(ε)|F(x)|q

for any ε>0. If we choose ε>0 small enough, then there exist constants c,C>0 such that

A(x,p)·p≥ c|F(x)+p|q−C|F(x)|q.

Since |p|q = |F(x)+p−F(x)|q ≤2q−1(|F(x)+p|q+|F(x)|q), we have

A(x,p)·p≥ c
2q−1 |p|

q−(C+1)|F(x)|q.

Since F ∈C1+α(Ω), we can see |F|q ∈ L∞(Ω). Thus the first inequality of (4.8) holds. For
the second inequality of (4.8),

|A(x,p)|≤λ−(q−1)|F(x)+p|q−1≤λ−(q−1)max{1,2q−2}
(
|p|q−1+|F(x)|q−1

)
.

Here we used the inequalities: for q≥2,

|F(x)+p|q−1≤2q−2(|F(x)|q−1+|p|q−1),

and for 1<q<2,
|F(x)+p|q−1≤|F(x)|q−1+|p|q−1.

In order to apply [15, Theorem 1.3, p. 43], we have to show the global boundedness of a
weak solution of (4.7) under the structural conditions.

4.1 Global boundedness of weak solution

Proposition 4.1. Consider the equation (4.7) under structure conditions (4.8) and let ψ∈W1,q(Ω)
be a weak solution of (4.7). Then ψ∈L∞(Ω), and there exists a constant C>0 such that

sup
Ω

|ψ|≤C
(
∥ψ∥Lq(Ω)+∥g1∥

1/q
L∞(Ω)

)
.

Proof. For s>1 and Z≥1, define a function

γ(t)=
{

min{t,Z}qs−q if t≥0,
0 if t<0.

(4.9)

Then γ(t) is a bounded function in t and there exists a constant Cγ >0 such that

0≤γ′(t)t≤Cγγ(t) a.e. t. (4.10)
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We note that we can take Cγ = qs. We take φ=γ(ψ)ψ+ as a test function of (4.7), where
ψ+=max{0,ψ}. Since

∇φ=

{
(γ′(ψ)ψ+γ(ψ))∇ψ if ψ≥0,
0 if ψ<0,

it follows from (4.8) and (4.10) that

A(x,∇ψ)·∇φ≥ (γ′(ψ)ψ+γ(ψ))(c|∇ψ|q−Cg1(x))
≥ cγ(ψ)|∇ψ|q−C(1+Cγ)γ(ψ)g1(x).

Since ∫
Ω

A(x,∇ψ)·∇φdx=0,

we have
c
∫

Ω
γ(ψ)|∇ψ|qdx≤C(1+Cγ)

∫
Ω

γ(ψ)g1(x)dx. (4.11)

Now define h=χ{ψ>0}min{ψ,Z}s−1ψ=min{ψ,Z}s−1ψ+, where χ{ψ>0} is the characteris-
tic function of the set {x∈Ω;ψ(x)>0}. Then we see that

∇h=


sψs−1∇ψ if 0<ψ≤Z,
Zs−1∇ψ if ψ>Z,
0 if ψ≤0.

Thus |∇h|q=sqγ(ψ)|∇ψ|q and hq=γ(ψ)ψq. From the Gagliardo-Nirenberg inequality (cf.
Lieberman [17, Theorem 5.8]), for N > q≥ 1,N ≥ 3, there exists a constant C=C(Ω,N,q)
such that(∫

Ω
|v|Nq/(N−q)dx

)(N−q)/N

≤C
(∫

Ω
|v|qdx

)(N−3)/N(∫
Ω
(|∇v|q+|v|q)dx

)3/N

for any v∈W1,q(Ω). Put κ=N/(N−q)(>1). Since h∈W1,q(Ω), by applying this inequality,
and using inequality (a+b)p≤ap+bp for 0<p≤1,a,b≥0, (4.11) and the Young inequality,
we have(∫

Ω
|h|κqdx

)1/κ

≤C
(∫

Ω
|h|qdx

)(N−3)/N(∫
Ω
(|∇h|q+|h|q)dx

)3/N

≤C
[∫

Ω
|h|qdx+

(∫
Ω
|h|qdx

)(N−3)/N(∫
Ω
|∇h|qdx

)3/N]
≤C

[∫
Ω

γ(ψ)ψqdx+
(∫

Ω
γ(ψ)ψqdx

)(N−3)/N(
qsq+1

∫
Ω

γ(ψ)g1(x)dx
)3/N]

≤C
[∫

Ω
γ(ψ)ψqdx+q3/N

(
s3(q+1)/(N−3)

∫
Ω

γ(ψ)ψqdx
)(N−3)/N(∫

Ω
γ(ψ)g1(x)dx

)3/N]
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≤Cs3(q+1)/(N−3)
∫

Ω
γ(ψ)ψqdx+C

∫
Ω

γ(ψ)g1dx.

Now since min{ψ,Z}≤ψ for ψ>0, so ψ
min{ψ,Z} ≥1 and κ>1, we have

hqκ =γ(ψ)κψqκ

=χ{ψ>0}min{ψ,Z}qκ(s−1)ψqκ =χ{ψ>0}min{ψ,Z}qκs
(

ψq

min{ψ,Z}q

)κ

≥χ{ψ>0}min{ψ,Z}qκs ψq

min{ψ,Z}q .

Therefore we have(∫
Ω

min{ψ,Z}qκsχ{ψ>0}
ψq

min{ψ,Z}q dx
)1/κ

≤
(∫

Ω
hqκdx

)1/κ

. (4.12)

On the other hand, since ψ
min{ψ,Z} ≥1 for ψ>0, we can write∫

Ω
γ(ψ)ψqdx=

∫
Ω

min{ψ,Z}qsχ{ψ>0}
ψq

min{ψ,Z}q dx, (4.13)∫
Ω

γ(ψ)g1dx=
∫

Ω
min{ψ,Z}qs−qg1χ{ψ>0}

ψq

min{ψ,Z}q dx.

Here we define a measure dµ=χ{ψ>0}
ψq

min{ψ,Z}q dx. Then using the Hölder inequality and
the Young inequality, we can write∫

Ω
γ(ψ)g1dx≤

(∫
Ω

min{ψ,Z}qsdµ

)(qs−q)/qs(∫
Ω

gs
1dµ

)1/s

≤
∫

Ω
gs

1dµ+
∫

Ω
min{ψ,Z}qsdµ. (4.14)

If we put w=min{ψ+,Z}q, it follows from (4.12) that(∫
Ω

wκsdµ

)1/κ

≤
(∫

Ω
hqκdx

)1/κ

≤C1s3(q+1)/(N−3)
∫

Ω
wsdµ+C2

∫
Ω

gs
1dµ.

We choose N so that m :=3(q+1)/(N−3)≥1. Then we see that(∫
Ω

wκsdµ

)1/κ

≤Csm
{∫

Ω
wsdµ+

∫
Ω

gs
1dµ

}
. (4.15)

Since s>1, it follow from (4.15) that(∫
Ω

wκsdµ+∥g1∥κs
L∞(Ω,dµ)

)1/κ

≤Csm
{∫

Ω
wsdµ+∥g1∥s

L∞(Ω,dµ)

}
.

We apply the following proposition due to the Moser iteration method, whose proof
appears in [6, Appendix A] (cf. [17, Lemma 5.30]).
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Proposition 4.2. Let (X,dν) be a measure space and suppose that 0≤w∈Lp(X,dν) for all p≥1.
Assume that there exist constants C>0,κ>1,K≥0,m≥1,s0≥1 such that for all s≥ s0,(∫

X
wκsdν+Kκs

)1/κ

≤Csm
(∫

X
wsdν+Ks

)
. (4.16)

Then we can see that w∈L∞(Ω,dν), and there exists a constant C1>0 such that

∥w∥L∞(Ω,dν)≤C1
(
∥w∥L1(Ω,dν)+K

)
.

We apply this proposition with X=Ω,dν=dµ as above, w=min{ψ+,Z}q,κ=N/(N−
q)(> 1),s0 =m= 3(q+1)/(N−3)(≥ 1) and K = ∥g1∥L∞(Ω,µ). Hence we can see that w∈
L∞(Ω,dµ) and

∥w∥L∞(Ω,dµ)≤C
(
∥w∥L1(Ω,dµ)+∥g1∥L∞(Ω,dµ)

)
.

Here we note∫
Ω

gs
1dµ=

∫
Ω

gs
1χ{ψ>0}

ψq

min{ψ,Z}q dx=∥g1∥s
L∞(Ω)

∫
Ω

χ{ψ>0}
ψq

min{ψ,Z}q dx

=∥g1∥s
L∞(Ω)

{∫
0<ψ≤Z

ψq

min{ψ,Z}q dx+
∫

ψ≥Z

ψq

min{ψ,Z}q dx
}

≤∥g1∥s
L∞(Ω)(|Ω|+Z−q∥ψ∥q

Lq(Ω)
).

Thus we have (∫
Ω

gs
1dµ

)1/s

≤∥g1∥L∞(Ω)(|Ω|+∥ψ∥q
Lq(Ω)

)1/s.

Letting s→∞, we get ∥g1∥L∞(Ω,dµ)≤∥g1∥L∞(Ω). Also, we have ∥w∥L1(Ω,dµ)= ∥ψ+∥q
Lq(Ω)

.
From Proposition 4.2, we can see that

min{ψ+,Z}≤C
(
∥ψ+∥Lq(Ω)+∥g1∥1/q

L∞(Ω)

)
.

Since Z≥1 is arbitrary, letting Z→∞, we get

sup
Ω

ψ≤sup
Ω

ψ+≤C
(
∥ψ+∥Lq(Ω)+∥g1∥1/q

L∞(Ω)

)
.

Since g1= |F(x)|q, we have

sup
Ω

ψ≤sup
Ω

ψ+≤C
(
∥ψ+∥Lq(Ω)+∥F∥L∞(Ω)

)
.

Since A(x,p)= f (x,|F(x)+p|2)(F(x)+p), if we replace F with −F in (4.7), then −ψ is a
weak solution of (4.7). Therefore from the above arguments, we get

sup
Ω

(−ψ)≤sup
Ω

ψ−≤C
(
∥ψ−∥Lq(Ω)+∥F∥L∞(Ω)

)
.
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As a result, we get
sup

Ω
|ψ|≤C(∥ψ∥Lq(Ω)+∥F∥L∞(Ω)).

Thus we have proved the global boundedness of the weak solution ψ of the equation
(4.7).

4.2 Hölder continuity of weak solution of (4.7)

According to (4.8), the structural conditions (A1)-(A5) in [15] hold. Since the weak so-
lution ψ of (4.7) is globally bounded, it follows from [15, Theorem 1.3] that ψ is Hölder
continuous in Ω, and there exists constants C>0 and γ∈ (0,1) such that

|ψ(x)−ψ(y)|≤C∥ψ∥L∞(Ω)|x−y|γ, x,y∈Ω.

4.3 Hölder continuity of the gradient of weak solution of (4.7)

We follows the idea of Lieberman [18]. When F(x)=k=constant, we put ϕ(x)=k·x, and
φ=ϕ+ψ. Then we can reduce equation (4.7) into the form{

divB(x,∇φ)=0 in Ω,
n·B(x,∇φ)=0 on Γ

(4.17)

where B(x,p)=(B1(x,p),B2(x,p),B3(x,p))= f (x,|p|2)p. We see that

3

∑
i,j=1

∂Bi

∂pj
ξiξ j = f (x,|p|2)|ξ|2+2 fρ(x,|p|2)(p·ξ)2.

Here fρ(x,|p|2) may change the sign. When fρ(x,|p|2)≥0, from Lemma 2.1,

3

∑
i,j=1

∂Bi

∂pj
ξiξ j ≥ f (x,|p|2)|ξ|2≥Λ−(q−1)|p|q−2|ξ|2.

When fρ(x,|p|2)<0,

3

∑
i,j=1

∂Bi

∂pj
ξiξ j ≥ f (x,|p|2)|ξ|2+2 fρ(x,|p|2)|p|2|ξ|2

={ f (x,|p|2)+2 fρ(x,|p|2)|p|2}|ξ|2.

Since f (x,ρ)+2ρ fρ(x,ρ)≥ cρ(q−2)/2 for some c>0, there exists a constant c>0 such that

3

∑
i,j=1

∂Bi

∂pj
ξiξ j ≥ c|p|q−2|ξ|2.
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On the other hand, ∣∣∣∣∂Bi

∂pj

∣∣∣∣≤ f (x,|p|2)+2| fρ(x,|p|2)||p|2.

If we use the relations f (x,ρ)≤λ−(q−1)ρ(q−2)/2 by Lemma 2.1 and

ρ| fρ(x,ρ)|= Φ(x,t)|Stt(x,t)|
(St(x,t))2Φt(x,t)

=
Φ(x,t)|Stt(x,t)|

(St(x,t))2St(x,t)(St(x,t)+2tStt(x,t))

≤C
tp−1t(p−4)/2

t3(p−2)/2t(p−2)/2
≤C1t−(p−2)/2≤C2ρ−(p−2)/(2(p−1))≤C3ρ(q−2)/2,

we have ∣∣∣∣∂Bi

∂pj

∣∣∣∣≤C|p|q−2.

Finally, from (2.6), we have

|B(x,p)−B(y,p)|≤C|x−y||p|q−1.

Thus we see that the structural conditions of [18] hold. Therefore, when F(x) = k =
constant, if we apply [18, Theorem 2], there exist β∈(0,1) and a constant C dependent on
λ,Λ,p,supΩ |ψ| and Ω such that φ∈C1+β(Ω), and

∥φ∥C1+β(Ω)≤C. (4.18)

Next we use the perturbation method to verify the regularity of weak solution of (4.7).
Fix x0∈Ω and choose a ball BR0(x0) with center x0 and radius R0>0 such that BR0(x0)⊂Ω.
For any 0<R≤R0, we consider the following equation{

div[ f (x0,|F(x0)+∇ψ|2)(F(x0)+∇ψ)]=0 in BR(x0),
ψ= φ on ∂BR(x0),

(4.19)

where ∂BR(x0) denotes the boundary of BR(x0). By [18, Lemma 5], equation (4.19) has a
unique solution ψ in W1,q(BR(x0)). Moreover, ψ∈C1+β(BR(x0)) and satisfies

∥ψ∥C1+β(BR(x0))
≤C.

Using this fact and the perturbation method, the weak solution ψ of (4.7) is in C1+β
loc (Ω)

for some β∈ (0,1) and for any Ω′bΩ, there exists a constant C depending only on the
known data and dist(Ω′,∂Ω) such that

∥ψ∥C1+β(Ω′)≤C.

Here we use a variant of the perturbation method developed by Choe [19, pp. 36-38] (cf.
[6, Appendix B]). Finally C1+β regularity near the boundary Γ follows from [18, Lemma
6] and the perturbation method.
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