Analysis in Theory and Applications DOI: 10.4208/ata.OA-0002
Anal. Theory Appl., Vol. 35, No. 1 (2019), pp. 66-84

Lower Bounds of Dirichlet Eigenvalues for General
Grushin Type Bi-Subelliptic Operators

Hua Chen*, Hongge Chen, Junfang Wang and Nana Zhang
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received 21 August 2017; Accepted (in revised version) 4 October 2017

Abstract. Let () be a bounded open domain in R" with smooth boundary 9). Let
X = (X1,X2,-+-,Xm) be a system of general Grushin type vector fields defined on Q)
and the boundary o() is non-characteristic for X. For Ax = ]'-”:1 X]z, we denote Ay as

the k-th eigenvalue for the bi-subelliptic operator A% on Q. In this paper, by using the
sharp sub-elliptic estimates and maximally hypoelliptic estimates, we give the optimal
lower bound estimates of A for the operator A%.
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1 Introduction and main results

Let X = (X1,X2,-+-,Xmm) be the system of general Grushin type vector fields, which is
defined on an open domain W in R" (n > 2).
Let J=(j1,-+,jk), 1 <ji<m be a multi-index, X/ =X; X, --- Xj,, we denote | ]| =k be the

Jk?

length of J, if |J| =0, then X/ =id. We introduce following function space (cf. [18,21,23]):
Hi (W) ={ue L’ (W)X ue L*(W), |]|<2}.
It is well known that H% (W) is a Hilbert space with norm ||u ||§{§((W) =Y|j|<2 | X u ||%2(W).
Assume the vector fields X = (X1, Xy, -+, Xy) satisfy Hérmander’s condition :

Definition 1.1 (cf. [2,12]). We say that X=(X;,X>,---,X) satisfies the Hormander’s con-
dition in W if there exists a positive integer Q, such that for any |J| =k < Q, X together
with all k-th repeated commutators

X] = [ij [ijf [X]'3,‘ Ty [Xjk—l’Xjk] . ]”
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span the tangent space at each point of W. Here Q is called the Hérmander index of X in
W, which is defined as the smallest positive integer for the Hormander’s condition to be
satisfied.

For any bounded open subset Q CC W, we define the subspace H%/O(Q) to be the
closure of C3(Q)) in H%(W). Since 9Q) is smooth and non characteristic for X, we know
that H% ,(Q2) is well defined and also a Hilbert space. In this case, we also say that X
satisfies the Hérmander’s condition on Q with Hérmander index 1 < Q < +o0. Thus X
is a finitely degenerate system of vector fields on () and the finitely degenerate elliptic
operator Ax =Y/ ; X? is a sub-elliptic operator.

The degenerate elliptic operator Ax has been studied by many authors, e.g.,
Hormander [11], Jerison and Sanchez-Calle [13], Métivier [17], Xu [23]. More results for
degenerate elliptic operators can be found in [2-6] and [9, 10,12, 14].

In this paper, we study the following eigenvalues problem for bi-subelliptic operators
in H ,(Q):

2 . .
{AXu—Au in Q, (11)

u=0, Xu=0 on 0Q),

where X will be the following general Grushin type vector fields (see (1.5) and (1.7) be-
low). In this case we know that for each j, X; is formally skew-adjoint, i.e., X7 = —X;.
Then there exists a sequence of discrete eigenvalues {A; }].>1 for the problem (1.1), which
satisfying 0 <A1 <A; <Az <---<Ag---and Ay —+coask— +00 (see Proposition 2.5 below).

In the classical case, if X = (dy,, --,0y,), then A§< = A? is the standard bi-harmonic
operator. In this case our problem is motivated from the following classical clamped
plate problem, namely

1.2
u:a—“zo on 0(Q), 1.2)

{Azu =Au in Q,
ov

where A= 8?(1 +8§2 4402, g—]’f denotes the derivative of u with respect to the outer unit
normal vector v on 9Q).

For the eigenvalues of the clamped plate problem (1.2), Agmon [1] and Pleijel [20]
showed the following asymptotic formula

e — 2T s ke, (1.3)

(Byvol(Q)))™

where B,, denotes the volume of the unit ball in R". In 1985, Levine and Protter [15]
proved that

1 n 167 4
%ﬁAiz id Tk (1.4)
i=1 (Byool(Q)))"
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Later in 2012, Cheng and Wei [7] showed that the eigenvalues of the bi-harmonic operator
satisfy

1Kk n 167 4

EZAiZn—HL ik

i1 (Byool(Q)))"
( n+2 1 )vol(Q) n 47t 2
12(n+4) 115202(n+4) ) 1(Q) n+2 (B yo1(0))F

1 1 vol(Q)\?
+(576n(n+4)_27648n2(n+2)(n+4)> 1(Q) > ’

where [(Q)) is the moment of inertia of Q).
Next, we consider the situation for the bi-subelliptic operators A%. Before we state
our results, we need the following concepts:

Definition 1.2. If X satisfies the Hormander’s condition in W with the Hérmander index
Q>1. Then for each 1 <j < Q and x € W, we denote V](x) as the subspace of the tangent
space Tyx(W) spanned by the vector fields X; with |]| <j. We say the system of the vector
fields X satisfies Métivier’s condition on Q) if the dimension of V;(x) is constant v; in a
neighborhood of each x € (, and in this case the Métivier index is defined as

v=) j(vj—vj_1), here vy=0.

As it well-known that under the Métivier’s condition, we can get the asymptotic es-
timate for the eigenvalues of sub-elliptic operator —Ax (cf. [17]). However, for most
degenerate vector fields X, the Métivier’s condition will be not satisfied. Thus we need
to introduce the following generalized Métivier index.

Definition 1.3. If X satisfies the Hormander’s condition in W with the Hérmander index
Q>1. Then for each 1<j<Q and x € W, we denote V;(x) as the subspace of the tangent
space T (W) spanned by the vector fields X; with |J| <j. We denote that

Q
v(x)= Ej(v]-(x) —vj_l(x)), with ©vg(x)=0,
j=1
where v;(x) is the dimension of V;(x). Then we define

U=max, 50(x),

as the generalized Métivier index. It is obvious that @ =v if X satisfies the Métivier’s
condition on Q).
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Recently, in case of X to be some special Grushin vector fields Chen and Zhou [8]
obtained lower bound estimates of eigenvalues for the bi-subelliptic operator A%. In this
paper, we shall study the similar problem for more general Grushin type vector fields X.
In the first part of this paper, we shall study the bi-subelliptic operators A% in case of

X= (9,0, 1, f (%), ), (1.5)

where f(¥) =Y ,<s2,%" is a multivariate polynomial of ¥ with order s, X= (x1,---,x,-1),
a=(ay, - ,0y_1)€ Zfl, |a| =aq+4---+wa,_1, a, are constants. We suppose that
(Hj): If f(x) has a unique zero point at origin ¥ =0 in () only, and there exists a unique
multi-index ag with |ag| = sp <s, satisfying 05 f (%) |z=0 # 0 and 9%f(%)|z=0 =0 for any
] <aol-

Thus we have the following result.

Theorem 1.1. Let X=(0y,,--+,0x, ,,f(%)0x,), X=(x1,X2,---,x,_1). Under the condition (Hy)
above, X satisfies the Hormander’s condition with its Hormander index Q=so+1, and the gener-
alized Métivier index of X is 0=Q+n—1. Suppose A; is the j-th eigenvalue of the problem (1.1),
then for all k>1,

L s G(Q)
. 1+¢_ L2
j:ZlAJ > C(QF =k (1.6)
where \
C(0) = 4g (2m)" \ e _1)e8
C(Q)_Cl(Q)nz(ﬂ+Q+3) (Qa]n—l‘Q‘n> (n+Q 1) Q-1
and
4 min{1,n°2"}, Q>2,
n, Q=1

Here C1(Q), C2(Q) are the constants in Proposition 2.3 below, wy,_1 is the area of the unit sphere
in R", and |Q}|,, is the volume of Q).

k
Remark 1.1. (1) Since kAy > }° Aj, then Theorem 1.1 shows that the eigenvalues A satisty
j=1

=i ©(Q)
A= C(Q)k G Q)

(2) If Q>1, we can deduce from Definition 1.3 that n4+Q—1 <3 <n(Q. Thus in our
case in Theorem 1.1  =n+Q—1 is the smallest. That means the lower bound estimates
(1.6) will be optimal.

(3) If f(x)=1in Theorem 1.1, then Q=1, A% =A? is the standard bi-harmonic operator.

Il 167*n ((Wn-1|Qln —4/m
Then C1(Q) =1, C2(Q)=0and C(Q) =2F (7) . Thus the result of Theorem

forall k>1.

n+4 n
1.1 will be the same to the result of (1.4) in Levine and Protter [15].
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In the second part, we shall study the bi-subelliptic operators A% for more general
cases, namely

X=(0x,, 9, [1(X(p) )9 yiar 1 fp (X () )0, ) (1.7)

where %,y = (x1,"+*,Xn—p),

Fi(Fp) = gz, 8ie¥lpyy  (1j<p<n),

are multivariate polynomials of x(,) with order s;. Thus X is more general Grushin type
degenerate vector fields with p degenerate directions. We suppose that
(Hz) : For each j,1<j<p<mn, if f;(X(,)) has a unique zero point at origin ¥,y =0 in Q) only,
and there exists a unique multi-index ag; with |ag;|=sp; <s;, satisfying 82?; : fi(®(p)) |2, =07
0 and ag(p)f]-(x(p)) |%,)=0="0 for any |a| <|ag;].

Thus we have

Theorem 1.2. Under the condition (Hy) above, the vector fields X satisfies the Hormander’s
condition with its Hormander index Q =max{so1,502,-+,50p } +1, and the generalized Métivier
index &= n—i—zjr;l soj- Suppose A is the j-th eigenvalue of the problem (1.1), then for all k> 1,

‘ s CG4(Q)
=1 G3(Q)

k, (1.8)

where

211

C(Q)

5CE’>(Q)”T Wy—_1 IE[ (Soj+1)
j=1

<
7N\
=~
23
Bl et
N

S

where ﬁ:n—i—z;q:lsoj, C3(Q) and C4(Q) are the corresponding sub-elliptic estimate constants in
Proposition 2.4, w,_1 is the area of the unit sphere in R", |QY|,, is the volume of Q).

Remark 1.2. Since kAj > Z?:] Aj, then Theorem 1.2 shows that the eigenvalues Ay satisfy

1 C4(Q)

A >C(O)ke — . forall k>1.
2CQ) G3(Q) -

Our paper is organized as follows. In Section 2, we introduce some preliminaries
about subelliptic estimates and discreteness of the Dirichlet eigenvalues for the operator
—A%. In Section 3, we prove Theorem 1.1. Finally, we prove Theorem 1.2 in Section 4.
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2 Preliminaries

Proposition 2.1. Let the system of vector fields X=(Xj,---,X,,) satisfies the Hérmander’s
condition on () with its Hormander index Q > 1, then the following estimate

2 2
[I9184]|, ., <CQ AUl +C(Q Il 1)

holds for all u € C5°(Q)), where V = (0x,,+*,0x,,), |V|é is a pseudo-differential operator
with the symbol |{]| é, the constants C(Q) >0, C(Q) >0 depending on Q.

Proof. Refer to [12] and [21], the subelliptic operator Ax =) " ; X? satisfies the following
sub-elliptic estimate for any u € C{°(Q2),

[ull ey < Call Axullraia) +Collull 2

with e= é, where [|u] () is the Sobolev norm of order 2e. On the other hand, we have
1
2 2 2
Il gy = ([ -+ 8 e

- ([t

i, =l

L2(Q)

By using the Cauchy-Schwarz inequality we get the following estimate

<C(Q)Axlf2 0 +C(Q) 4l

19188y <

Thus, we complete the proof. O

Proposition 2.2. (cf. [19,21] and [22]) Let the system of vector fields X= (X1, ,Xm)

satisfies the Hormander’s condition on (), then the operator Ax = Z X2 is maximally
i=1

hypo-elliptic, i.e., there exists a constant C > 0, such that for any u € C§°(Q)) we have the
following maximally hypo-elliptic estimate

21X ull i) < ClIAXU| ) 11Tz cr)),

|a| <2

where a = (a1, -, &) is a multi-index with |a| =aq +- - +a,, and X* =X+ X5



72 H. Chen, H. G. Chen, J. F. Wang and N. N. Zhang / Anal. Theory Appl., 35 (2019), pp. 66-84

Proposition 2.3. Let X = (dy,,--+,0x, ,,f(X)0x,), ¥ = (x1,X2,---,x,—1). Here f(%) is a
multivariate polynomial and satisfies the condition (H;) above. Then X satisfies the
Hormander’s condition with its Hormander index Q > 1, and we can deduce the fol-
lowing sub-elliptic estimate

n—1 2 5

]; 192 122y + 195, Qu”LZ(Q) <CH(Q)IAxu| 2y +Ca(Q) ]2y (22)
for all u € C{°(Q2), where |0y, |% is a pseudo-differential operator with the symbol |, | %,
C1(Q) >0, C2(Q) >0 are constants depending on Q.

Proof. From the Plancherel’s formula, we have

2
<|ie1ea

e =

L2(R")

=it Lz(w):(“vm (2.3)

12(q)

Also, from the maximally hypo-elliptic estimate of Proposition 2.2 we can deduce that

n—1
Y102 iy < X 1X0 ]2y < OB 22 gy + ]2 ) 2.4
j=1 la| <2

Combining (2.1), (2.3) and (2.4) we can deduce that

<G (Q )HAX“H 0)TC(Q )||”Hi2(0)

L2(0)

n—1 ) ) 2 2
3 102wl + [ 105, 1 20
j=1

Thus, we complete the proof. O

Proposition 24. Let X = (axl,---,axn_p,fl(f(p))axn_p+l,---,fp(f(p))axﬂ), Xy =
(x1,X2,+-,Xn—p). Here ij(x(p)) (for 1 <j<p < n) are multivariate polynomials which
satisfying the condition (H2) above. Then X satisfies the Hérmander’s condition with
its Hormander index Q > 1, and we get the following sub-elliptic estimate

2
oy SCo Qa0 +Cu( @l @9

2
50] sg;+1

xn P+/ u

n—p
Y 1103 ull?2q
i=1

for all u € C5°(Q), where [0y, \% is a pseudo-differential operator with the symbol [{;| :,
and the constants C3(Q) >0, C4(Q) >0 depending on Q.
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Proof. We consider the system of vector fields X = (9y,, -0y, v f](f( ) oy +j) (for1<
j < p <n) defined on the projection Q  of () on the dlrectlon x = (X1, Xn—p,Xn—p+j)-

Similar to Proposition 2.3, for all j (1< § p), we have

n—p 2 2
192 1l o 70 CQ Izl +Ca(@ s,
i=1 LZ(QXI,) ]
]
Then for all j (1<j<p), we have
n—p 2 2
Y 1020l s 70| <RIy +E Qi @6)
i=1 LZ(Q)

By using the Cauchy-Schwarz inequality and Proposition 2.2, there exists a constant C3>0
such that

1851l Tai0) <Cs Yo X ullfaiq) < CoC(IAxulF2 () + T2 ),

la|<2

where C is given in Proposition 2.2. Finally, we get the following sub-elliptic estimate
from (2.6)

2
oSG0 M Axul|22 ) +Ca(Q)|ull

_2
Zna ANES oY [N

j=1
Thus, we complete the proof. ]

Next, for the Dirichlet eigenvalues problem (1.1), we have

Proposition 2.5. The Dirichlet eigenvalues problem (1.1) has a sequence of discrete eigen-
values {)‘f}j>1’ which satisfying 0 <A1 <Ay <Az <--- <Ag--- and Ay — 400 as k — +o0.

Also, the corresponding eigenfunctions {¢y(x)}r>1 constitute an orthonormal basis of
L?(Q2) and an orthogonal basis of H ().

The proof of Proposition 2.5 depends the following lemma:
Lemma 2.1. If u € H ,(Q), then for 1 <j<m, Xjue H ;(C0).

Proof. Since u € H ,(€2), we have X;(Xju) € L*(Q)) for any 1<i,j<m, and (X;u) € L*((2).
That implies Xju € Hy (Q)). Now, u € H ((Q), then there exists a sequence ¢; € C§°((2)
which converges to u in H (). That means Xj¢; — X;u in Hy (€2). Observe that X;¢; €
Hj o(Q) and Hj ,(Q) is a Hilbert space, thus we have Xju € H} ((€2). O
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Proof of Proposition 2.5. We know that the definition domain of A% is
dom (%) ={u € Ho(Q)|A ueL*(Q)}.

Thus, for X; to be formally skew-adjoint, then for any function u € C§°(Q)) and v €
dom(A%), we have

uN> vdx:/ vA%udx
o= [ o

m
:/ UAX(AXu)dx:Z/ v- X (Axu)dx.
) /o

Since v € Hg(,o C H}(IO(Q), and from the result of Lemma 2.1, Xjv € H%(,O(Q). Then the
equation above gives

m m
/MA%(vdx:—Z/ va‘Xj(AXu)dx:Z/ XFu-(Axu)dx
0 /0 /0
that gives the following Green formula:
/QuAggvdx:/QAXu-Adex, for u€H%,(Q), vedom(A%). (2.7)

On the other hand, for u € H%/O(Q),
2 2 - 2 - 2
g, =l + LWl + 3 Il
i= ij=

Thus we have

m
el g > M2l 2y + Yo IXF e 20) > 1A x| (2:8)
j=1

By maximally hypoellipticity of Ax (also see Proposition 2.2 above), we have following
estimate for any u € H ,(Q)),

lull = 3 11X "2l faq) < CUIAxulT2(q) +lullZ2q)- (2.9)

o] <2
Furthermore, the Poincaré inequality gives
12y < Cull Xullf2q) < Cal (Axa,u)| < Crl|Axull 20y 1l 20
Thus for any 0 <e <1 there is C¢ >0, such that

8% 2yl () < Cell Axcul| 72 +ellull 72
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That means from (2.9) that there exists C, >0, such that

)l < CallAxullfaq)- (2.10)

Hence from (2.8) and (2.10) one has for any u € H%(,O(Q)/
[Axull < lull gz < CsllAxull. (2.11)

Thus we define that
[u, 9] = (Axu,Ax¢), (2.12)

then [-,-] is another inner product, and H}Z(,O(Q) with this inner product is complete.
Now, we choose u,v € dom(Ag(), then

(A%u,0) = (Axu,Axv) = (A)o,u).
Hence, A% is symmetric operator in dom(A%). Also
(A%u,u) = (Axu,Axu) >0,

which implies that A% is positive in dom(A%).
Next, for any given feL*(Q)) and any g€ H ,((2), we define a functional f(¢)=(f,¢).
Since

(£ o) <l iz N 9llize) < I f ez - ol )

then the functional (f,¢) is a continuous linear functional on Hilbert space H% ,(€2). By
Riesz representation theorem, there exists a unique u € H% ,(Q) such that

(f,9) = u,9] = (Dxu,Ax¢).
Thus the Green formula (2.7) gives that
(8%u,0) = (Dxu,Bx9) = (f.¢) (2.13)

holds for any €C$*(Q)). That implies A%u=f, i.e., u€dom(A%). This proves the existence
of the resolvent operator R:=(A%)~!, and Rf =u.
On the other hand, if we choose ¢ =u in (2.13), then (Rf,f) = (u,f) = HAquiz(Q) >0.

R is positive in L2(Q)). Meanwhile we have
HRfH%Z(Q) = ||u|\%2(0) <Cllfll2lIRf Iy

this implies that R is bounded in L2(Q)). In order to prove the operator R is self-adjoint,
it suffices to prove that R is symmetric, i.e.,

(Rf,g)=(f,Rg) forall f,gcL?(Q).
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Let Rf =u, Rg=v, and choosing ¢ =v in (2.13), we obtain

(Axu,Axv)=(f,Rg).

Since the left hand side is symmetric in # and v, we conclude that the right side is sym-
metric in f and g. That implies that R is symmetric. Also, we know that the operator
R™1:=A% is a self-adjoint on dom (A%).

Similarly, we can prove that the inverse operator (A% +a-id) ! exists and is bounded
for any a>0. We see that —a is a regular value of A%, hence spec(A%)C(0,+00). Moreover,
we can deduce that R: L?(Q2) — H ((Q) is continuous, this is because that

IRf 11z < CUAX (R F20) <CURE) <Cllfllizoy IRFlliz0) < Clf 2o IR f 2.0

By using the subelliptic estimate, we know that H§( o can be continuously embedded into

the standard Sobolev space H & (Q),and H & (Q)) can be compactly embedded into L?(Q}).
Hence R is a compact operator from L?(Q)) to L?(Q)). By spectral theory we know that R
has positive discrete eigenvalues y;, 1 > pp >+ > > --- and pp— 0 as k— 4-o00; and the
corresponding eigenfunctions ¢; of R form an orthonormal basis of L?(Q)), namely

Repi = pi¢;.

That means the eigenfunctions {¢;};>1 will be the orthogonal basis of H ((Q}). Finally

we let A; = ‘u;], then A; are the Dirichlet eigenvalues of A%( which will be discrete and
satisfying 0 <A1 <Ap <--- <A <---, and Ay — 400 as k — +oco. The proof of Proposition
2.5 is completed. O

3 Proof of Theorem 1.1

Lemma 3.1 (cf. [3,16]). For the system of vector fields X = (X1,--+,Xm), if {gbj};(zl are the set

of orthonormal eigenfunctions corresponding to the eigenvalues {/\j};{:l. Define

k
D(xy) = Z;Pj(ij(y)'
=

Then for ®(z,y) = (2m) "2 Jrn @ (x,y)e*2dx to be the partial Fourier transformation of
D (x,y) with respect to the x-variable, we have

Jo

- 2 . 2
@(z,y)‘ dzdy=k and /Q’d?(z,y)’ dy<(2m)"|Q]

ne
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Lemma 3.2 (cf. [8]). Let f be a real-valued function defined on R" with 0 < f < My, and for

QeNT,
n—1 ) 2
/ Yz +za]Q ) f(2)dz< Ma.
R" =1
Then
(QMl wnil) 11+é+3 n(n_|_ Q_|_3) :ig;é 2181;
]Rnf(z)dZS Tl—i—Q—l AQ M2 ’

where w1 is the area of the unit sphere in R", and

o min{1,n°2"}, Q>2,
7\, Q=1.

Proof of Theorem 1.1. From the results of Proposition 2.5, let { Ay }¢>1 be a sequence of the
eigenvalues for the problem (1.1), and {¢%(x) },>1 be the corresponding eigenfunctions,
then {¢(x) }s>1 constitute an orthogonal basis of H ().

Let

k
P(x,y) = 24’1(96)4’]‘@)/
P

by Cauchy-Schwarz inequality we have

n—1 2
/ / <ZZ]2+|Zn|é> ’{I\)(Z,y)‘zdydz
n Q ]':1
= 4 FRNPN 2
Sn/n/ﬂ Y zi+|zal0 ‘@(z,y)‘ dydz. 3.1)
=1

Next, by using integration-by-parts, we have

k k k
Y=Y /Q Aigi()-9j(x)dx =, /Q A%y (x)- ¢j(x)dx
= =

=

k k
:];/QX(AX‘P]‘(X))'X4’j<x)dx=]; [ 8x0y(x)- B9y ()

k
- /Q /Q ;!Ax@(x)%(y)\zdxdy: /Q /Q |Ax®(x,y)|*dxdy. (3.2)
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Then by using Plancherel’s formula and Proposition 2.3, we have

n—1 5 2 R )
/ / EZ]Z+|Zn|Q ‘@(Z,y)‘ dydz
nJQO j:l
n—1 . N 5
Sn/ /(ZZ?‘—F’Zn]Q)‘CD(Z,y)‘ dydz
n Q "
j=1
n—1 ) 5 N )
:n//Q Z\aijD(x,y)\ +‘yaxnyoq>(x,y)’ dydx
n ]:1
= 2 2
:n// Z|8§j®(x,y)|2+’|ax”|§q>(x,y)‘ dydx
aJa\ 5

<n|CQ) [ [ 1ax0epPasdy+Ca(Q) [ [ otxaPasy]. @

Thus from (3.2) and Lemma 3.1 above, we can deduce that

n— s 2 N k
//()(lefﬂzﬂ@) ‘@(Z,y)‘zdydzgn(Cl(Q)X%/\j—#Cz(Q)k).
n j=1 j=

Next, we choose
~ 2 k
7= [ [BEy)| dy Mi=@r) 10k, Ma=n(Ci(Q) Y A+Ca(Q) .
j=1
Then from the result of Lemma 3.2, we know that for any k> 1,

k

n+Q-1

anfl(Zn)*n|Q|n Tl(Tl+Q+3) n+er; k' n+0O+3
e ((27t)”|0|nQAan1> (”(C1<Q>j21A]+cz(Q>k>> :

This means, for any k>1,

with

%0) Ag (2r)" > g
C(Q)_Cl(Q)nz(n+Q+3) <an—l|0|n (n+Q 1) Q-T,

The proof of Theorem 1.1 is completed. O
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4 Proof of Theorem 1.2

Lemma 4.1. Let f be a real-valued function defined on R" with 0< f < M, and for p,g e N,

. 2
pz P ev2+1

[ Syl ) fl2)dz< Mo

R\ i=1 j=1

Then

P
wn—1 11 (soj+1) 440\ 155 )
iy < j=1 5n 2 T A g0
oS ()2 = T M ME,

where = n—i—Zf:l 80j, Wn—1 IS the area of the unit sphere in R".

Proof. First, we choose R such that

. 2
P 2 & T
/n Zzi+2|zn,p+j|01 ¢(z)dz= My,
R\ i=1 j=1

where
n—p p 2
M, Y le—|— ) |zn_p+].’so]'+1 < R?,
i=1 j=1
S
0, ) Z%"‘ D ’anpﬂ"sojﬂ >R%.
i=1 j=1
Then

n—p P _2 2
(;zﬂgzn_pﬂrwﬂ) —R*| (f(2)~g(2)) 0.
i= j=

Hence we have

2
]

. np 2 . 2
R [ (F@)—g)dz< [ (2 + Loy ) (@) ()0

That means

/nf(z)dzg/ng(z)dz. (4.1)

Now we have

n— 2 B 2
P 5 4 % n—p ) 14 ﬁ
MZ:/n Zi 4 ) [z ps| ™ g(z)dz:M1/~ Yozt ) |zapsl dz,
R*\i=1  j=1 BR\S ' O
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where
~ n—p P _2
Br=4z€R", Y z7+) |z, pyj| V" <R*}.
i=1  j=1
Next, we change the variables as follows,
Zizzg (l: 1,2, -,Tl—P), Zn—p+j —Sg?l( Zy_ p+])| n— p+]|50]+l/ (j:1/2z‘ : /P)
Then we have the following determinant of Jacobian,

a(Z P S0i
det(a(zy)' H 50]+1 l’l P‘i’]‘ 0j .

2 TZ

Hence

2
MZ—Ml/ <ZZ +2|Zn p+]| ]H)
i=1
M TGoy+1) [ J=FT T oyl
j=1 P j=1
4 i ‘
2M1H(50j+1)/ [z T Tlzn—p+[*0dz,
j=1 AR =1

where R
BR:{ZEIRn, |Z| SR}, AR:{ZEIRH, ‘Z]| §\/ﬁ,j:1,---,n}.

By a direct calculation, we have

p
[N s
AR =1

4]7 i
> [ 1zl [Tyt

R

R n—p—1
—2/f]zl\4dzl ><H< /f\zn pii[ iz p+]> (2/ﬁ1dz>

14+4+ZSO .
" 1 = ’ ”+4+.le0/ " 1 4

=——™n R = ——n
p

> [T (s0j+1) [T (soj+1)

]':1 ]':1

Then we have

n il ~
My > 2 é\/hn*“‘#Rm. (4.2)
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From the definition of g(z), we know that

P P
/ g(z)dz:Ml/~ dz:M1H(50j+1)/ [ T1zn—psjl™idz
R” Br =1 BR]':1

P '£50j P R Vl_1+_£50j
§M1H(Soj+1)/ |Z|]:1 dZ:M1H(50j+1)/ Wy—1r =1 dr
=1 Br i=1 0
’ 1 ’ 1
len—ljl;ll(soj+ ) n+i50j len—ljl;ll(SOj+ ) ]
— ; j=1 = ’5 R .
n+ 3 So
j=1
From (4.1), (4.2) and (4.3), we obtain
p
wp-1 1T (s0;+1) a0\ T )
dz < dz<— 7 SN I VESPYES
[ fez< [ gzdzs— > My

where 6 =n+ 2?:1 soj- Lemma 4.1 is proved.
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(4.3)

O]

Proof of Theorem 1.2. Let {Ax }x>1 be a sequence of the eigenvalues for the problem (1.1),
{¢r(x) }x>1 be the corresponding eigenfunctions. Then {¢y(x) }x>1 constitute an orthog-

onal basis of H ((Q).

Let ®(x,y) :Z;‘:l ¢i(x)¢;(y). Thus, by using the Cauchy-Schwarz inequality, we have

n—p p _2 2 N 2
fo (B Lt ) [
A =1 j=1
n—p P 4\ 2
S"/ /(ZZ}*JFZ!Zn—pﬂ!S“f“)\Cb(z,y)\ dydz.
" =1 j=1

Similar to the result of (3.2), we obtain that

k
A://ACD, 2 dxdy.
];] o o |Ax (x,y)| dxdy

Then by using Plancherel’s formula and Proposition 2.4, we have

. . [n—p p N 2 N 5
/ / (ZZ]Z+Z|an+]'|SOjH> ’q)(zry)‘ dydz
EEAR I\ R |
np o p L 2
<nf | (zz;+2|zn_,,+j|w> B(z,y)| dydz
ANz =3

(4.4)

(4.5)
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2
> dydx
2
> dydx

<n|cx(Q) [, [ 1ax@Coa) Paxay i@ [ [ 1@0x Py

2
[0, @ (xy)

n—p p
:”/,,/Q (Z 03 @(xy)P+ )
j=1 j=1
—n// nf|azq>(x )|2+f;
= JoJo | Z19% Y >

2
|axn—rﬂ+i |0 D(x,y)

Thus from (4.5) and Lemma 3.1 above, we can deduce that

n—p  p 2\ ?, k
/n/Q (ZZ]Z+Z|Zn_p+j|SOj+1> ‘@(Z,y)’zdydzgn <C3(Q)ZA1+C4(Q)’C>.
j=t  j=1 j=1

Finally, we choose

k
f@)= [ @GPy, Mi=(2m) (0l Mz=n<C3(Q)2Ai+C4(Q)k>-

i=1

Then from the Lemma 4.1, we have for any k>1,

wWy—1 f[l(sorﬂ) e % ¢ Pea
k< ]75 ((2”)_H|Q|n)4$5< T ) (” <C3(Q)ZA]‘+C4(Q)’<>> .
=1

This means, for any k>1,

k
= 1 CG(Q)
A:>C(Q)k' s k,
]Z; i=CQ) C3(Q)
where 77:”"‘2;‘]:150]'/ and
440
4
~ on il (27.[)11 3
Qo= |, 7 (o)
3<Q)Tl Wy_1 H(50]+1) n
j:
The proof of Theorem 1.2 is completed. ]
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