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Abstract. This article is devoted to studying the application of the weak Galerkin
(WG) finite element method to the elliptic eigenvalue problem with an emphasis on
obtaining lower bounds. The WG method uses discontinuous polynomials on polygo-
nal or polyhedral finite element partitions. The non-conforming finite element space of
the WG method is the key of the lower bound property. It also makes the WG method
more robust and flexible in solving eigenvalue problems. We demonstrate that the WG
method can achieve arbitrary high convergence order. This is in contrast with existing
nonconforming finite element methods which can provide lower bound approxima-
tions by linear finite elements. Numerical results are presented to demonstrate the
efficiency and accuracy of the theoretical results.
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1 Introduction

The eigenvalue problems of partial differential equations arising from the scientific re-
search and engineering have received more and more attentions recently [6, 9, 14, 28].
Among the PDE eigenvalue problems, the elliptic eigenvalues are closely related to
Poincaré constant in the Sobolev theory [19, 34], and play an important role in the spec-
tral distribution of nonlinear equations [33]. In physical applications, the eigenvalues
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often have close relationship with vibrations, especially the sympathetic vibration phe-
nomenon. Most elastic bodies vibrate at certain frequency and respond to external vi-
brations. Details of these applications can be found in [7, 15, 20]. In addition to the
above mentioned applications, the elliptic type eigenvalue problems are also useful in
many other areas, such as plasma physics in fusion experiments and astrophysics, the
petroleum reservoir simulation, the linear stability of flows in fluid mechanics, and elec-
tronic band structure calculations, etc. (see [1, 4, 14, 21] and references therein).

There have been numerous efforts in finding numerical solutions of elliptic eigen-
value problems. The finite element method is the most studied method (see, e.g.,
[3, 4, 6, 16, 17]). Due to the Rayleigh quotient and the minimum-maximum principle, any
standard conforming finite element method [13, 35] can only provide upper bounds for
the eigenvalues. However, when the eigenvalues are all real numbers, it is desirable to
obtain both upper bounds and lower bounds [27].

There are mainly two approaches to find lower bounds of eigenvalues. The first ap-
proach is a post-processing procedure [22,26]. The main drawback of this approach is that
an auxiliary problem must be solved and the order of convergence is reduced as a result.
The second approach is the construction of special nonconforming finite elements to ob-
tain lower bounds. In [23], three types of nonconforming elements by the finite element
error expansion technique were studied to provide lower bounds of the eigenvalues. We
refer interested readers to [5, 25] for additional studies on other nonconforming finite
element approaches in obtaining lower bounds for eigenvalues. There are mainly two
difficulties in the numerical approximation of eigenvalue problems with nonconforming
FEM. One is the construction of high order finite element spaces which give high order
numerical solutions. The other difficulty is the construction of finite element spaces for
three dimensional problems.

The goal of this paper is to overcome the aforementioned difficulties using the weak
Galerkin method. The WG method was first proposed in [37], and further developed
in [8, 29, 31, 36, 38, 44, 45, 47, 48]. Recently, the weak Galerkin method has been extended
to elliptic interface problems [10], linear hyperbolic equations [43], Navier-Stokes equa-
tions [46, 49], Helmholtz equations [11, 32], and discrete maximum principles [18, 39]. In
the WG method, differential operators are approximated by weak forms as distributions
over a set of generalized functions. It has been demonstrated that the WG method is
highly flexible and robust as a numerical technique employing discontinuous piecewise
polynomials on polygonal or polyhedral finite element partitions. As a class of noncon-
forming finite element method, the finite element space of WG, for the same degree of
polynomial, is larger than that of the standard finite element methods, which makes it
possible to obtain lower bounds due to the Rayleigh quotient. Comparing with other
nonconforming finite element for eigenvalue problems, our approach of solving elliptic
eigenvalue problems with the WG method has the following advantages, which consti-
tute the main contributions of this paper.

• Our method is capable of obtaining lower bounds with higher order of accuracy.
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In the WG method, high order piecewise polynomial finite element spaces are con-
structed, and the high order convergence can be reached as a result.

• Unlike other non-conforming methods, the WG method for solving 2D eigenvalue
problems can be seamlessly extended to 3D cases.

• Polytopal meshes can be adopted in the WG method. Since the WG finite element
space consists of discontinuous piecewise polynomials, it can easily handle arbi-
trary polytopal meshes, including hanging nodes. In comparison, other noncon-
forming finite methods are mostly restricted to triangular or quadrilateral meshes.

The challenges for solving the lower bound problems by the WG method arise from
two aspects. One aspect is that the WG finite element space is not a subspace of Hm

0

space or L2 space, hence the classical analysis for conforming finite element method or
nonconforming finite element method does not apply to the WG method directly. To
overcome this difficulty, we first propose a general framework based on the expansion
equality in Section 2, and apply this frame work to the WG method. The other aspect is
that the lower bounds can not be obtained by simply rewriting the WG schemes in [37]
or [48] for the eigenvalue problems. In Section 3 and Section 4, we obtain the asymptotic
lower bound estimations by introducing a infinitesimal factor in the magnitude of O(hε)
or 1/log(h) in the stabilization term. This factor will play a key role in obtaining the
lower bounds.

An outline of the paper is as follows. In Section 2, we develop a framework for the
application of WG method to eigenvalue problems. In Section 3, we apply the abstract
framework to two types of elliptic eigenvalue problems: the Laplacian and biharmonic
eigenvalue problems. In Section 4, we conduct several numerical experiments to demon-
strate the efficiency of our methods. A few concluding remarks are given in Section 5.

2 An abstract framework

Suppose (V,(·,·)V) is a Hilbert space, Vc and Vh are two subspaces of V. In the WG
method, Vc usually denotes Hm

0 (Ω), and Vh is the corresponding WG finite element space.
Let a(·,·) be a bilinear form on Vc×Vc, aw(·,·) be a bilinear form on Vh×Vh, and b(·,·) be
a bilinear form on V×V. We consider the eigenvalue problems:

Find (λ,u)∈R×Vc and (λh,uh)∈R×Vh such that b(u,u)=b(uh,uh)=1 and

a(u,v)=λb(u,v), ∀v∈Vc, (2.1)

aw(uh,vh)=λhb(uh,vh), ∀vh ∈Vh. (2.2)

We assume that the bilinear forms a, aw and b have the following property:

Assumption (A1). a, aw, and b are symmetric, and for any v∈Vc and vh ∈Vh,

a(v,v)≥γc‖v‖2
V ,

aw(vh,vh)≥γ(h)‖vh‖
2
V ,
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where γc and γ(h) are positive constants.

The eigenvalue problems (2.1) and (2.2) can be viewed as operator spectrum prob-
lems. Define two operators K :Vc→Vc and Kh :Vh→Vh satisfying

a(K f ,v)=b( f ,v), ∀v∈Vc, (2.3)

aw(Kh fh,vh)=b( fh,vh), ∀vh ∈Vh. (2.4)

Under Assumption (A1), K and Kh are well-defined. It is clear that K and Kh share the
same eigensystem with (2.1)-(2.2).

Suppose µ is a nonzero eigenvalue of K and u is an eigenfunction corresponding to µ,
then we have

Ku=µu,

i.e.

a(u,v)=
1

µ
a(Ku,v)=

1

µ
b(u,v), ∀v∈Vc.

Hence, ( 1
µ ,u) is a solution of (2.1). Similarly, if (λ,u) is solution of (2.1), then ( 1

λ ,u) is an

eigenpair of K. Thus, solving eigenvalue problems (2.1)-(2.2) is equivalent to finding the
non-zero spectrum and corresponding eigenfunctions of K and Kh.

We denote by σ(K) the spectrum of K, and by ρ(K) the resolvent set. Rz(K)= (zI−
K)−1 represents the resolvent operator for any z∈ ρ(K). Let µ be a nonzero eigenvalue
of K with algebraic or geometric multiplicities m. Let Γµ be a circle in the complex plane
centered at µ which lies in ρ(K) and encloses no other points of σ(K). The corresponding
spectral projection is

Eµ(K)=
1

2πi

∫

Γµ

Rz(K)dz.

It is known that the range R(Eµ(K)) of Eµ(K) is the eigenspace corresponding to the
eigenvalue µ.

Denote by Πc : V→Vc the orthogonal projection operator under (·,·)V inner-product.
Then KΠc can be viewed as an operator from V to V.

Lemma 2.1. Under Assumption (A1), the following identities hold

σ(K)=σ(KΠc)\{0}, and R(Eµ(K))=R(Eµ(KΠc)), ∀µ∈σ(K).

Proof. Suppose µ∈σ(K) and u∈R(Eµ(K)). It follows from Assumption (A1) that µ> 0.
Then we have

KΠcu=Ku=µu,
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i.e. µ∈σ(KΠc)\{0} and u∈R(Eµ(KΠc)).
On the other hand, if µ∈σ(KΠc)\{0} and u∈R(Eµ(KΠc)), then Ku∈Vc, and it follows

that u=
1

µ
Ku∈Vc. Thus we have

Ku=KΠcu=µu,

i.e. µ∈σ(K) and u∈R(Eµ(K)). Thus the proof is completed.

Denote by Πh :V→Vh the orthogonal projection operator under (·,·)V inner-product.
Then KhΠh can also be viewed as a operator from V to V. Similar to Lemma 2.1, the
following identities hold.

Lemma 2.2. Under Assumption (A1), there holds that

σ(Kh)=σ(KhΠh)\{0}, and R(Eµh
(Kh))=R(Eµh

(KhΠh)), ∀µh∈σ(Kh).

From Lemmas 2.1-2.2, we conclude that solving eigenvalue problems (2.1)-(2.2) is
equivalent to finding the non-zero spectrum and corresponding eigenfunctions of KΠc

and KhΠh, respectively.
In order to get the final error estimates, we need KΠc and KhΠh to be self-adjoint and

compact. To this end, we make the following assumption.

Assumption (A2). K and Kh are compact.

Under this assumption, we have the following lemma.

Lemma 2.3. Under Assumptions (A1)-(A2), KΠc and KhΠh are self-adjoint and compact.

Proof. For any u,v∈V, it follows from Assumption (A1) that

(KΠcu,v)V =(KΠcu,Πcv)V =b(Πcu,Πcv)=(Πcu,KΠcv)V =(u,KΠcv)V ,

(KΠhu,v)V =(KΠhu,Πhv)V =b(Πhu,Πhv)=(Πhu,KΠhv)V =(u,KΠhv)V .

Thus, KΠc and KΠh are self-adjoint.
Since Πc and Πh are bounded and K, and Kh are compact, we have KΠc and KhΠh are

compact, which completes the proof.

In order to estimate the error of eigenvalues and eigenfunctions in (2.1)-(2.2), we need
to estimate the approximation error ‖KΠc−KhΠh‖V . However, the projection operator
Πh is usually not explicitly defined in the numerical scheme. Hence, for the convenience
of the analysis in the rest of the paper, we estimate ‖KΠc−KhΠh‖V in an indirect way.
Suppose the following assumption holds.

Assumption (A3). There exists a bounded linear operator Qh :V→Vh satisfying

Qhvh =vh, ∀vh ∈Vh,

b(Qhw,vh)=b(w,vh), ∀w∈V,vh ∈Vh.
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For any µ∈σ(K), since R(Eµ(K))⊂V, we have KΠc|R(Eµ(K))=K|R(Eµ(K)). Denote

eh,µ =‖(K−KhQh)|R(Eµ(K))‖V

and

δh,µ = sup
u∈R(Eµ(K)),

‖u‖V=1

‖u−Qhu‖V .

Then we have the following estimate.

Lemma 2.4. Under Assumptions (A1) and (A3), for any µ∈σ(K) we have

‖(KΠc−KhΠh)|R(Eµ(K))‖V ≤ eh,µ+δh,µγ(h)−1.

Proof. For any f ∈R(Eµ(K)), it follows from the definition of Kh that

aw(Kh(Qh−Πh) f ,vh)=b((Qh−Πh) f ,vh), ∀vh ∈Vh. (2.5)

By taking vh =Kh(Qh−Πh) f and using Assumption (A1) we have

γ(h)‖Kh(Qh−Πh) f‖2
V ≤aw(Kh(Qh−Πh) f ,Kh(Qh−Πh) f )

=b((Qh−Πh) f ,Kh(Qh−Πh) f )

=b( f −Πh f ,Kh(Qh−Πh) f )

≤‖ f −Πh f‖V‖Kh(Qh−Πh) f‖V

≤δh,µ‖Kh(Qh−Πh) f‖V ,

which implies that

‖Kh(Qh−Πh) f‖V ≤δh,µγ(h)−1.

From the triangle inequality we have

‖(KΠc−KhΠh)|R(Eµ(K))‖V

≤‖(K−KhQh)|R(Eµ(K))‖V+‖(KhQh−KhΠh)|R(Eµ(K))‖V

≤eh,µ+δh,µγ(h)−1,

which completes the proof.

Suppose the errors eh,µ and δh,µ satisfy the following assumption.

Assumption (A4). eh,µ→0 as h→0, and δh,µγ(h)−1→0 as h→0.

From Lemma 2.4, we have the following estimate immediately.
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Lemma 2.5. Under Assumptions (A1)-(A4), for any µ∈σ(K) we have

‖(KΠc−KhΠh)|R(Eµ(K))‖V →0 as h→0.

For a Banach space H and its closed subspaces M and N, define the distances as
follows that

ρH(x,N)= inf
y∈N

‖x−y‖H , ρH(M,N)= sup
x∈M,

‖x‖H=1

ρ(x,N), (2.6)

ρ̂H(M,N)=max{ρH(M,N),ρH(N,M)}. (2.7)

According to the Babŭska-Osborn’s theory, we have the following estimation on
eigenfunctions. The proof can be found in [3, Theorem 7.1].

Theorem 2.1. Under Assumptions (A1)-(A4), for any µ∈σ(K) we have

ρ̂V(R(Eµ(K)),R(Eµ,h(Kh))≤C(eh,µ+δhγ(h)−1),

where the constants only depends on the eigenvalues of K.

Suppose X is a Hilbert space equipped with inner-product b(·,·), and ‖·‖X is the
corresponding norm. In the elliptic eigenvalue problems, X is L2(Ω). Suppose Π0 is
the orthogonal projection from V onto X under b(·,·). Then Π0K|Π0Vc : Π0Vc→Π0Vc and
Π0Kh|Π0Vh

: Π0Vh→Π0Vh are bounded linear operators.

Lemma 2.6. The following identities hold

σ(Π0K)=σ(K), σ(Π0Kh)=σ(Kh).

For each µ∈σ(K) and µh∈σ(Kh)

R(Eµ(Π0K))=Π0R(Eµ(K)), R(Eµh
(Π0Kh))=Π0R(Eµh

(Kh)).

Proof. Suppose (µ,u) is an eigenpair of K, i.e.,

Ku=µu.

Notice that from the definition of K, for any v∈Vc we have

a(Ku,v)=b(u,v)=b(Π0u,v)= a(KΠ0u,v),

which implies that
µu=Ku=KΠ0u.

By multiplying Π0 on both side we have

µΠ0u=Π0KΠ0u.
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Thus, (µ,Π0u) is an eigenpair of Π0K, and then Π0R(Eµ(K))⊂R(Eµ(Π0K)).
Suppose (µ,û) is an eigenpair of Π0K, i.e.,

Π0Kû=µû.

Denote u=Kû∈Vc, then for any v∈Vc we have

a(Ku,v)= a(K(Kû),v)=b(Kû,v)=b(Π0Kû,v)=µb(û,v)=µa(Kû,v)=µa(u,v)

which implies that

Ku=µu.

Notice that

Π0u=Π0Kû=µû.

Hence, (λ,u) is an eigenpair of K with Π0u ∈ R(Eµ(Π0K)), and then R(Eµ(Π0K)) ⊂
Π0R(Eµ(K)). Thus, the proof is completed.

Denote e′h,µ=‖(Π0K−Π0KhQh)|R(Eµ(K))‖X and δ′h=ρX(V,Vh) which is defined in (2.6)-

(2.7). Suppose the errors e′h,µ and δ′h satisfy the following assumption.

Assumption (A5). e′h,µ→0 as h→0, and δ′hγ(h)−1→0 as h→0.

Repeating the proof of Theorem 2.1, we have the following estimate.

Lemma 2.7. Under Assumptions (A1)-(A5), for any µ∈σ(K) we have

ρ̂X(R(Eµ(Π0K)),R(Eµ,h(Π0Kh))≤C(e′h,µ+δ′hγ(h)−1).

Notice that for any v ∈ V, ‖v‖X = ‖Π0v‖X . Then Lemma 2.7 can be written in the
following form.

Theorem 2.2. Under Assumptions (A1)-(A5), for any µ∈σ(K) we have

ρ̂X(R(Eµ(K)),R(Eµ,h(Kh))≤C(e′h,µ+δ′hγ(h)−1).

Now we turn to the estimation of the eigenvalues. The proof is based on an expansion
formula, the idea is similar to Lemma 2.2 in [2].

Lemma 2.8. Under Assumption (A1), suppose (λ,u) is the solution of (2.1) and (λh,uh) is the
solution of (2.2). Then for any vh ∈Vh we have the following expansion

λ−λh =a(u,u)−aw(vh,vh)+aw(uh−vh,uh−vh)

−λhb(uh−vh,uh−vh)−λh(b(u,u)−b(vh,vh)).
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Proof. From (2.1)-(2.2), for any vh ∈Vh we have

λhb(uh−vh,uh−vh)+λh(b(u,u)−b(vh,vh))

=λhb(uh−vh,uh−vh)+λh(b(uh,uh)−b(vh,vh))

=2λhb(uh,uh)−2λhb(uh,vh)

=2λhb(uh,uh)−2λhaw(uh,vh).

Then, we obtain

λ−λh =λb(u,u)+λb(uh,uh)−2λhb(uh,uh)

=a(u,u)+aw(uh,uh)−2λhaw(uh,vh)

−λhb(uh−vh,uh−vh)−λh(b(u,u)−b(vh,vh))

=a(u,u)−aw(vh,vh)+aw(uh−vh,uh−vh)

−λhb(uh−vh,uh−vh)−λh(b(u,u)−b(vh,vh)),

which completes the proof.

By substituting vh =Qhu in Lemma 2.8, we have the following lemma immediately.

Lemma 2.9. Under Assumptions (A1) and (A3), suppose (λ,u) is the solution of (2.1) and
(λh,uh) is the solution of (2.2). Then for any vh ∈Vh we have the following expansion

λ−λh =a(u,u)−aw(Qhu,Qhu)+aw(uh−Qhu,uh−Qhu)

−λhb(u−uh,u−uh).

Proof. It follows from the properties of Qhu in (A3) that

b(u,u)−b(Qhu,Qhu)=b(u+Qhu,u−Qhu)

=b(u−Qhu,u−Qhu).

Then by taking vh =Qhu in Lemma 2.8 we have

λ−λh =a(u,u)−aw(Qhu,Qhu)+aw(uh−Qhu,uh−Qhu)

−λhb(uh−Qhu,uh−Qhu)−λh(b(u,u)−b(Qhu,Qhu))

=a(u,u)−aw(Qhu,Qhu)+aw(uh−Qhu,uh−Qhu)−λhb(uh−Qhu,uh−Qhu)

−λhb(u−Qhu,u−Qhu)−2λhb(u−Qhu,uh−Qhu)

=a(u,u)−aw(Qhu,Qhu)+aw(uh−Qhu,uh−Qhu)

−λhb(u−uh,u−uh).

Thus the proof is completed.

Denote εh,u = a(u,u)−aw(Qhu,Qhu). Suppose the following assumption holds.

Assumption (A6). For any µ∈σ(K) and u∈R(Eµ(K)), εh,u →0 as h→0.

Now we are ready to demonstrate the error estimate for eigenvalues.
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Theorem 2.3. Under Assumptions (A1)-(A6), suppose λ is an eigenvalue of (2.1) with multi-
plicity m, and {uj}

m
j=1 are the corresponding eigenfunctions. Then when h is sufficiently small

there exists m eigenvalues of (2.2) {λh,j}
m
j=1 such that for j=1,··· ,m,

|λ−λh,j|≤C(εh,uj
+e2

h,λ−1+e′2h,λ−1+δ2
hγ(h)−2+δ′2h γ(h)−2).

Proof. Suppose {uh,j}
m
j=1 are the eigenfunctions of (2.2) corresponding to {λh,j}

m
j=1. It fol-

lows from Theorem 2.1-2.2 that there exists {uj}
m
j=1 a basis of the eigenspace R(Eλ−1(K))

satisfying for j=1,··· ,m,

‖uj−uh,j‖V ≤C(eh,λ−1+δhγ(h)−1),

‖uj−uh,j‖X ≤C(e′h,λ−1+δ′hγ(h)−1).

From Lemma 2.9 we have

|λ−λh,j|≤|a(uj,uj)−aw(Qhuj,Qhuj)|+aw(uh,j−Qhuj,uh,j−Qhuj)

+λhb(uj−uh,j,uj−uh,j)

≤C
(

|a(uj,uj)−aw(Qhuj,Qhuj)|+‖uh,j−Qhuj‖
2
V+‖uj−uh,j‖

2
X

)

≤C
(

|a(uj,uj)−aw(Qhuj,Qhuj)|+‖uj−uh,j‖
2
V+‖uj−Qhuj‖

2
V+‖uj−uh,j‖

2
X

)

,

which implies that

|λ−λh,j|≤C(εh,uj
+e2

h,λ−1+e′2h,λ−1+δ2
hγ(h)−2+δ′2h γ(h)−2).

Hence the proof is completed.

Finally, we close this section with a lower bound estimation. To this end, we need the
following assumption.

Assumption (A7). Suppose there holds εh,u ≥λh‖u−uh‖
2
X for (λ,u) an eigenpair of (2.1) and

(λh,uh) an eigenpair of (2.2).

Theorem 2.4. Suppose (λ,u) is an eigenpair of (2.1) and (λh,uh) is an eigenpair of (2.2), under
Assumptions (A1), (A3) and (A7) we have

λ≥λh.

Proof. It follows from Lemma 2.9 that

λ−λh =a(u,u)−aw(Qhu,Qhu)+aw(uh−Qhu,uh−Qhu)

−λhb(u−uh,u−uh)

≥εh,u−λh‖u−uh‖
2
X

≥0,

which completes the proof.
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3 Applications to Laplacian and biharmonic eigenvalue

problems

In this section, we solve the Laplacian eigenvalue problems and the biharmonic eigen-
value problems by the weak Galerkin method. We apply the framework in the previous
section to the Laplacian eigenvalue problems and the biharmonic eigenvalue problems.

3.1 The Laplacian eigenvalue problem

Consider the following model problem: Find (λ,u) such that











−∆u=λu, in Ω,

u=0, on ∂Ω,
∫

Ω
u2dΩ=1,

(3.1)

where Ω is a polygonal or polyhedral domain in Rd (d = 2,3). The variational form of
problem (3.1) is defined as follows:

Find u∈H1
0(Ω) and λ∈R such that b(u,u)=1 and

a(u,v)=λb(u,v), ∀v∈H1
0 (Ω), (3.2)

where

a(u,v)=(∇u,∇v) and b(u,v)=(u,v).

It is well known that problem (3.2) has the eigenvalue sequence [3]

0<λ1 ≤λ2≤···≤λj ≤···−→+∞

with the corresponding eigenfunction sequence

u1,u2,··· ,uj,··· ,

such that b(ui,uj)=δij, i, j=1,2,··· .

We denote (·,·)m,ω and ‖·‖m,ω the inner-product and the norm on Hm(ω), respectively.
If the region ω is an edge or face of some elements, we use 〈·,·〉m,ω instead of (·,·)m,ω. We
shall drop the subscript when m=0 or ω=Ω. C denotes a generic positive constant which
is independent of the mesh size. We use a.b to represent a≤Cb.

In what follows, we use the WG method to solve the problem (3.1). First, we introduce
the WG scheme for (3.1). Then, we verify Assumptions (A1)-(A6) in Section 2 to estimate
the error of the WG method. Finally, we verify (A7) to get a lower bound estimation.
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3.1.1 The weak Galerkin scheme

We start by introducing some notation in the WG scheme. Let Th be a partition of the
domain Ω, and the elements in Th are polygons satisfying the regular assumptions spec-
ified in [38]. Denote by Eh the edges in Th, and by E0

h the interior edges Eh\∂Ω. For each
element T∈Th, hT represents the diameter of T, and h=maxT∈Th

hT denotes the mesh size.
Now we introduce the WG scheme to solve the problem (3.1). For a given integer

k≥1, define the WG finite element space

Vh=
{

v={v0,vb} : v0|T ∈Pk(T), vb|e ∈Pk−1(e), ∀T∈Th, e∈Eh, and vb =0 on ∂Ω
}

,

where Pk(T) denotes the space of polynomials on T with degree no more than k, and
Pk−1(e) denotes the space of polynomials on e with degree no more than k−1.

For the aim of analysis, some projection operators are also employed in this paper. Let
Q0 denote the L2 projection from L2(T) onto Pk(T) for ∀T∈Th, Qb denote the L2 projection
from L2(e) onto Pk−1(e) for ∀e∈Eh, and Qh denote the L2 projection from [L2(T)]d onto
[Pk−1(T)]

d for ∀T∈Th. Combining Q0 and Qb together, we define Qh={Q0,Qb}, which is
a projection onto Vh.

For each v∈Vh, we define its weak gradient ∇wv by distribution element-wisely as
follows.

Definition 3.1. For each v∈Vh, ∇wv|T is the unique polynomial in [Pk−1(T)]
d satisfying

(∇wv,q)T =−(v0,∇·q)T+〈vb,q·n〉∂T, ∀q∈ [Pk−1(T)]
d, (3.3)

where n denotes the outward unit normal vector.

The following commutative property for the weak gradient operator plays an essen-
tial role in the analysis. The proof can be found in [30, Lemma 5.1].

Lemma 3.1. For any ϕ∈H1(Ω), there holds that on each element T∈Th

∇w(Qh ϕ)=Qh(∇ϕ).

Next we define three bilinear forms on Vh. For any v,w∈Vh,

s(v,w)=γ(h) ∑
T∈Th

h−1
T 〈Qbv0−vb,Qbw0−wb〉∂T,

aw(v,w)=(∇wv,∇ww)+s(v,w),

bw(v,w)=(v0,w0).

γ(h) is a parameter selected as follows.

γ(h)=hε for small positive constant ε, (3.4)

or

γ(h)=−
1

log(h)
. (3.5)

Now we are ready to state the WG algorithm.
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Weak Galerkin Algorithm 1. Find uh ∈Vh, λh∈R such that bw(uh,uh)=1 and

aw(uh,v)=λhbw(uh,v), ∀v∈Vh. (3.6)

3.1.2 Error analysis

In this subsection, we verify Assumptions (A1)-(A6) in Section 2 to give the error estima-
tion for the weak Galerkin method.

Denote Vc=H1
0(Ω), and V=Vc+Vh. For any v,w∈V, we define the inner-product

(v,w)V =(v0,w0)+ ∑
T∈Th

h−1
T 〈Qb(v0−vb),Qb(w0−wb)〉∂T,

where v0 denotes the value of v on the interior of each element T∈Th, and vb denotes the
value of v on the edges Eh. The corresponding semi-norm is

‖v‖2
V = ∑

T∈Th

‖v0‖
2
T+ ∑

T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T.

Obviously ‖·‖V coincides with |·|1 on Vc and ‖·‖V defines a norm on Vh. Thus ‖·‖V

defines a norm on V and V is a Hilbert space.
First we verify Assumption (A1). It is easy to check that a(·,·) and aw(·,·) defined in

(3.2) and (3.6) are symmetric bounded bilinear forms on V, and a(·,·) is positive definite.
Hence we only need to verify the coercivity of aw(·,·).

Lemma 3.2. For any vh ∈Vh, the following inequality holds

aw(vh,vh)&γ(h)‖vh‖
2
V .

Proof. From the definition of the weak gradient operator, the trace inequality and the
inverse inequality, we have

∑
T∈Th

(∇v0,∇v0)T

=− ∑
T∈Th

(v0,∇·∇v0)T+ ∑
T∈Th

〈v0,∇v0 ·n〉∂T

= ∑
T∈Th

(∇wvh,∇v0)T+ ∑
T∈Th

〈Qb(v0−vb),∇v0 ·n〉∂T

≤

(

∑
T∈Th

‖∇wvh‖
2
T

)
1
2
(

∑
T∈Th

‖∇v0‖
2
T

)
1
2

+

(

∑
T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T

)
1
2
(

∑
T∈Th

hT‖∇v0 ·n‖
2
∂T

)
1
2

≤

(

∑
T∈Th

‖∇wvh‖
2
T

)
1
2
(

∑
T∈Th

‖∇v0‖
2
T

)
1
2

+

(

∑
T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T

)
1
2
(

∑
T∈Th

‖∇v0‖
2
∂T

)
1
2

≤C ∑
T∈Th

‖∇wvh‖
2
T+

1

4 ∑
T∈Th

‖∇v0‖
2
T+C ∑

T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T+

1

4 ∑
T∈Th

‖∇v0‖
2
∂T

≤
1

2 ∑
T∈Th

‖∇v0‖
2
T+Cγ(h)−1aw(vh,vh),
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which implies that

∑
T∈Th

‖∇v0‖
2
T ≤Cγ(h)−1aw(vh,vh).

Similarly, we have

∑
T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T =γ(h)−1γ(h) ∑

T∈Th

h−1
T ‖Qb(v0−vb)‖

2
∂T ≤Cγ(h)−1aw(vh,vh),

which completes the proof.

Next we turn to Assumption (A2). Recall that in Section 2 the operators K and Kh are
defined by

a(K f ,v)=b( f ,v), ∀ f ∈Vc,

aw(Kh fh,vh)=b( fh,vh), ∀ fh ∈Vh.

From the classical PDE analysis [12], when the domain Ω is convex, ∂Ω is Lipschiz, and
f ∈ L2(Ω), there exists a constant C such that ‖K f‖H2(Ω) ≤ C‖ f‖L2(Ω). Since H2(Ω) is

compact embedded into H1(Ω), the operator K is compact. As to Kh, notice that Kh is a
bounded linear and finite ranked operator. Thus Kh is also compact. Hence, Assumption
(A2) is verified.

In the previous subsection, we define the operator Qh = {Q0,Qb}, where Q0 is the L2

projection operator onto Pk(T) on each element T∈Th and Qb the L2 projection operator
onto Pk−1(e) on each edge e ∈ Eh. We claim that this operator Qh satisfies Assumption
(A3). It is obvious that Qhvh = vh for any vh ∈Vh. Since Q0 is the L2 projection operator
onto Pk(T), for any w∈V we have

b(w,vh)=(w0,v0)=(Q0w0,v0)=b(Qhw,vh).

Thus, Assumption (A3) is verified.
In order to obtain the estimation on the eigenfunction, we still need to verify Assump-

tions (A4) and (A5). Let X the usual L2 space. Denote

δh,µ= sup
u∈R(Eµ(K)),

‖u‖V=1

‖u−Qhu‖V ,

δ′h,µ= sup
u∈R(Eµ(K)),

‖u‖V=1

‖u−Qhu‖X .

From the properties of the projection operator, we have the following estimate.

Lemma 3.3. Suppose R(Eµ(K))⊂Hk(Ω), then the following estimations hold

δh,µ.hk,

δ′h,µ.hk+1.
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Proof. Suppose v∈R(Eµ(K))⊂Hk(Ω). It follows from the trace inequality that

‖v−Qhv‖2
V = ∑

T∈Th

‖∇(v−Q0v)‖2
T+ ∑

T∈Th

h−1
T ‖Qb(Q0v−Qbv)‖2

∂T

= ∑
T∈Th

‖∇(v−Q0v)‖2
T+ ∑

T∈Th

h−1
T ‖Q0v−v‖2

∂T

≤ ∑
T∈Th

‖∇(v−Q0v)‖2
T+C

(

∑
T∈Th

h−2
T ‖Q0v−v‖2

T+ ∑
T∈Th

‖∇(Q0v−v)‖2
T

)

.hk.

From the property of the projection operator we have

‖v−Qhv‖X =‖v−Q0v‖L2 .hk+1.

Then we complete the proof.

Denote

eh,µ=‖(K−KhQh)|R(Eµ(K))‖V ,

e′h,µ=‖(Π0K−Π0KhQh)|R(Eµ(K))‖X .

Since eh,µ and e′h,µ are errors of the WG method for the Poisson equation, we consider

the following equation
{

−∆u= f , in Ω,

u=0, on ∂Ω,
(3.7)

with f is a given L2 function. The corresponding WG scheme is to find uh∈Vh such that

aw(uh,vh)=( f ,v0), ∀vh ∈Vh. (3.8)

The error estimate of (3.8) is analyzed in the Appendix (see Theorem A.1 and Theorem
A.2). Then the estimations for eh,µ and e′h,µ are as follows.

Lemma 3.4. Suppose R(Eµ(K))⊂Hk+1(Ω), then the following estimations hold

eh,µ.γ(h)−1hk,

e′h,µ.γ(h)−1hk+1.

Thus, according to Theorem 2.1 and Theorem 2.2, we have the estimations on the
eigenfunctions.
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Theorem 3.1. Suppose λ is an eigenvalue of (3.2) with multiplicity m, and R(Eµ(K)) ⊂

Hk+1(Ω) is the corresponding m-dimensional eigenspace. Suppose {λh,j}
m
j=1 are the eigenvalues

of (3.6) approximating λ, and {uh,j}
m
j=1 is a basis of the corresponding eigenspace R(Eµ,h(Kh)).

Then, for any j=1,··· ,m there exists an eigenfunction uj ∈R(Eµ(K)) such that

‖uj−uj,h‖V .γ(h)−1hk,

‖uj−uj,h‖X .γ(h)−1hk+1.

From (3.4)-(3.5), the parameter γ(h) is selected to be

γ(h)=hε for small positive constant ε, (3.9)

or

γ(h)=−
1

log(h)
. (3.10)

Thus the conclusions in Theorem 3.1 are

‖uj−uj,h‖V .hk−ε,

‖uj−uj,h‖X .hk+1−ε,

or

‖uj−uj,h‖V .−log(h)hk ,

‖uj−uj,h‖X .−log(h)hk+1,

which are quasi-optimal estimations.
To estimate the errors of the eigenvalues, it remains to verify Assumption (A6). De-

note
εh,u = a(u,u)−aw(Qhu,Qhu).

Lemma 3.5. For any u∈Hk+1(Ω), the following estimate holds

|εh,u|.h2k . (3.11)

Proof. It follows from Lemma 3.1 and the trace inequality that

|εh,u|= |a(u,u)−aw(Qhu,Qhu)|

=

∣

∣

∣

∣

∣

‖∇u‖2− ∑
T∈Th

‖∇wQhu‖2
T−s(Qhu,Qhu)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

‖∇u‖2− ∑
T∈Th

‖Qh∇u‖2
T− ∑

T∈Th

γ(h)h−1
T ‖Qb(Q0u−Qbu)‖2

∂T

∣

∣

∣

∣

∣
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≤‖∇u−Qh∇u‖2
T+ ∑

T∈Th

γ(h)h−1
T ‖Q0u−u|2∂T

≤‖∇u−Qh∇u‖2
T+C ∑

T∈Th

γ(h)
(

h−2
T ‖Q0u−u|2∂T+‖∇(Q0u−u)|2∂T

)

.h2k,

which completes the proof.

Eq. (3.11) verifies Assumption (A6). From Theorem 2.3 we derive the estimation on
the eigenvalues.

Theorem 3.2. Suppose λ is an eigenvalue of (3.2) with multiplicity m, and R(Eµ(K)) ⊂

Hk+1(Ω) is corresponding m-dimensional eigenspace. Suppose {λh,j}
m
j=1 are the eigenvalues

of (3.6) approximating λ, and {uh,j}
m
j=1 is a basis of the corresponding eigenspace R(Eµ,h(Kh)).

Then when h is sufficiently small, for any j=1,··· ,m there holds

|λ−λh,j|.γ(h)−2h2k.

Proof. From Theorem 2.3 we have

|λ−λh,j|≤C(εh,uj
+e2

h,λ−1+e′2h,λ−1+δ2
h,λ−1γ(h)−2+δ′2h,λ−1γ(h)−2).

It follows from Lemma 3.3, Lemma 3.4, and Lemma 3.5 that

εh,uj
.h2k, eh,λ−1 .γ(h)−1hk,

e′h,λ−1 .γ(h)−1hk+1, δh,λ−1 .hk,

δ′h,λ−1 .hk+1,

which implies that

|λ−λh,j|.γ(h)−2h2k.

The proof is completed.

From (3.4)-(3.5), the parameter γ(h) is selected to be

γ(h)=hε for small positive constant ε, (3.12)

or

γ(h)=−
1

log(h)
. (3.13)

Thus the conclusion in Theorem 3.2 is

|λ−λh,j|.h2k−2ε ,

or

|λ−λh,j|. log(h)2γ(h)−2h2k

which is a quasi-optimal estimation.
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3.1.3 Lower bounds

In this subsection, we prove the WG scheme (3.6) provides asymptotic lower bounds of
the eigenvalues.

We prove the lower bound by verifying Assumption (A7). The following lower bound
estimate is crucial in the analysis, which is proved in [24, Theorem 2.1].

Lemma 3.6. The following lower bound for the convergence rate holds for the exact eigenfunction
u of the eigenvalue problem (3.2)

∑
T∈Th

‖∇u−Qh∇u‖2
T &Ch2k.

Next lemma verifies Assumption (A7).

Lemma 3.7. Suppose (λ,u) is an eigenpair of (3.2) and (λh,uh) is an eigenpair of (3.6) approx-
imating (λ,u). Suppose γ(h)≪1, then for sufficiently small h there holds

εh,u ≥λh‖u−uh‖
2
X.

Proof. From Lemma 3.1, we have

εh,u =a(u,u)−aw(Qhu,Qhu)

=‖∇u‖2− ∑
T∈Th

‖∇wQhu‖2
T−s(Qhu,Qhu)

=‖∇u‖2− ∑
T∈Th

‖Qh∇u‖2
T− ∑

T∈Th

γ(h)h−1
T ‖Qb(Q0u−Qbu)‖2

∂T

= ∑
T∈Th

‖∇u−Qh∇u‖2
T− ∑

T∈Th

γ(h)h−1
T ‖Qb(Q0u−Qbu)‖2

∂T.

It follows from Lemma 3.6 and the trace inequality that

∑
T∈Th

‖∇u−Qh∇u‖2
T &h2k,

∑
T∈Th

γ(h)h−1
T ‖Qb(Q0u−Qbu)‖2

∂T .γ(h)h2k.

Since γ(h)≪1, then when h is sufficiently small we have

εh,u&h2k.

From Theorem 3.1 we obtain

λh‖u−uh‖
2
X .h2k+2.

Thus, when h is sufficiently small we have

εh,u ≥λh‖u−uh‖
2
X,

which completes the proof.
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Applying Theorem 2.4 we have the following lower bounds estimation.

Theorem 3.3. Suppose (λ,u) is an eigenpair of (3.2) and (λh,uh) is an eigenpair of (3.6) ap-
proximating (λ,u). Suppose γ(h)→0 as h→0, then for sufficiently small h there holds

λ≥λh.

Remark 3.1. In the proof of Lemma 3.7, we have

∑
T∈Th

‖∇u−Qh∇u‖2
T &h2k,

∑
T∈Th

h−1
T ‖Qb(Q0u−Qbu)‖2

∂T .h2k.

Thus, there exists a constant C0 independent of h such that

∑
T∈Th

h−1
T ‖Qb(Q0u−Qbu)‖2

∂T ≤C0 ∑
T∈Th

‖∇u−Qh∇u‖2
T .

If we take γ(h)≤C−1
0 , we also have

εh,u&h2k,

and the lower bound estimation can be proved in the same way. That is to say, the con-
dition γ(h)≪1 can be replaced by γ(h)≤C−1

0 . However, it seems difficult to estimate C0

explicitly.

3.2 Biharmonic equation

In this section, we apply the framework in Section 2 to the biharmonic eigenvalue prob-
lem. The proof also contains three steps. First we introduce the weak Galerkin finite
element scheme for the biharmonic eigenvalue problem. Then we verify Assumptions
(A1)-(A6) to estimate the error of the eigenvalues and the eigenfunctions. Finally, we
verify Assumption (A7) to give a lower bound estimation. Most of the proof is similar to
Section 3.1, so we just give a brief skeleton of the proof.

3.2.1 Weak Galerkin scheme

Consider the biharmonic eigenvalue problem










∆2u=λu, in Ω,

u= ∂u
∂n =0, on ∂Ω,

∫

Ω
u2=1,

(3.14)

where Ω is a polygon or polyhedral domain in Rd (d=2,3).
The weak Galerkin finite element space is defined as follows.

Vh={(v0,vb,vn) : v0∈Pk(T), vb ∈Pk−1(e), vn ∈Pk−1(e), and vb =vn =0 on ∂Ω},

where k≥2 is an integer.
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Remark 3.2. The definition of the finite element space Vh and its norms are different from
them in Subsection 3.1. For the ease of constructing the uniform framework, here we still
use Vh to represent the finite element space.

On the finite element space Vh, we define the weak Laplacian operator ∆w by distri-
bution as follows [48].

Definition 3.2. For any v∈Vh, ∆wv∈Pk−2(T) is the unique polynomial satisfying on each
element T∈Th,

(∆wv,ϕ)T =(v0,∆ϕ)T−〈vb,∇ϕ·n〉∂T+〈vn(ne ·n),ϕ〉∂T, ∀ϕ∈Pk−2(T),

where n is the unit outward normal vector, and ne is the unit normal vector on each edge.

Now, we define some projection operators onto Vh. Denote Q0 the L2 projection onto
Pk(T) on each element T, Qb the L2 projection onto Pk−1(e) on each element e, and Qhv=
{Q0v,Qbv,Qb(∇v·ne)} is a projection operator onto Vh.

We introduce the following three bilinear forms on Vh. For any v,w∈Vh, define

s(v,w)=γ(h) ∑
T∈Th

h−3
T 〈Qbv0−vb,Qbw0−wb〉∂T

+γ(h) ∑
T∈Th

h−1
T 〈∇v0 ·ne−vn,∇w0ne−wn〉∂T,

aw(v,w)=(∆wv,∆ww)+s(v,w),

bw(v,w)=(v0,w0),

where 0<γ(h)<1 is a parameter to be chosen.
With these preparations, we can introduce the following Weak Galerkin Algorithm

for biharmonic eigenvalue problem (3.14).

Weak Galerkin Algorithm 2. Find (λh,uh)∈R×Vh, such that bw(uh,uh)=1 and

aw(uh,v)=λhbw(uh,v), ∀v∈Vh. (3.15)

3.2.2 Error analysis

Now we verify Assumptions (A1)-(A6) to estimate the error of the biharmonic eigenvalue
problem. Denote Vc=H2

0(Ω) and V=V0+Vh. For any v∈V, define

‖v‖2
V = ∑

T∈Th

(∆v0,∆v0)T+ ∑
T∈Th

h−3
T 〈Qbv0−vb,Qbv0−vb〉∂T

+ ∑
T∈Th

h−1
T 〈∇v0 ·ne−vn,∇v0 ·ne−vn〉∂T.

For v ∈V0 = H2
0(Ω), v0 is the interior value of v on each element T, vb is the trace of v

on ∂T, and vn is ∇v·ne. Obviously ‖·‖V defines a norm on V. The proof of coercivity is
similar to Lemma 3.2.
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Lemma 3.8. For any vh ∈Vh,
aw(vh,vh)≥γ(h)‖vh‖

2
V .

Thus, Assumption (A1) is verified.
Now we turn to Assumption (A2). Recall that in Section 2 the operators K and Kh are

defined by

a(K f ,v)=b( f ,v), ∀ f ∈Vc,

aw(Kh fh,vh)=b( fh,vh), ∀ fh ∈Vh.

From the regularity of the biharmonic equation, there exists a constant C such that
‖K f‖H2(Ω) ≤ C‖ f‖L2(Ω). Since H2(Ω) is compact embedded into H1(Ω), the operator
K is compact. As to Kh, notice that Kh is a linear bounded finite ranked operator. Thus Kh

is also compact. Hence, Assumption (A2) is verified. Also, Qh satisfies Assumption (A3).
Hence, Assumption (A3) is verified.

In order to get the estimation on the eigenfunction, we still need to verify Assump-
tions (A4) and (A5). Let X be the usual L2 space. Denote

δh,µ= sup
u∈R(Eµ(K)),

‖u‖V=1

‖u−Qhu‖V ,

δ′h,µ = sup
u∈R(Eµ(K)),

‖u‖V=1

‖u−Qhu‖X.

From the properties of the projection operator, we have the following estimate.

Lemma 3.9. Suppose R(Eµ(K))⊂Hk(Ω), then the following estimations hold

δh,µ.hk−1,

δ′h,µ.hk+1.

Denote

eh,µ=‖(K−KhQh)|R(Eµ(K))‖V ,

e′h,µ=‖(Π0K−Π0KhQh)|R(Eµ(K))‖X .

The estimation for eh,µ and e′h,µ is similar to the proof of Theorem 4.2 and Theorem 5.1

in [48].

Lemma 3.10. Suppose R(Eµ(K))⊂Hk+2(Ω), then the following estimations hold

eh,µ.γ(h)−1hk−1,

e′h,µ.γ(h)−1hk+k0−2,

where k0=min{k,3}.
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Now we give the estimates for the eigen-pair of problem (3.14) based on the previous
results.

Theorem 3.4. Suppose λ is an eigenvalue of (3.14) with multiplicity m, and R(Eµ(K)) ⊂

Hk+2(Ω) is corresponding m-dimensional eigenspace. Suppose {λh,j}
m
j=1 are the eigenvalues

of (3.6) approximating λ, and {uh,j}
m
j=1 is a basis of the corresponding eigenspace R(Eµ,h(Kh)).

Then, for any j=1,··· ,m there exists an eigenfunction uj ∈R(Eµ(K)) such that

‖uj−uj,h‖V .γ(h)−1hk−1,

‖uj−uj,h‖X .γ(h)−1hk+k0−2,

where k0 =min{k,3}.

For the estimation of the eigenvalues, Assumption (A6) is still remained to be verified.
Denote

εh,u = a(u,u)−aw(Qhu,Qhu).

Lemma 3.11. For any u∈Hk+2(Ω), the following estimate holds

|εh,u|.h2k−2.

Then we derive the estimation on the eigenvalues.

Theorem 3.5. Suppose λ is an eigenvalue of (3.2) with multiplicity m, and R(Eµ(K)) ⊂

Hk+2(Ω) is corresponding m-dimensional eigenspace. Suppose {λh,j}
m
j=1 are the eigenvalues

of (3.6) approximating λ, and {uh,j}
m
j=1 is a basis of the corresponding eigenspace R(Eµ,h(Kh)).

Then when h is sufficiently small, for any j=1,··· ,m there holds

|λ−λh,j|.γ(h)−2h2k−2.

Similar to the discussion in Section 3.1.2, the conclusions in Theorem 3.4 and Theorem
3.5 are quasi-optimal.

3.2.3 Lower bounds

In this subsection, we prove the WG scheme (3.15) provides asymptotic lower bounds of
the eigenvalues.

We prove the lower bound by verifying Assumption (A7). The following lower bound
estimate is crucial in the analysis, which is proved in [24, Theorem 2.1].

Lemma 3.12. The following lower bound for the convergence rate holds for the exact eigenfunc-
tion u of the eigenvalue problem (3.14)

∑
T∈Th

‖∇u−Qh∇u‖2
T &Ch2k−2.
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Similar to Lemma 3.7, we have the following estimation.

Lemma 3.13. Suppose (λ,u) is an eigenpair of (3.14) and (λh,uh) is an eigenpair of (3.15)
approximating (λ,u). Suppose γ(h)≪1, then for sufficiently small h there holds

εh,u ≥λh‖u−uh‖
2
X .

Applying Theorem 2.4 we have the following lower bounds estimation.

Theorem 3.6. Suppose (λ,u) is an eigenpair of (3.14) and (λh,uh) is an eigenpair of (3.15)
approximating (λ,u). Suppose γ(h)→0 as h→0, then for sufficiently small h there holds

λ≥λh.

4 Numerical experiments

In this section, we shall present some numerical results for the weak Galerkin method
analyzed in the previous sections.

4.1 Laplacian eigenvalue problem on unit square domain

In the first example, we consider the problem (3.1) on the square domain Ω=(0,1)2. It
has the analytic solution

λ=(m2+n2)π2, u=sin(mπx)sin(nπy),

where m, n are arbitrary integers. The first six eigenvalues are λ1 = 2π2, λ2 =λ3 = 5π2,
λ4=8π2 and λ5=λ6=10π2.

The uniform mesh is applied in this example, and h denotes the mesh size. The degree
of polynomial k= 1 and the parameter γ(h) is selected to be h0.1 and −1/log(h), sepa-
rately. The corresponding numerical results for the first six eigenvalues and the first six
eigenfunctions are showed in Figs. 1-2. From these figures, we find the errors of eigenval-
ues are of approximately second order convergence, the errors of eigenfunctions under
V−norm are of first order convergence and the L2 error of eigenfunctions are of second
order convergence, which reveal the convergence results in Theorem 3.2 and Theorem
3.1.

4.2 Rectangular mesh

In this example, we show that the weak Galerkin method is valid on different type of
meshes. We still test the algorithm by solving the Laplacian eigenvalue problem on the
unit square domain. The square mesh is employed, and the degree of polynomial is k=1.
The parameter γ(h)=h0.1. The numerical results for the first six eigenvalues are listed in
Table 1. Table 1 shows that all the approximate eigenvalues are the lower bounds of the
exact eigenvalues, which is predicted in Theorem 3.3. The convergence rates are coincide
with Theorem 3.2.
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Figure 1: Errors for case γ(h)=h0.1.
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Figure 2: Errors for case γ(h)=−1/log(h).
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Table 1: Errors of eigenvalues for rectangular mesh.

h 1/8 1/16 1/32 1/64 1/128

λ1−λ1,h 1.7000e+0 4.8873e-1 1.3355e-1 3.5976e-2 9.6533e-3

order 1.7984 1.8716 1.8923 1.8979

λ2−λ2,h 1.0980e+1 3.6389e+0 1.0456e+0 2.8660e-1 7.7494e-2

order 1.5933 1.7992 1.8672 1.8869

λ3−λ3,h 1.0980e+1 3.6389e+0 1.0456e+0 2.8660e-1 7.7494e-2

order 1.5933 1.7992 1.8672 1.8869

λ4−λ4,h 2.1311e+1 7.2430e+0 2.0915e+0 5.7228e-1 1.5421e-1

order 1.5569 1.7921 1.8697 1.8918

λ5−λ5,h 3.8500e+1 1.5266e+1 4.7322e+0 1.3302e+0 3.6275e-1

order 1.3346 1.6897 1.8309 1.8746

λ6−λ6,h 3.8500e+1 1.5266e+1 4.7322e+0 1.3302e+0 3.6275e-1

order 1.3346 1.6897 1.8309 1.8746

4.3 High order element

In this example, we show that the weak Galerkin method produces high order lower
bounds of the eigenvalues. We still solve the Laplacian eigenvalue problem on the unit
square domain. The uniform triangular mesh is employed, and the degree of polynomial
is k= 4. The parameter is γ(h)= h0.1. The numerical results for the first six eigenvalues
are listed in Table 2. Table 2 shows that all the approximate eigenvalues are the lower
bounds of the exact eigenvalues, which is predicted in Theorem 3.3. The convergence
rates are coincide with Theorem 3.2.

4.4 Laplacian eigenvalue problem on L shape domain

Now we consider the eigenvalue problem (3.1) on the L shape domain Ω=(−1,1)2\[0,1)2.

We also use the weak Galerkin method to solve this eigenvalue problem and Table 3
presents the corresponding numerical results for the first six eigenvalues. In this example,
the degree of polynomial is k=2, and the parameter γ(h)= h0.1. The uniform triangular
mesh is employed. Even the analytic eigenpairs are not known, from the table we find
the numerical eigenvalues λj,h increase when h decreases which shows that λj,h are lower
bounds of the exact eigenvalue λj.

4.5 Biharmonic eigenvalue problem on unit square domain

We consider the problem (3.14) on the square domain Ω=(0,1)2. The first eigenvalue is
1294.9339598.
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Table 2: Errors of eigenvalues for k=4.

h 1/2 1/4 1/8 1/16

λ1−λ1,h 9.4729e-3 3.2299e-5 1.3058e-7 5.3536e-10

order 8.1962 7.9504 7.9303

λ2−λ2,h 5.6202e+0 3.9834e-3 1.4516e-5 5.9074e-8

order 10.4624 8.1002 7.9409

λ3−λ3,h 3.7210e+0 1.9021e-3 7.2664e-6 2.9831e-8

order 10.9339 8.0322 7.9283

λ4−λ4,h 3.3030e+1 4.2515e-2 1.3976e-4 5.6171e-7

order 9.6016 8.2489 7.9589

λ5−λ5,h 5.2616e+1 1.1007e-1 3.0953e-4 1.2189e-6

order 8.9010 8.4741 7.9884

λ6−λ6,h 5.2223e+1 1.0988e-1 3.0953e-4 1.2189e-6

order 8.8927 8.4716 7.9884

Table 3: Discrete eigenvalues for γ(h)=h0.1 and k=2.

h 1/4 1/8 1/16 1/32 1/64 1/128

λ1,h 9.5538 9.6152 9.6306 9.6362 9.6383 9.6392

λ2,h 15.0957 15.1903 15.1967 15.1972 15.1972 15.1973

λ3,h 19.5148 19.7251 19.7383 19.7391 19.7392 19.7392

λ4,h 28.7653 29.4755 29.5185 29.5213 29.5215 29.5215

λ5,h 30.6553 31.7870 31.8860 31.9036 31.9091 31.9113

λ6,h 39.0485 41.2933 41.4490 41.4674 41.4719 41.4735

The nonuniform triangular mesh is applied in this example. The degree of polyno-
mial k = 3 and γ(h) is selected to be 1 and h0.5, separately. The corresponding numer-
ical results for the first eigenvalue are showed in Table 4. From the table, we find the
weak Galerkin method gives the reasonable numerical approximations. Furthermore,
the choice of ε really affects the convergence order which means the convergence results
in Theorem 3.5 are also reasonable. The numerical results included in Table 4 show the
eigenvalue approximation λj,h are lower bounds of the exact eigenvalue λj, which reveal
the convergence results in Theorem 3.5.

5 Concluding remarks

In this paper, we apply the weak Galerkin method to solve the eigenvalue problems and
present the corresponding convergence analysis. Furthermore, we analyze the lower-
bound property of the weak Galerkin method. Compared with the classical noncon-
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Table 4: Error for the first eigenvalue λ1−λ1,h.

γ(h)=1 γ(h)=h0.5

h λ1,h λ1−λ1,h order λ1,h λ1−λ1,h order

1/20 1276.5378 1.8396e+1 1231.0779 6.3856e+1

1/40 1293.6901 1.2438e+0 3.8865 1288.5256 6.4083e+0 3.3168

1/60 1294.6810 2.5289e-1 3.9288 1293.3300 1.6040e+0 3.4162

1/80 1294.8528 8.1142e-2 3.9514 1294.3363 5.9758e-1 3.4320

1/100 1294.9004 3.3478e-2 3.9675 1294.6568 2.7712e-1 3.4438

1/120 1294.9177 1.6206e-2 3.9792 1294.7863 1.4763e-1 3.4540

forming finite element method which provides lower bound approximation by linear
element with only the second order convergence, the weak Galerkin method presents
lower bound approximations with arbitrary order convergence. These results can be ex-
tended to general elliptic operators along similar lines.

Based on the WG scheme for the eigenvalue problems, some acceleration technique,
such as the two-grid method [41] and the shifted-inverse power method [40], can be
applied to the WG scheme to reduce the computational cost. Upper bounds of the eigen-
values can also be produce by the WG method with a interpolation technique [42]. In the
future, we plan to design efficient solvers for the algebraic eigenvalue problems derived
by the weak Galerkin method by using multigrid precondition. We also plan to speed up
our numerical algorithm by the shifting method, etc.
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Appendix

In this section, we present some technique tools used in the previous sections.
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Consider the Poisson equation
{

−∆u= f , in Ω,

u=0, on ∂Ω,
(A.1)

with f is a given L2 function. The corresponding weak Galerkin scheme is to find uh∈Vh

such that

aw(uh,vh)=( f ,v0), ∀vh ∈Vh. (A.2)

Suppose u is the solution of (3.7), and uh is the numerical solution of (3.8). Denote by
eh the error that

eh=Qhu−uh={Q0u−u0,Qbu−ub}.

Then eh satisfies the following equation.

Lemma A.1. Let eh be the error of the weak Galerkin scheme (3.8). Then, for any v∈Vh, we have

aw(eh,v)= ℓ(u,v)+s(Qhu,v), (A.3)

where

ℓ(u,v)= ∑
T∈Th

〈(∇u−Qh∇u)·n,v0−vb〉∂T.

Proof. From the definition of the weak gradient (3.3) and the commutative property (3.1),
we obtain on each element T∈Th that

(∇wQhu,∇wv)T =(Qh∇u,∇wv)T

=−(v0,∇·Qh∇u)T+〈vb,Qh(∇u)·n〉∂T

=(∇v0,Qh∇u)T−〈v0−vb,Qh(∇u)·n〉∂T

=(∇v0,∇u)T−〈Qh(∇u)·n,v0−vb〉∂T.

Summing over all elements and it follows that

(∇wQhu,∇wv)=(∇v0,∇u)− ∑
T∈Th

〈Qh(∇u)·n,v0−vb〉∂T

=( f ,v0)+ ∑
T∈Th

〈∇u·n,v0〉∂T− ∑
T∈Th

〈Qh(∇u)·n,v0−vb〉∂T

=( f ,v0)+ℓ(u,v).

Notice that the numerical solution uh satisfies (3.8). Then we derive that

aw(eh,v)= ℓ(u,v)+s(Qhu,v), ∀v∈Vh,

which completes the proof.
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With the tools above we give the estimates for ℓ(w,v) and s(Qhw,v) as follows.

Lemma A.2. For any vh ∈Vh and w∈Hk+1(Ω), the following estimates hold true,

|s(Qhw,vh)|≤Cγ(h)hk‖w‖k+1‖vh‖V ,

|ℓ(w,vh)|≤Chk‖w‖k+1‖vh‖V .

Proof. From the Cauchy-Schwarz inequality, we obtain

|s(Qhw,v)|=

∣

∣

∣

∣

∣

γ(h) ∑
T∈Th

h−1
T 〈QbQ0w−Qbw,Qbv0−vb〉∂T

∣

∣

∣

∣

∣

≤Cγ(h)

(

∑
T∈Th

h−1
T ‖Q0w−w‖2

∂T

)
1
2
(

∑
T∈Th

h−1
T ‖Qbv0−vb‖

2
∂T

)
1
2

≤Cγ(h)hk‖w‖k+1‖vh‖V .

Similarly, for the second term we derive that

|ℓ(w,v)|=

∣

∣

∣

∣

∣

∑
T∈Th

〈(∇w−Qh∇w)·n,v0−vb〉∂T

∣

∣

∣

∣

∣

≤C

(

∑
T∈Th

hT‖∇w−Qh∇w‖2
∂T

)
1
2
(

∑
T∈Th

h−1
T ‖v0−vb‖

2
∂T

)
1
2

≤Chk‖w‖k0+1‖vh‖V ,

which completes the proof.

With the error equation (A.3) and the estimates derived in Lemma A.2, we get the
following error estimate for the weak Galerkin method.

Theorem A.1. Assume the exact solution of (3.7), u∈Hk+1(Ω), and uh is the numerical solution
of the weak Galerkin scheme (3.8). Then the following estimates hold true,

‖u−uh‖V ≤Cγ(h)−1hk‖u‖k+1. (A.4)

Proof. Taking v= eh in (A.3) and it follows from Lemma 3.2 that

γ(h)‖eh‖
2
V ≤Caw(eh,eh)

= ℓ(u,eh)+s(Qhu,eh)

≤Chk‖u‖k+1‖eh‖V+Cγ(h)hk‖u‖k+1‖eh‖V

≤Chk‖u‖k+1‖eh‖V ,
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which implies that

‖eh‖V ≤Cγ(h)−1hk‖u‖k+1.

From Lemma 3.3 we have

‖u−uh‖V ≤‖u−Qhu‖V+‖Qhu−uh‖V ≤Cγ(h)−1hk‖u‖k+1.

Thus, the proof is completed.

By using the classical Nistche’s technique, we also have the L2 error estimate.

Theorem A.2. Assume the exact solution of (3.7) u∈ Hk+1(Ω), the dual problem of (3.7) has
H2(Ω)-regularity, and uh is the numerical solution of the weak Galerkin scheme (3.8). Then the
following estimates hold true,

‖u−uh‖X ≤Cγ(h)−1hk+1‖u‖k+1. (A.5)
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