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Abstract. A nonlinear finite volume element scheme for anisotropic diffusion prob-
lems on general triangular meshes is proposed. Starting with a standard linear con-
forming finite volume element approximation, a corrective term with respect to the
flux jumps across element boundaries is added to make the scheme satisfy the dis-
crete maximum principle. The new scheme is free of the anisotropic non-obtuse angle
condition which is a severe restriction on the grids for problems with anisotropic dif-
fusion. Moreover, this manipulation can nearly keep the same accuracy as the original
scheme. We prove the existence of the numerical solution for this nonlinear scheme
theoretically. Numerical results and a grid convergence study are presented for both
continuous and discontinuous anisotropic diffusion problems.
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1 Introduction

We are concerned with the numerical solution of the diffusion equation:

−∇·(Λ∇u)= f in Ω, (1.1)

u= g on ∂Ω, (1.2)

where
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(a) Ω is an open bounded, convex connected polygonal domain in R
2 with the boundary

∂Ω;

(b) f is the source term, belonging to L2(Ω);

(c) g is the Dirichlet boundary data defined on ∂Ω;

(d) Λ is a symmetric tensor such that Λ is piecewise Lipschitz-continuous on Ω and the
set of eigenvalues of Λ is included in [λmin,λmax] with λmin>0.

The boundary value problem (BVP) (1.1)-(1.2) becomes an anisotropic diffusion prob-
lem if eigenvalues of Λ are not all equal at least on a portion of Ω. This kind of problem
is a model arising in various fields such as plasma physics [19, 33], petroleum reservoir
simulation [17], and image processing [38]. As typical for diffusion problems, it satisfies
the maximum principle

min
x∈Ω∪∂Ω

u(x)≥ min
x∈∂Ω

g(x) (1.3)

provided that f (x)≥ 0 holds for all x ∈ Ω. When using a standard numerical method,
such as a finite element, a finite difference, or a finite volume method, to solve this prob-
lem, spurious oscillations may occur. In order to avoid such spurious oscillations in the
numerical solution, a common strategy is to develop numerical schemes guaranteeing
the discrete counterpart of (1.3), i.e., the so-called discrete maximum principle (DMP),
which are known to produce numerical solutions evading nonphysical local oscillations
or preserving positivity.

Development of DMP satisfaction schemes for solving diffusion problems has at-
tracted considerable interest in the past. By virtue of the convex combination of two
linear flux approximation and the positivity-preserving interpolation of the auxiliary un-
knowns, various cell-centered finite volume (FV) schemes circumventing spurious oscil-
lations have been developed. These schemes usually have approximately a second-order
accuracy on severely distorted meshes in the highly anisotropic, and/or discontinuous
case. However, their extensions to finite element (FE) methods are hard to succeed. We
refer readers to [1, 16, 18, 28, 30, 34, 39, 40] and references therein for more details. In the
framework of FE methods, the study of DMP-preserving schemes for anisotropic diffu-
sion case is more difficult and relevant results are very limited. In [27], the authors derive
an anisotropic non-obtuse angle condition in term of the M-matrix criteria, such that
the linear FE scheme guarantees the DMP by employing a suitable mesh. On the other
hand, separating the stiffness matrix resulting from the FE discretization into diffusive
and anti-diffusive fluxes and limiting the anti-diffusion fluxes by proper limiters lead to
the so-called algebraic flux correction scheme. In [23] and [24], the authors propose two
types of limiters to make the corrected schemes local extremum diminishing. But they
are linearity-preserving only on symmetric meshes, as pointed out in [2].

Finite volume element (FVE) method [12,13,30,31], also called co-volume method [15]
or generalized difference method [29], is one of the main numerical methods for solving
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partial differential equations. This method has already attracted much attention because
of its simple calculation and attractive computational properties, such as local conserva-
tion. Recently, many papers have been devoted to developing higher-order FVE schemes
and establishing their error estimations, see [10, 11, 14, 18, 21, 41] and references therein.
However, their construction and corresponding theoretical analysis are all executed for
problems with scalar or even constant diffusion coefficients and mainly focus on the
proofs of optimal convergence rates. However, development of FVE schemes satisfy-
ing the DMP or positivity preservation and keeping high accuracy simultaneously is far
more difficult, especially for more complicated diffusion problems. Numerical results
indicate the linear FVE solutions, even obtained on the uniform meshes, dissatisfy the
DMP. In this article, we modify the original FVE scheme [29] by adding an extra nonlin-
ear term which is composed of the flux jumps and tangential derivatives along element
boundaries. The resultant scheme not only respects the DMP property, but also nearly
keeps the numerical accuracy as the original scheme. This nonlinear technique is similar
to the one employed in [4, 5]. However, the authors wherein are only concerned with
Laplace operator or convective-dominated problems with small constant diffusion coef-
ficients. Therefore, there are some differences in the construction of this nonlinear term.
Firstly, the flux jump on each edge is taken as its positive part instead of its absolute
value, which can keep numerical accuracy better. Besides, the nonlinear term includes
additionally the integral of the tangential derivative, which is useful for the proof of the
DMP.

The rest of this paper is organized as follows. In the next section, we introduce some
necessary notations, assumptions and definitions. Section 3 is devoted to introducing
the conforming linear FVE method on triangular grids and recalling relevant properties.
Then, we present the nonlinear FVE method and analyse its solvability and validity of
the DMP in Section 4. In Section 5, the performance of this method is illustrated on some
numerical tests. Finally, we draw a brief conclusion in Section 6.

2 Preliminaries

In this paper, we employ standard definitions and notations of the Sobolev spaces. We
use C to denote the positive constant independent of the finite element mesh parameter,
and the symbol C may take on different values in different places.

Consider a family {Th}h>0 of shape-regular triangulations of Ω consisting of disjoint
triangular element K. Suppose triangulation Th is body-fitted if the diffusion tensor Λ is
discontinuous across some interfaces. Define hK :=diam(K), and h=max{hK :K∈Th}. We
associate with the triangulation Th the finite element space

Uh={uh ∈H1(Ω) : uh |K∈P1(K), ∀K∈Th and uh |∂Ω= gh},

where P1(K) is the space of polynomials of degree at most 1 on K and gh is the interpola-
tion approximation of g. The nodes of Th are denoted by {Pi}

N
i=0, and the usual associated

basis functions of Uh are denoted by {ϕi}
N
i=0, where N is a positive integer.
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Figure 1: Dual element surrounding node P0.

Let Eh and Ph be the sets of the interior edges and nodes of Th, respectively. For
each edge E ∈ Eh, we define hE :=| E | and ωE := {K ∈ Th : K∩E 6= ∅}, and fix one unit
tangent vector, denoted by tE. For an interior node Pi ∈ Ph, we define the associated
edges Ei :={E∈Eh :Pi∈E} and let the subset Ωi be the union of all elements K sharing the
node Pi.

Next we construct the dual partition T ∗
h associated with Th. Fig. 1 shows that P0 is

an interior node, Pj (j=1,2,··· ,6) are neighboring nodes around P0, Qj (j=1,2,··· ,6) are
barycenter points of triangular elements, and Mj (j=1,2,··· ,6) are edge midpoints of pri-
mary elements. Connect Mj and Qj (j=1,2,··· ,6) successively to form a polygonal region
K∗

P0
surrounding P0, called a dual element. If P0 is located on ∂Ω, the corresponding dual

element K∗
P0

reduces to a border polygon. Denote the set of all the dual elements by T ∗
h .

We associate with the dual partition T ∗
h a piecewise constant space

Vh={vh ∈L2(Ω) : vh |K∗
Pi

is a constant for i=0,··· ,N}.

V0
h ={vh ∈Vh : vh |K∗

Pi
=0, if Pi is a boundary node}.

Introduce a projection Π∗
h from Uh onto Vh, satisfying

Π∗
huh |K∗

Pi
=uh(Pi), for i=0,··· ,N. (2.1)

Let SQ and S∗
Pi

denote the areas of the element KQ and the dual element K∗
Pi

, respec-
tively. Due to the regularity of triangulation Th, we have

C1h2 ≤SQ≤h2 (2.2)

C2h2 ≤S∗
Pi
≤C3h2, (2.3)

where C1,C2,and C3 are positive constants. For element KQ∈Th and uh∈Uh, let Pi,Pj,Pk be
the three nodes of KQ, see Fig. 2, and ui,uj,uk the values of uh on the three nodes. Define
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Figure 2: The notations on a triangular element.

the following discrete L2-norm and H1-seminorm

‖uh ‖0,h=
(

∑K∈Th
|uh |

2
0,h,K

)1/2
,

|uh |1,h=
(

∑K∈Th
|uh |

2
1,h,K

)1/2
,

where

|uh |0,h,K=
[1

3
(u2

i +u2
j +u2

k)SQ

]1/2
,

|uh |1,h,K=

{[(∂uh

∂x
(Q)

)2
+
(∂uh

∂y
(Q)

)2]
SQ

}1/2

.

Obviously the discrete H1-seminorm | · |1,h is equal to the continuous H1-seminorm | · |1
on the space Uh, because the gradient is constant on each element.

Lemma 2.1. The discrete L2-norm ‖ · ‖0,h is equivalent to the continuous L2-norm ‖ · ‖0 on the
space Uh, i.e.

C1 ‖uh ‖0,h≤‖uh ‖0≤C2 ‖uh ‖0,h, ∀ uh∈Uh, (2.4)

where C1,C2 are two positive constants independent of Uh.

Proof. For uh ∈Uh,

‖uh ‖
2
0= ∑

K∈Th

∫

K
u2

hdxdy. (2.5)
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On each element K∈Th, uh is a linear polynomial. Applying the numerical quadrature
with second-order accuracy, we have

∫

K
u2

hdxdy=
1

3

(
uh(Mi)

2+uh(Mj)
2+uh(Mk)

2
)
SQ

=
1

6

(
u2

i +u2
j +u2

k+uiuj+uiuk+ukuj

)
SQ

=
1

12

[
u2

i +u2
j +u2

k+(ui+uk+uj)
2
]
SQ,

where Mi,Mj,Mk are the midpoints of edges PjPk,PkPi,PiPj, respectively, see Fig. 2.

The above equality can be further estimated as

1

4
|uh |

2
0,h,K≤

∫

K
u2

hdxdy≤|uh |
2
0,h,K . (2.6)

Substituting (2.6) into (2.5) yields the desired conclusion.

3 Linear FVE method

In this section, we present a symmetric FVE scheme under the triangular grid Th and
analyse its relevant properties. For simplicity of exposition, we consider problems with
homogenous boundary value condition. The discussion for non-homogenous case can
be done analogously.

In the construction of FVE method, Uh and V0
h are taken as the trial space and test

space, respectively. For any vh ∈V0
h , multiply Eq. (1.1) by vh and integrate the resultant

equation on Ω. By Green’s formula, we get

a(u,vh)=( f ,vh), (3.1)

where

a(u,vh)= ∑
Pi∈Ph

−vh(Pi)
∫

∂K∗
Pi

(Λ∇u)·nds. (3.2)

Here and below, n denotes the outward unit normal vector, with respect to its relevant
edge. Generally speaking, the surface integrals in (3.2) cannot be carried out analytically
and numerical quadrature is often necessary, especially when the diffusion tensor is het-
erogeneous. By employing appropriate numerical quadrature, we can get a symmetric
and conservative FVE scheme. Let Λh be the piecewise constant interplant of diffusion
tensor Λ, satisfying

Λh |KQ
=Λ(Q), ∀ KQ∈Th, (3.3)
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where Q is the barycenter of element KQ. Then, the desired FVE method is: Find uh ∈Uh

such that,

ah(uh,vh)=( f ,vh), ∀ vh ∈V0
h , (3.4)

where

ah(uh,vh)= ∑
Pi∈Ph

−vh(Pi)
∫

∂K∗
Pi

(Λh∇uh)·nds. (3.5)

Due to Π∗
hUh=V0

h , the FVE method (3.4) is equivalent to: Find uh∈Uh such that,

ah(uh,Π∗
hvh)=( f ,Π∗

hvh), ∀ vh ∈Uh. (3.6)

Here and below, we view ah(·,Π
∗
h·) as a bilinear form defined on Uh×Uh and use this

equivalent problem to carry out analysis.
For a given interior node Pi, by taking vh = ϕi in (3.6), the equation associated with

the dual element K∗
Pi

reduce to

ah(uh,Π∗
h ϕi)=( f ,Π∗

h ϕi), (3.7)

with

ah(uh,Π∗
h ϕi)=−

∫

∂K∗
Pi

(Λh∇uh)·nds. (3.8)

Take the interior point P0 shown in Fig. 1 as an example to illustrate the calculation of the
corresponding integral in detail. As shown in Fig. 1, the surface integral along ∂K∗

P0
can be

written as a summation of the integrals along the broken segments ∂K∗
P0

⋂
KQ j

(j=1,··· ,6),
i.e.,

ah(uh,Π∗
h ϕ0)=

6

∑
j=1

−
∫

∂K∗
P0

⋂
KQj

(Λh∇uh)·nds. (3.9)

For a given triangular element △P0P1P2, we denote the normal vectors to its edges by
ni,li (i= 0,1,2), as shown in Fig. 3. We assume that these vectors have the same length
with their corresponding edges. Then, the following identities hold:

n0+n1+n2=0, (3.10)

l0+l1+l2=0. (3.11)

On element △P0P1P2, the gradient of uh is formulated as

∇uh=−
uh(P0)

2SQ1

n0−
uh(P1)

2SQ1

n1−
uh(P2)

2SQ1

n2,
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Figure 3: The notations for the dual cells of the triangle.

where SQ1
is the area of △P0P1P2. By virtue of (3.10), we have

∇uh=
uh(P0)−uh(P1)

2SQ1

n1+
uh(P0)−uh(P2)

2SQ1

n2. (3.12)

Through simple calculation, we get

−
∫

∂K∗
P0

⋂
KQ1

(Λh∇uh)·nds=−
∫

M1Q1

(Λh∇uh)·nds−
∫

Q1M2

(Λh∇uh)·nds

=−(Λh∇uh)·l1−(Λh∇uh)·l2

=(Λh∇uh)·l0

=
−1

4SQ1

(Λ(Q1)n1)·n0(uh(P0)−uh(P1))

+
−1

4SQ1

(Λ(Q1)n2)·n0(uh(P0)−uh(P2)), (3.13)

where (3.11) and the fact l0=− n0
2 have been used in the third and last equalities, respec-

tively. The surface integrals on the other elements are manipulated in a similar way.
If generating equation on the dual element K∗

P1
, from the symmetry of displacement

we know that the coefficient associated to uh(P0) is 1
4SQ1

(Λ(Q1)n0)·n1. Due to the sym-

metry of Λ(Q1),
1

4SQ1
(Λ(Q1)n0)·n1 is equal to 1

4SQ1
(Λ(Q1)n1)·n0 which is the coefficient

associated to uh(P1) in (3.13). Therefore, we conclude that the FVE scheme (3.6) is sym-
metric.
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Let U be the vector consisting of unknown variables. Denote the linear system result-
ing from FVE scheme (3.6) by

AU=F, (3.14)

where the global stiffness matrix A and the right-hand side F are defined as

A=

(
AΩ AΓ

0 I

)
, F=

(
FΩ

g

)
. (3.15)

The subscripts Ω and Γ refer to row/column numbers corresponding to the interior and
boundary nodes, respectively. According to the discussion provided in [23], the discrete
extremum principle holds if the matrix A satisfies

• diagonal coefficients are strictly positive,

• off-diagonal coefficients are non-positive,

• the row sums associated to interior nodes are equal to zero.

In (3.13), we know that the row sum corresponding to interior node P0 is equal to zero and
the positive definiteness of diffusion tensor Λ guarantees the positiveness of the diagonal
coefficient. However, the off-diagonal coefficients are likely to go against the second
criteria. Analysing the coefficients presented in (3.13), we could obtain the following
conclusion:

1. For a special case Λ= I, the requirement for the linear FVE scheme (3.6) to satisfy DMP
is that the triangulation Th satisfies the non-obtuse angle condition,i.e. the dihedral
angles of mesh elements are non-obtuse.

2. For the anisotropic case, the restriction on the meshes become so-called anisotropic
non-obtuse angle condition which requires the dihedral angles of mesh elements to
be non-obtuse, when measured in a metric depending on Λ [27].

The above restrictions on the meshes are usually too severe to satisfy in practice, espe-
cially for the anisotropic case. In order to circumvent these angle conditions, we propose
a nonlinear FVE scheme which guarantees the discrete maximum principle on both dis-
torted and uniform meshes for anisotropic diffusion problems.

4 Nonlinear corrected FVE method

In this section, we modify the FVE method (3.6) by adding a nonlinear term. This non-
linear technique makes the new scheme guarantee the DMP on general meshes.

For uh ∈Uh and an interior edge E=KQ+∩KQ− , where KQ+ and KQ− are two distinct
elements of Th with respective unit outwards normals n+ and n−, we introduce

δE(uh)=max{0,hE [(Λ(Q+)∇uh |KQ+ )·n
++(Λ(Q−)∇uh |KQ− )·n

−]}. (4.1)
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Define the following sign function:

sign(x)=
x

| x |
=

{
1, x>0;

−1, x≤0.
(4.2)

For uh, vh∈Uh, and an interior edge E∈Eh, the nonlinear corrective term involving tangen-
tial derivatives along element edges and the jumps of the diffusion flux across interfaces
is defined as follows:

j(uh,vh)=C′ ∑
E∈Eh

δE(uh)ψE(uh,vh)+C′′ ∑
E∈Eh

h2
E(∇uh ·tE,∇vh ·tE)E, (4.3)

where

ψE(uh,vh)=hEsign(hE∇uh ·tE)∇vh ·tE, (4.4)

(·,·)E and C′,C′′ denote the scalar product on edge E and positive constants, respectively.
The corrected FVE approximation to (1.1)-(1.2) is: Find uh ∈Uh, such that

ah(uh,Π∗
hvh)+ j(uh,vh)=( f ,Π∗

hvh), ∀ vh ∈Uh. (4.5)

The specific values of the constants C′ and C′′ would be determined in the subsequent
analysis.

It is known that the standard FVE methods are local conservative on the edges of
dual elements. In fact, the corrected term j(uh,vh) in (4.5) does not break the conservation
respected by the original FVE scheme. Take the nodes P0, P1 and E=P0P1 shown in Figure
1 as an example to illustrate it. In (4.5), applying vh = ϕ0 and vh = ϕ1 as the test functions
respectively, we obtain the corresponding corrected terms

j(uh,ϕ0)=C′ ∑
E∈E0

δE(uh)ψE(uh,ϕ0)+C′′ ∑
E∈E0

h2
E(∇uh ·tE,∇ϕ0 ·tE)E, (4.6)

j(uh,ϕ1)=C′ ∑
E∈E1

δE(uh)ψE(uh,ϕ1)+C′′ ∑
E∈E1

h2
E(∇uh ·tE,∇ϕ1 ·tE)E. (4.7)

On the edge E = P0P1 which belongs to E0∩E1, the unit tangent vector tE is fixed. It is
easily to observe that

∇ϕ0 ·tE =−∇ϕ1 ·tE.

Accordingly, from the definitions of ψE(uh,ϕ0) and ψE(uh,ϕ1), we have

ψE(uh,ϕ0)=−ψE(uh,ϕ1).

Hence, on the common edge E = P0P1, C′δE(uh)ψE(uh,ϕ0)+C′′h2
E(∇uh ·tE,∇ϕ0 ·tE)E =

−C′δE(uh)ψE(uh,ϕ1)−C′′h2
E(∇uh ·tE,∇ϕ1 ·tE)E, which implies that the corrected FVE

scheme is still local conservative on the edges of dual elements.
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4.1 Existence of a discrete solution

Theorem 4.1. The nonlinear problem (4.5) admits at least one solution.

Proof. Let ε be a given positive constant. For any interior edge E∈Eh, define the functional

φE,ε :U∈Uh 7→hE
δE(U)

|hE∇U ·tE |+ε
∈R.

For any Ũ∈Uh, consider the following regularized problem: Find uh∈Uh, such that

Ah(Ũ;uh,Π∗
hvh)=( f ,Π∗

hvh), ∀ vh ∈Uh, (4.8)

where

Ah(Ũ;uh,Π∗
hvh)= ah(uh,Π∗

hvh)+ ∑
E∈Eh

(C′φE,ε(Ũ)+C′′h2
E)(∇uh ·tE,∇vh ·tE)E. (4.9)

Define an operator Tε : Ũ∈Uh 7→uh ∈Uh, where uh is the solution of problem (4.8).

The bilinear form ah(·,Π
∗
h·) is coercive and bounded on Uh×Uh, i.e.

ah(uh,Π∗
huh)≥C‖uh ‖

2
1, ∀ uh ∈Uh, (4.10)

ah(uh,Π∗
hvh)≤C‖uh ‖1‖vh ‖1, ∀ uh,vh ∈Uh. (4.11)

In [29], the authors have given a detailed proof of (4.10) and (4.11). Readers are referred
to the appendix where a more concise proof is provided. Then, it is obviously that

Ah(uh,Π∗
huh)≥C‖uh ‖

2
1, ∀ uh ∈Uh. (4.12)

Since the regularity (2.2), we get that

∑
E∈Eh

hE(∇uh ·tE,∇vh ·tE)E≤C‖∇uh ‖0‖∇vh ‖0

≤C‖uh ‖1‖vh ‖1 . (4.13)

Then, combining (4.11) and (4.13) yields

Ah(uh,Π∗
huh)≤C‖uh ‖1‖vh ‖1 .

Therefore, the regularised problem (4.8) has a unique solution owing to the Lax-Milgram
Lemma. Therefore, the operator Tε is well defined.

Taking vh =uh in (4.8) and using (4.12) lead to

‖uh ‖
2
1≤C( f ,Π∗

huh). (4.14)
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By simple calculation and Lemma 2.1, we have

‖Π∗
huh ‖0=‖uh ‖0,h

≤C‖uh ‖0

≤C‖uh ‖1 . (4.15)

By virtue of Cauchy-Schwarz inequality and (4.15), we further have

‖uh ‖1≤C‖ f ‖0 . (4.16)

Therefore, if Ũ is such that ‖ Ũ ‖1≤C ‖ f ‖0, uh = TεŨ will also be in this ball. Next we
prove that the operator Tε is continuous on this ball

For any given Ũ1,Ũ2 ∈Uh, let uh,1 = TεŨ1,uh,2 = TεŨ2. Subtracting (4.8) for uh,1 from
(4.8) for uh,2 and testing with vh =uh,1−uh,2 yield

ah(uh,1−uh,2,Π∗
h(uh,1−uh,2))+ ∑

E∈Eh

{
C′
[
φE,ε(Ũ1)(∇uh,1 ·tE,∇(uh,1−uh,2)·tE)E

−φE,ε(Ũ2)(∇uh,2 ·tE,∇(uh,1−uh,2)·tE)E

]
+C′′h2

E ‖∇(uh,1−uh,2)‖
2
L2(E)

}
=0.

Above equality can be further formulated as

ah(uh,1−uh,2,Π∗
h(uh,1−uh,2))+ ∑

E∈Eh

(C′φE,ε(Ũ1)+C′′h2
E)‖∇(uh,1−uh,2)‖

2
L2(E)

=C′ ∑
E∈Eh

(φE,ε(Ũ2)−φE,ε(Ũ1))(∇uh,2 ·tE,∇(uh,1−uh,2)·tE)E. (4.17)

From the coercivity of ah(·,Π
∗
h·), it holds that the left-hand side of this equation has a

lower bound C ‖ uh,1−uh,2 ‖
2
1. Furthermore, for the term φE,ε(Ũ2)−φE,ε(Ũ1), we have

following estimation

φE,ε(Ũ2)−φE,ε(Ũ1)=hE
δE(Ũ2)−δE(Ũ1)

|hE∇Ũ2 ·tE |+ε

+hEδE(Ũ1)
|hE∇Ũ1 ·tE |− |hE∇Ũ2 ·tE |

(|hE∇Ũ2 ·tE |+ε)(|hE∇Ũ1 ·tE |+ε)

≤hE
δE(Ũ2−Ũ1)

ε
+hEδE(Ũ1)

|hE∇(Ũ1−Ũ2)·tE |

ε2

≤ChE(1+‖ Ũ1 ‖H1(ωE))‖∇(Ũ1−Ũ2)‖L2(ωE),

where the regularity of Th has been used in the last inequality. Again from the Cauchy-
Schwarz inequality and regularity of Th, it holds that

hE(∇uh,2 ·tE,∇(uh,1−uh,2)·tE)E ≤C‖uh,2 ‖H1(ωE)‖∇(uh,1−uh,2)‖L2(ωE) .
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Then, the right-hand side of (4.17) satisfies

C′ ∑
E∈Eh

(φE,ε(Ũ2)−φE,ε(Ũ1))(∇uh,2 ·tE,∇(uh,1−uh,2)·tE)E

≤C ∑
E∈Eh

‖uh,2 ‖H1(ωE)
(1+‖ Ũ1 ‖H1(ωE)

)‖∇(Ũ1−Ũ2)‖L2(ωE)‖∇(uh,1−uh,2)‖L2(ωE) .

Since

‖uh,2 ‖H1(ωE)
≤C‖ f ‖0, ‖ Ũ1 ‖H1(ωE)

≤C‖ f ‖0,

we further have

C′ ∑
E∈Eh

(φE,ε(Ũ2)−φE,ε(Ũ1))(∇uh,2 ·tE,∇(uh,1−uh,2)·tE)E

≤C(1+‖ f ‖0)‖ f ‖0 ∑
E∈Eh

‖∇(Ũ1−Ũ2)‖L2(ωE)‖∇(uh,1−uh,2)‖L2(ωE)

≤C(1+‖ f ‖0)‖ f ‖0‖∇(Ũ1−Ũ2)‖0‖∇(uh,1−uh,2)‖0

≤C(1+‖ f ‖0)‖ f ‖0‖ Ũ1−Ũ2‖1‖uh,1−uh,2 ‖1,

where the discrete Cauchy inequality has been used in the second inequality. Combining
above analysis yields

‖TεŨ1−TεŨ2 ‖1=‖uh,1−uh,2 ‖1

≤C(1+‖ f ‖0)‖ f ‖0‖ Ũ1−Ũ2‖1 .

Therefore, the operator Tε is continuous.

Due to Brouwer’s Theorem, the operator Tε admits a fixed point, denoted by uh,ε, in
the ball of radius C ‖ f ‖0 in Uh. Since the sequence {uh,ε}ε is in a finite-dimensional ball,
there is a subsequence, still denoted by {uh,ε}ε, such that uh,ε 7→uh as ε 7→0. In (4.8) taking
the limit ε 7→0, we could conclude that uh solves (4.5).

4.2 Discrete maximum principle

Theorem 4.2. If C′≥ 1
2 , C′′> 0 and f ≥ 0, then the solution uh of the nonlinear finite volume

element scheme (4.5) reaches its minimum on the boundary ∂Ω.

Proof. Assume f ≥0 and the corresponding solution uh reaches its minimum at the inte-
rior node P0, as shown in Fig. 1.

Take vh = ϕ0 in (4.5), we have

ah(uh,Π∗
h ϕ0)+ j(uh,ϕ0)=( f ,Π∗

h ϕ0). (4.18)
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Here, ah(uh,Π∗
h ϕ0) and j(uh,ϕ0) reduce to

ah(uh,Π∗
h ϕ0)=

6

∑
i=1

−
∫

MiMi+1

(Λ(Qi)∇uh)·nds,

j(uh,ϕ0)=C′ ∑
E∈E0

δE(uh)ψE(uh,ϕ0)+C′′ ∑
E∈E0

h2
E(∇uh ·tE,∇ϕ0 ·tE)E,

where M7=M1. On element KQi
(i=1,··· ,6), Λ(Qi)∇uh is a constant vector. Then apply-

ing Green’s formula on each element leads to

ah(uh,Π∗
h ϕ0)=

6

∑
i=1

∫

P0 Mi

(Λ(Qi)∇uh)·nds+
∫

P0 Mi+1

(Λ(Qi)∇uh)·nds

=
6

∑
i=1

|P0Pi |

2
[(Λ(Qi)∇uh)·ni−(Λ(Qi−1)∇uh)·ni],

where Q0 =Q6, and ni is a fixed unit normal vector with respect to edge P0Pi. From the
definition of δE(uh), it holds that

ah(uh,Π∗
h ϕ0)≤ ∑

E∈E0

δE(uh)

2
. (4.19)

Moreover, for E=P0Pi, owing to uh(P0)≤uh(Pi) (i=1,··· ,6), we have

ψE(uh,ϕ0)=hEsign(hE∇uh ·tE)∇ϕ0 ·tE

=sign(uh(P0)−uh(Pi))

=−1.

Then, the corrective term j(uh,ϕ0) can be formulated as

j(uh,ϕ0)=−C′ ∑
E∈E0

δE(uh)+C′′
6

∑
i=1

|P0Pi | (uh(P0)−uh(Pi). (4.20)

Substituting (4.19) and (4.20) into (4.18), we get

( f ,Π∗
h ϕ0)≤

(1

2
−C′

)
∑

E∈E0

δE(uh)+C′′
6

∑
i=1

|P0Pi | (uh(P0)−uh(Pi). (4.21)

Due to f≥0 and Π∗
h ϕ0=1 on dual element K∗

P0
, the left-hand side of (4.21) is non-negative.

If the constant C′≥ 1
2 , C′′≥0, the right-hand side of (4.21) is non-positive. Therefore,

(1

2
−C′

)
∑

E∈E0

δE(uh)+C′′
6

∑
i=1

|P0Pi | (uh(P0)−uh(Pi)=0.
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Since ( 1
2−C′)∑E∈E0

δE(uh) and ∑
6
i=1 |P0Pi | (uh(P0)−uh(Pi) are both non-positive, we get

6

∑
i=1

|P0Pi | (uh(P0)−uh(Pi)=0.

The above equality indicates that uh(P0) = uh(Pi) (i = 1,··· ,6). We can infer that uh is a
constant on the whole domain Ω, if the minimum is reached on an interior node. It could
be eventually deduced that the minimum is reached on the boundary.

Remark 4.1. In this theorem, the requirement C′≥ 1
2 is a sufficient condition for the non-

linear scheme (4.5) to respect DMP. In the numerical solution, the value of C′ could be
smaller than 1

2 . Besides, it could be observed that the proof is valid, only if C′′ is positive.
Hence, we take C′′=hα (α≥1), which would not affect the accuracy.

Remark 4.2. Still take the node P0 as an example to estimate the magnitude of the
corrected term j(uh,ϕ0). First, the set E0 is finite. If C′′ = hα, we easily have that
C′′∑E∈E0

h2
E(∇uh ·tE,∇ϕ0 ·tE)E is O(hα+2). On the other hand, on each E ∈ E0, the flux

jump δE(uh)ψE(uh,ϕ0) is equivalent to hE

∫
E[Λ

∂uh
∂n ] ∂ϕ0

∂tE
ds, which has the same magnitude

with hE

∫
E[Λ

∂uh
∂n ][ ∂ϕ0

∂n ]ds. Here, [·] denotes the usual jump on the edge E, as that in Discon-

tinuous Galerkin methods. For conforming finite element spaces, hE

∫
E[Λ

∂uh
∂n ][ ∂ϕ0

∂n ]ds can
keep the second-order accuracy. Therefore, the corrected term j(uh,ϕ0) is O(h2).

5 Numerical examples

In this section, we examine the numerical performance of the corrected FVE method pro-
posed in this article. We report some numerical results yielded by both the standard FVE
method and the corrected FVE method.

The nonlinear system resulted from discrete equations is solved by the fixed-point or
Picard iteration combined with Anderson Acceleration method [37]. Let U be the vector
of discrete unknowns, M denote a matrix corresponding to the first term in the nonlinear
scheme (4.5), and J(U) and F be the vectors corresponding to the corrected term and
source term. Then, the nonlinear system resulted from (4.5) is

MU+ J(U)=F. (5.1)

Choose a small positive value εnon and initial vector U0. The Anderson Acceleration of
the Picard iteration employed in this paper is as follows:

1. Solve the system (5.1) by Picard iteration to get U1, U2 and set Ũk = Uk, △Uk =
Ũk−Uk−1, k=1,2;

2. For k=2,··· do



150 Y. Gao et al. / Commun. Comput. Phys., 26 (2019), pp. 135-159

Determine weights α1, α2 by solving the minimization problem

min‖α1△Uk−1+α2△Uk ‖

subjected to the constraint
α1+α2=1;

3. Set new iterate
Uk+1=α1Ũk−1+α2Ũk;

4. Stop if ‖MUk+1+ J(Uk+1)−F‖≤εnon‖MU0+ J(U0)−F‖, otherwise solve the system
(5.1) by Uk+1 to obtain Ũk+1 and set △Uk+1= Ũk+1−Uk+1.

In this paper, the prescribed tolerance is 10−10. Numerical tests indicate that on uniform
meshes the Picard iteration converges as fast as that with Anderson Acceleration, but
on distorted meshes the number of nonlinear iteration can be reduced significantly by
Anderson Acceleration(nearly by half).

We investigate the following discrete L∞ and L2 errors for the solutions uh and u:

E∞(u−uh)=max
Pi∈Ph

|u(Pi)−uh(Pi) |,

E2(u−uh)=
(

∑
KQ∈Th

SQ |u(Q)−uh(Q) |2
)1/2

,

where Q is the barycenter of element KQ. The rate of convergence is obtained by the
following formula

Rate=
log[E(h2)/E(h1)]

log(h2/h1)
,

where h1, h2 denote the mesh sizes of the two successive meshes, and E(h1), E(h2) the
corresponding discrete errors.

Example 5.1. We consider the following strong heterogeneous and anisotropic problem:

−∇·(Λ(x))∇u)= f (x), x∈Ω, (5.2)

u= g(x), x∈∂Ω, (5.3)

where the domain Ω = [0,1]×[0,1], and diffusion tensor Λ(x), source term f (x) and
boundary value condition g(x) are respectively defined as:

Λ(x)=

[
αx2+y2 (α−1)xy
(α−1)xy x2+αy2

]
, α=100,

f (x)=0,

g(x,y)=

{
2, on x=0 or x=1,
0, else.
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Figure 4: Uniform grid.
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Figure 5: Random distorted grid.

In Example 5.1, the two constants C′ and C′′ in scheme (4.5) are taken as 1
80 and h,

respectively. We employ the uniform mesh and its random distorted counterpart as the
computational grids, shown in Fig. 4 and Fig. 5, respectively. These meshes no longer sat-
isfy the anisotropic non-obtuse angle condition. Numerical results for the standard FVE
method on these two kinds of grids are presented in Fig. 6 and Fig. 7, respectively. The
counterparts for the corrected FVE method are presented in Fig. 8 and Fig. 9. We note
that the results produced by these two FVE methods look alike but the standard FVE
solutions exhibit undershoots and overshoots on both meshes. Whereas the corrected
solutions are within the range [0,2] of admissible values, which indicates that this non-
linear FVE scheme guarantees the DMP even if a mesh dissatisfying the angle condition
is employed.
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Figure 6: Solution profile for the standard FVE method on the uniform grid, maximum= 2.0146, minimum=
−1.5491e−3.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−5

0

5

 

XY 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 7: Solution profile for the standard FVE method on the random distorted grid, maximum= 2.0072,
minimum=−7.5300e−3.
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Figure 8: Solution profile for the corrected FVE method on the uniform grid, maximum= 1.9999, minimum=
4.3808e−6.
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Figure 9: Solution profile for the corrected FVE method on the random distorted grid, maximum= 1.9996,
minimum=3.2532e−4.

Example 5.2. This example is used to examine the convergence of this new scheme. The
computational domain Ω, diffusion tensor Λ(x) are the same as those employed in Ex-
ample 5.1. The exact solution is chosen as:

u(x,y)=sin(πx)sin(πy).

In Example 5.2, the two constants C′ and C′′ in scheme (4.5) are taken as 1
100 and h,

respectively. We still take uniform triangular meshes and their random distorted coun-
terparts to carry out the solution. Numerical errors and convergence rates are presented
in Tables 1-4. We can observe that these two methods have the same convergence and
the numerical errors in both norms are nearly comparable. From Table 3 and Table 7 in
next example we note that the convergence rate in the discrete L∞ norm descends no-
ticeably, which seems to be less compatible with the results in [30, 31]. That is because
the generation of the refined distorted meshes is different. In fact, the refined distorted
meshes employed in [30, 31] are obtained by symmetric refinement of quadrilaterals via
bisection on edges. Therefore the resultant meshes get better gradually, such that the
corresponding numerical solutions could keep nearly optimal convergence.

Table 1: Standard FVE method on uniform mesh for Example 5.2.

1/h E2 Rate E∞ Rate

5 2.9245E-2 - 9.4906E-2 -

10 8.4787E-3 1.7863 2.5937E-2 1.8715

20 2.5332E-3 1.7429 6.6571E-3 1.9620

40 7.4304E-4 1.7694 1.8639E-3 1.8366

80 2.0983E-4 1.8242 5.6116E-4 1.7318

160 5.7260E-5 1.8736 1.7440E-4 1.6860
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Table 2: Corrected FVE method on uniform mesh for Example 5.2.

1/h E2 Rate E∞ Rate

5 3.0260E-2 - 6.9536E-2 -

10 8.8141E-3 1.7795 2.1267E-2 1.7091

20 2.6296E-3 1.7450 5.7289E-3 1.8923

40 7.7214E-4 1.7679 1.7832E-3 1.6838

80 2.1825E-4 1.8229 5.9890E-4 1.5741

160 5.9593E-5 1.8728 1.8434E-4 1.6999

Table 3: Standard FVE method on random distorted mesh for Example 5.2.

1/h E2 Rate E∞ Rate

5 3.4903E-2 - 1.3669E-1 -

10 1.0233E-2 1.7701 2.9359E-2 2.2190

20 3.0009E-3 1.7698 7.6865E-3 1.9334

40 8.6505E-4 1.7945 2.6944E-3 1.5124

80 2.1177E-4 2.0303 9.4951E-4 1.5047

160 5.4310E-5 1.9632 2.2687E-4 2.0653

Table 4: Corrected FVE method on random distorted mesh for Example 5.2.

1/h E2 Rate E∞ Rate

5 3.4988E-2 - 1.2793E-1 -

10 1.0346E-2 1.7578 2.8213E-2 2.1809

20 3.0516E-3 1.7614 7.8994E-3 1.8924

40 8.7475E-4 1.8026 2.7236E-3 1.4804

80 2.1482E-4 2.0257 9.5045E-4 1.5188

160 5.5175E-5 1.9610 2.2700E-4 2.0659

Example 5.3. In this example, we consider a discontinuous diffusion tensor to examine
the performance of this new scheme. We still apply the same computational domain and
meshes as those employed in above two examples. The diffusion tensor Λ(x) and exact
solution u are respectively defined as:

Λ(x)=

[
1 0
0 4

]
if x<0.5,

[
100 0
0 1

]
if x≥0.5,

u(x,y)=

{
x2y3+cos(xy), if x<0.5,
( (2x+99)

200

)2
y3+cos

( (2x+99)y
200

)
, if x≥0.5.

In Example 5.3, the two constants C′ and C′′ in scheme (4.5) are still taken as 1
100 and

h, respectively. The numerical results are reported in Tables 5-8. From these numerical re-
sults, we note that optimal convergence is observed in discrete L2 norm on both uniform
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Table 5: Standard FVE method on uniform mesh for Example 5.3.

1/h E2 Rate E∞ Rate

10 9.6548E-4 - 2.3174E-4 -

20 2.4215E-4 1.9953 6.0136E-5 1.9462

40 6.0588E-5 1.9988 1.5127E-5 1.9911

80 1.5150E-5 1.9997 3.7949E-6 1.9950

160 3.7877E-6 1.9999 9.4910E-7 1.9994

Table 6: Corrected FVE method on uniform mesh for Example 5.3.

1/h E2 Rate E∞ Rate

10 1.0721E-3 - 4.0566E-4 -

20 2.7066E-4 1.9859 1.0768E-4 1.9135

40 6.7844E-5 1.9962 2.7092E-5 1.9908

80 1.6972E-5 1.9991 6.8089E-6 1.9924

160 4.2439E-6 1.9997 1.7026E-6 1.9997

Table 7: Standard FVE method on random distorted mesh for Example 5.3.

1/h E2 Rate E∞ Rate

10 1.1778E-3 - 2.9499E-3 -

20 3.1770E-4 1.8904 8.8539E-4 1.7363

40 8.2298E-5 1.9487 2.9659E-4 1.5778

80 2.5972E-5 1.6639 1.0208E-4 1.5388

160 6.1177E-6 2.0859 3.0250E-5 1.7547

Table 8: Corrected FVE method on random distorted mesh for Example 5.3.

1/h E2 Rate E∞ Rate

10 1.2895E-3 - 3.0189E-3 -

20 3.4613E-4 1.8974 8.9063E-4 1.7611

40 8.9402E-5 1.9529 2.9328E-4 1.6025

80 2.6600E-5 1.7489 1.0116E-4 1.5356

160 6.5291E-6 2.0265 3.0304E-5 1.7391

and distorted meshes. The convergence in the discrete L∞ norm still appear descendence
in Tables 6 and 8, but the nonlinear technique nearly does not destroy the numerical
accuracy holding by the original scheme.
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6 Conclusion

In this paper, we have developed a corrected FVE scheme for anisotropic problems on
distorted triangular grids. We verify this numerical scheme holds the DMP, simulta-
neously without enforcing anisotropic non-obtuse angle condition to the computational
meshes. The numerical results provided in last section not only confirm this property,
but also indicate this numerical scheme keeps nearly the same numerical accuracy as the
original FVE method.
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Appendix

This section is devoted to proving the validity of (4.10) and (4.11).

Proof. For any uh,vh ∈Uh, rewrite the bilinear form ah(uh,Π∗
hvh) as

ah(uh,Π∗
hvh)=

N

∑
i=0

−vh(Pi)
∫

∂K∗
Pi

(Λh∇uh)·nds

= ∑
K∈Th

IK(uh,Π∗
hvh). (A.1)

Take the element shown in Fig. 2 as an example, suppose the normal vectors li, lj, lk

and ni, nj, nk have the same length as their corresponding edges. Then, the specific
formulation of IK(uh,Π∗

hvh) is

IK(uh,Π∗
hvh)=(Λ(Q)∇uh)·li(vh(Pk)−vh(Pj))

+(Λ(Q)∇uh)·lj(vh(Pi)−vh(Pk))+(Λ(Q)∇uh)·lk(vh(Pj)−vh(Pi))

=(Λ(Q)∇uh)·li(vh(Pk)−vh(Pi))+(Λ(Q)∇uh)·li(vh(Pi)−vh(Pj))

+(Λ(Q)∇uh)·lj(vh(Pi)−vh(Pk))+(Λ(Q)∇uh)·lk(vh(Pj)−vh(Pi))

=(Λ(Q)∇uh)·
nk

2
(vh(Pi)−vh(Pk))+(Λ(Q)∇uh)·

nj

2
(vh(Pi)−vh(Pj))

=SQ(Λ(Q)∇uh)·
[ nk

2SQ
(vh(Pi)−vh(Pk))+

nj

2SQ
(vh(Pi)−vh(Pj))

]

=SQ(Λ(Q)∇uh)·∇vh,
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where in the last two equalities we have used that lj−li =
nk
2 , li−lk =

n j

2 and ∇vh =
nk

2SQ
(vh(Pi)−vh(Pk))+

n j

2SQ
(vh(Pi)−vh(Pj)), respectively.

Because Λ is bounded, we fist obtained that

IK(uh,Π∗
hvh)≤C |uh |1,h,K|vh |1,h,K . (A.2)

On the other hand, if taking vh =uh, it follows that from positive definiteness of Λ

IK(uh,Π∗
huh)≥C |uh |

2
1,h,K . (A.3)

Substituting (A.2) and (A.3) into (A.1) respectively, we could get

ah(uh,Π∗
hvh)≤C |uh |1,h|vh |1,h

≤C |uh |1|vh |1,

ah(uh,Π∗
hvh)≥C |uh |

2
1,h

≥C |uh |
2
1 .

By the equivalence of the semi-norm | · | and norm ‖ ·‖1 in the space H1
0 , we could obtain

the desired conclusion.
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