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Abstract. A general RTMS iteration method for linear complementarity problems is

proposed. Choosing various pairs of relaxation parameters, we obtain new two-sweep

modulus-based matrix splitting iteration methods and already known iteration proce-

dures such as the MS [1] and TMS [27] iteration methods. If the system matrix is

positive definite or an H+-matrix and the relaxation parameters ω1 and ω2 satisfy the

inequality 0 ≤ ω1,ω2 ≤ 1, sufficient conditions for the uniform convergence of MS,

TMS and NTMS iteration methods are established. Numerical results show that with

quasi-optimal parameters, RTMS iteration method outperforms MS and TMS iteration

methods in terms of computing efficiency.
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1. Introduction

Let Rn and Rn×n be, respectively, the n-dimensional real vector and matrix spaces. For

a matrix A ∈ Rn×n and a vector q ∈ Rn, the linear complementarity problem, abbreviated

as LCP(q,A), consists in finding the pair of vectors w, z ∈ Rn, such that

w := Az + q ≥ 0, z ≥ 0 and z⊺w= 0, (1.1)

where ⊺ denotes the transposition operation. The LCP(q,A) often arises in applications

such as free boundary problems, network equilibrium, contact problems — cf. [7, 10, 22]

and the references therein. To solve the LCP(q,A), van Bokhoven [24] reformulated it as

an implicit fixed-point equation. The procedure, called the modulus method, was modified

by Dong and Jiang [9] by including a shifting parameter into iteration process. Bai [1]
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established a modulus-based matrix splitting (MS) iteration method, based on a more

effective and economical matrix splitting technique in actual computation. Zhang and

Ren [29] proved the convergence of MS iteration method under a weak condition and

Li [15] considered MS iteration method under more general conditions. The accelerated

overrelaxation types of MS iteration methods have been studied in [8, 12] and the best

diagonal matrix-parameter for such approaches has been determined. Further generalisa-

tions of the modulus-based matrix splitting iteration methods are connected with special

matrix splittings [14, 20, 30, 32], preconditioning technique [16, 28] or relaxation strate-

gies [26,31]. Moreover, the modulus-based synchronous multisplitting and modulus-based

synchronous two-stage multisplitting iteration methods, aimed at the high parallel compu-

tational efficiency are developed and analysed [2, 3, 17]. On the other hand, modulus-

based MS iteration methods have been applied to nonlinear complementarity problems —

cf. [13,18,19,21].

Here, starting from the two-sweep modulus-based matrix splitting (TMS) iteration me-

thod in Ref. [27], we consider a relaxation two-sweep modulus-based matrix splitting it-

eration method and prove its convergence for H+ and positive definite system matrices,

where relaxation strategy is different from [31]. This new method includes MS iteration

method [1] and TMS iteration method [27] as its special cases and contains new two-sweep

modulus-based matrix splitting iteration methods. Moreover, numerical results show its su-

periority over similar methods, both in number of iterations and CPU time.

The rest of this paper is organised as follows. In Section 2 we provide necessary def-

initions and auxiliary results. The relaxation two-sweep modulus-based matrix splitting

iteration method is introduced in Section 3 and its convergence is studied in Section 4.

Numerical results are discussed in Section 5. Section 6 contains concluding remarks.

2. Preliminaries

Most of material presented in this sections can be found in Refs. [6,7,11,22,25].

If A = (ai j) and B = (bi j) are real m × n matrices, then the inequality A ≥ B (A > B)

means that ai j ≥ bi j (ai j > bi j) for all i and j. Subsequently, matrix A = (ai j) is called

non-negative (positive) if ai j ≥ 0 (ai j > 0) for all i and j. Besides, for any A∈ Rm×n by |A|
we denote the matrix (|ai j |).

Let A be a square matrix and sp (A) refer to the spectrum, ρ(A) to the spectral radius and

diag(A) to the diagonal part of A. Moreover, the comparison matrix 〈A〉 = (〈ai j〉) for A is the

one with the entries 〈ai j〉 = |ai j| if i = j and 〈ai j〉 = −|ai j| if i 6= j. The matrix A is called

Z -matrix if all off-diagonal entries of A are non-positive, M -matrix if it is a Z -matrix with

A−1 ≥ 0 and H-matrix if its comparison matrix 〈A〉 is an M -matrix. Besides, any H-matrix

with positive diagonal entries is called H+-matrix.

The representation A= M − N is called:

1. The splitting of the matrix A if M is a nonsingular matrix.

2. Convergent splitting if ρ(M−1N )< 1.



104 X. Peng, M. Wang and W. Li

3. M -splitting if M is a nonsingular M -matrix and N ≥ 0.

4. H-splitting if 〈M〉 − |N | is an M -matrix.

5. H-compatible splitting if 〈A〉= 〈M〉 − |N |.

We note the H-compatible splitting of an H-matrix is also an H-splitting, but not vice versa.

If A= M−N is an M -splitting and A is a nonsingular M -matrix, thenρ(M−1N )< 1. Further,

a Z -matrix A is an M -matrix if and only if there exists a positive vector v such that Av > 0.

If A is an M -matrix and B is a Z -matrix, then B ≥ A implies that B is an M -matrix. Let us

recall that any H-matrix A has the property |A−1| ≤ 〈A〉−1. If A is a non-negative matrix and

there are a positive vector v and a positive constant θ such that Av ≤ θ v(Av < θ v), then

ρ(A)≤ θ (ρ(A) < θ).
A matrix A is called a P-matrix if all its principal minors are positive. It turns that

a matrix A is a P-matrix if and only if the corresponding LCP(q,A) has a unique solution for

any q ∈ Rn. We note that any H+-matrix and any positive definite matrix are P-matrices —

cf. [4,5,7].

Let us now recall auxiliary results needed in what follows.

Lemma 2.1 (cf. Shen & Huang [23]). If

W =

�
F G

I 0

�
≥ 0 and ρ(F + G) < 1,

then ρ(W )< 1.

Lemma 2.2 (cf. Berman and & Plemmons [6]). Let A= D− L−U := D−B, where D, L and

U are, respectively, diagonal, strictly lower-triangular and strictly upper-triangular matrices of

the matrix A. If aii 6= 0 for all 1≤ i ≤ n, then A is an H-matrix if and only if ρ(|D|−1|B|)< 1,

where D−1B is the Jacobi matrix associated with A.

3. A Relaxation Two-Sweep Splitting Iteration Method

LetΩ be a positive diagonal matrix and γ a positive constant. Setting z := (1/γ)(x+|x |),
w := 1/(γ)Ω(|x |− x) and A= M −N , we rewrite the LCP (1.1) as the system of fixed-point

equations

(Ω+M)x = N x + (Ω− A)|x | − γq. (3.1)

Using this representation (3.1), Bai [1] and Wu et al. [27] proposed the following iteration

methods for the LCP(q,A).

Method 3.1 (cf. [1], MS Iteration Method). Let A = M − N be a splitting of A. Given an

initial vector x (0) ∈ Rn, compute x (k) ∈ Rn by solving the linear system

(Ω+M)x (k+1) = N x (k)+ (Ω− A)|x (k)| − γq,
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and set

z(k+1) =
1

γ
(|x (k+1)|+ x (k+1)),

for k = 1,2, · · · until the iteration sequence {z(k)}+∞
k=1
⊂ Rn converges.

Method 3.2 (cf. [27], TMS Iteration Method). Let A= M −N be a splitting of A. Given two

initial vectors x (0), x (1) ∈ Rn, compute x (k) ∈ Rn by solving the linear system

(Ω+M)x (k+1) = N x (k)+ (Ω− A)|x (k−1)| − γq, (3.2)

and set

z(k+1) =
1

γ
(|x (k+1)|+ x (k+1))

for k = 1,2, · · · until the iteration sequence {z(k)}+∞
k=1
⊂ Rn converges.

It is easily seen that the only difference between Methods 3.1 and 3.2 is the structure

of the iterative processes — viz. the iterations in Methods 3.1 and 3.2 are, respectively,

spanned on two and three successive steps.

Interchanging x (k) and x (k−1) in (3.2), we obtain a new two-sweep modulus-based

matrix splitting (NTMS) iteration method.

Method 3.3 (NTMS Iteration Method). Let A= M − N be a splitting of A. Given two initial

vectors x (0), x (1) ∈ Rn, compute x (k) ∈ Rn by solving the linear system

(Ω+M)x (k+1) = N x (k−1)+ (Ω− A)|x (k)| − γq,

and set

z(k+1) =
1

γ
(|x (k+1)|+ x (k+1))

for k = 1,2, · · · until the iteration sequence {z(k)}+∞
k=1
⊂ Rn converges.

Moreover, one can consider a relaxation two-sweep modulus-based matrix splitting

(RTMS) iteration method containing two additional relaxation parameters ω1 and ω2.

Method 3.4 (RTMS Iteration Method). Let A = M − N be a splitting of A. Given two non-

negative constants ω1 and ω2 and two initial vectors x (0), x (1) ∈ Rn, compute x (k) ∈ Rn by

solving the linear system

(Ω+M)x (k+1) = N
�
ω1 x (k)+(1−ω1)x

(k−1)
�
+(Ω−A)
�
(1−ω2)|x

(k)|+ω2|x
(k−1)|
�
−γq, (3.3)

and set

z(k+1) =
1

γ
(|x (k+1)|+ x (k+1))

for k = 1,2, · · · until the iteration sequence {z(k)}+∞
k=1
⊂ Rn converges.
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Let α 6= 0 and β be real numbers and let

M :=
1

α
(D− β L), N :=

1

α
((1−α)D + (α− β)L +αU), γ := 2. (3.4)

With this special splitting, Method 3.4 produces a relaxation two-sweep modulus-based

accelerated overrelaxation (RTMAOR) iteration method. If α = β 6= 0, α = β = 1 and

α = 1,β = 0, the RTMAOR iteration method becomes, respectively, the relaxation two-

sweep modulus-based successive overrelaxation (RTMSOR) iteration method, the relax-

ation two-sweep modulus-based Guess-Seidel (RTMGS) iteration method and the relax-

ation two-sweep modulus-based Jacobi (RTMJ) iteration method. In particular, for α 6= 0,

β = 1 and α 6= 0, β = 0, the RTMAOR iteration method becomes the relaxation two-sweep

modulus-based Extrapolated Guess-Seidel (RTMEGS) iteration method and the relaxation

two-sweep modulus-based Extrapolated Jacobi (RTMEJ) iteration method, respectively.

Remark 3.1. Method 3.4 provides a general framework for modulus-based matrix splitting

iteration methods for the LCP(q,A). In particular,

• Method 3.1 is obtained from Method 3.4 by setting ω1 = 1, ω2 = 0 in (3.3). Corre-

spondingly, RTMAOR, RTMSOR, RTMEGS and RTMEJ iteration methods transform

into MAOR, MSOR, MEGS and MEJ iteration methods, respectively.

• Method 3.2 is obtained from Method 3.4 by setting ω1 = ω2 = 1. Correspondingly,

RTMAOR, RTMSOR, RTMEGS and RTMEJ iteration methods transform into TMAOR,

TMSOR, TMEGS and TMEJ iteration methods, respectively.

• Method 3.3 is obtained from Method 3.4 by setting ω1 = ω2 = 0. Correspond-

ingly, RTMAOR, RTMSOR, RTMEGS and RTMEJ iteration methods transform into

new TMAOR (NTMAOR), new TMSOR (NTMSOR), new TMEGS (NTMEGS) and new

TMEJ (NTMEJ) iteration methods, respectively.

4. Convergence Analysis

In this section, we establish the convergence of Method 3.4 for positive definite and

H+-matrices A. In what follows, we will use the notation mi = max{2ωi − 1,1}, i = 1,2.

Moreover, we consider the matrices F and G defined by

F :=ω1|(Ω+M)−1N |+ |1−ω2||(Ω+M)−1(Ω− A)|,

G := |1−ω1||(Ω+M)−1N |+ω2|(Ω+M)−1(Ω− A)|.
(4.1)

Let (z∗, w∗) be a solution of the LCP(q,A). According to [1, Theorem 2.1] and (3.1), the

vector x∗ := (γ/2)(z∗ −Ω
−1w∗) satisfies the implicit fixed-point equation

(Ω+M)x∗ = N
�
ω1 x∗ + (1−ω1)x∗

�
+ (Ω− A)
�
(1−ω2)|x∗|+ω2|x∗|

�
− γq, (4.2)
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where |x∗| := (γ/2)(z∗ +Ω
−1w∗). Subtracting (4.2) from (3.3) yields

x (k+1)− x∗ = (Ω+M)−1[ω1N (x (k)− x∗) + (1−ω2)(Ω− A)(|x (k)| − |x∗|)

+ (1−ω1)N (x
(k−1)− x∗) +ω2(Ω− A)(|x (k−1)| − |x∗|)],

and using the triangle inequality ||x (k)| − |x∗|| ≤ |x
(k)− x∗|, we obtain

|x (k+1)− x∗| ≤ F |x (k) − x∗|+ G|x (k−1)− x∗| (4.3)

with the matrices F and G defined by (4.1). Adding the identical relation

|x (k)− x∗| = |x
(k)− x∗|

to the inequality red (4.3), we can write the obtained system in the form

����
�

x (k+1)− x∗
x (k)− x∗

�����≤
�

F G

I 0

� ����
�

x (k)− x∗
x (k−1)− x∗

����� . (4.4)

It is clear that the convergence of the iteration sequence {x (k)}+∞
k=1
⊂ Rn generated by

Method 3.4 implies convergence of the sequence {z(k)}+∞
k=1

. However, according to Lem-

ma 2.1, one has

W =

�
F G

I 0

�
≥ 0,

and due to the inequality (4.4), we only need to show that ρ(F + G) < 1.

4.1. Positive definite matrices

We first consider the convergence of Method 3.4 in the case of positive definite system

matrices A.

Theorem 4.1. Let M ∈ Rn×n be a positive definite matrix and A = M − N be a splitting

of the positive definite matrix A ∈ Rn×n. Consider a positive diagonal matrix Ω ∈ Rn×n and

non-negative constants ω1, ω2 and the terms

ξ(Ω) = ‖ |(Ω+M)−1N | ‖,

η(Ω) = ‖ |(Ω+M)−1(Ω−M)| ‖,

δ(Ω) = m2η(Ω) + (m1 +m2)ξ(Ω),

where ‖ · ‖ is an arbitrary matrix norm and mi := max{2ωi − 1,1}, i = 1,2. If δ(Ω) <

1, then for any initial vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated by

Method 3.4, converges to the exact solution z∗ of the LCP(q,A).

Proof. Since

|(Ω+M)−1(Ω− A)| ≤ |(Ω+M)−1(Ω−M)|+ |(Ω+M)−1N |
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we have

ρ(F + G) = ρ
�
m1|(Ω+M)−1N |+m2|(Ω+M)−1(Ω− A)|

�

≤ ρ
�
(m1 +m2)|(Ω+M)−1N |+m2|(Ω+M)−1(Ω−M)|

�

≤
(m1 +m2)|(Ω+M)−1N |+m2|(Ω+M)−1(Ω−M)|



≤
(m1 +m2)|(Ω+M)−1N |

+
m2|(Ω+M)−1(Ω−M)|


= (m1 +m2)ξ(Ω) +m2η(Ω) = δ(Ω).

The inequality δ(Ω) < 1 yields ρ(F+G) < 1 and the convergence of the sequence {z(k)}+∞
k=0

follows.

Remark 4.1. Special cases of Theorem 4.1 produce a number of known results. For exam-

ple:

• If ω1 = 1 and ω2 = 0, one obtains Theorem 4.1 in [1].

• If ω1 =ω2 = 1, one obtains Theorem 4.1 in [27].

• If ω1 =ω2 = 0, one obtain the convergence of Method 3.3 above.

Theorem 4.1 can be further specified as follows.

Theorem 4.2. Let M ∈ Rn×n be a symmetric positive definite matrix, A= M − N a splitting

of the positive definite matrix A ∈ Rn×n, γ a positive constant, Ω := ωI ∈ Rn×n with ω >

0, τ := ||M−1N ||2, mi := max{2ωi − 1,1} with ωi ≥ 0, i = 1,2, and λmin and λmax be,

respectively, the smallest and the largest eigenvalues of M. If the parameters ω,ω1,ω2 satisfy

one of the conditions

(I) ω ≤
p
λminλmax and

(m2 + 1)ω− [(m1 +m2)τ+m2 − 1]λmax > 0, (4.5)

(II) ω ≥
p
λminλmax and

(m2 − 1)ω2 +
��
(m2 − 1) + (m1 +m2)τ

�
λmax − (m2 + 1)λmin

	
ω

+
�
(m1 +m2)τ− (m2 + 1)

�
λminλmax < 0 (4.6)

holds, then for any initial vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated

by Method 3.4 converges to the unique solution z∗ of the LCP(q,A).

Proof. According to Theorem 4.1, we only have to show that δ(Ω) < 1. Similar to the

proof of [1, Theorem 4.2], we obtain

ξ(Ω) = ‖(Ω+M)−1N‖2 ≤
λmaxτ

ω+λmax
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and

η(Ω) = ‖(Ω+M)−1(Ω−M)‖2 =






λmax −ω

λmax +ω
, for ω ≤
p
λminλmax,

ω−λmin

ω−λmin

, for ω≥
p
λminλmax.

It follows that

δ(Ω) = (m1 +m2)ξ(Ω) +m2η(Ω)

≤






[(m1 +m2)τ+m2]λmax −m2ω

ω+λmax

, for ω ≤
p
λminλmax ,

(m1 +m2)λmaxτ

ω+λmax

+
m2(ω−λmin)

ω+ λmin

, for ω ≥
p
λminλmax .

This inequality combined with either (4.5) or (4.6) yields estimate δ(Ω) < 1.

Theorem 4.3. Assume that 0≤ω2 ≤ 1 and all hypotheses of Theorem 4.2, except the relations

(I) and (I I), are satisfied. If one of the conditions

(III) τ < 1, τ2λmax < λmin and

0≤ω1 <

p
λminλmax

τλmax

, max{ω1, 1}τλmax <ω≤
Æ
λmaxλmin, (4.7)

(IV) τ2λmax < λmin < τλmax and

0≤ω1 <

p
λminλmax

τλmax

,
Æ
λmaxλmin ≤ω<

�
1−max{ω1, 1}τ

�
λminλmax

τλmax max{ω1, 1} −λmin

, (4.8)

(V) τ < 1, τλmax ≤ λmin and

0≤ω1 <
1

τ
, ω ≥
Æ
λminλmax (4.9)

holds, then for any initial vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated

by Method 3.4 converges to the unique solution z∗ of the LCP(q,A).

Proof. If 0 ≤ ω2 ≤ 1, then m2 = max{2ω2 − 1,1} = 1. Moreover, since m1 + 1 =

2 max{ω1, 1}, the inequalities (4.5) and (4.6) takes the form

ω> τλmax max{ω1, 1}, (4.10)
�
τλmax max{ω1, 1} −λmin

�
ω−
�
1−max{ω1, 1}τ

�
λminλmax < 0. (4.11)

If ω and ω1 satisfy (4.10), then Condition (I) in Theorem 4.2 is equivalent to the second

inequality in (4.7).

To solve the inequality (4.11), we consider two cases.
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Case (A) If max{ω1, 1}τλmax > λmin andω andω1 satisfy (4.11), then Condition (I)

in Theorem 4.2 is equivalent to the second inequality in (4.8).

Case (B) If max{ω1, 1}τλmax ≤ λmin, then 1−max{ω1, 1}τ > 0 and the inequality

(4.11) holds. Correspondingly, Condition (I I) in Theorem 4.2 is equivalent to the

second inequality in (4.9).

Since the obtained upper bound is not smaller than the corresponding lower bound, we

immediately obtain conditions (I I I) − (V ).

Corollary 4.1. Assume that 0 ≤ ωi ≤ 1, i = 1,2 and all hypotheses of Theorem 4.2, except

the relations (I) and (I I), are satisfied. If one of the conditions

(VI) τ < 1, τ2λmax < λmin and τλmax <ω ≤
p
λmaxλmin,

(VII) τ < 1, τ2λmax < λmin < τλmax and
p
λmaxλmin ≤ω<

�
1−τ
�
λminλmax

τλmax−λmin
,

(VIII) τ < 1, τλmax ≤ λmin and ω≥
p
λminλmax

holds, then for any initial vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated

by Method 3.4 converges to the unique solution z∗ of the LCP(q,A).

Remark 4.2. For Methods 3.1-3.3, the corresponding parameters ω1,ω2 satisfy the in-

equality 0 ≤ ω1,ω2 ≤ 1 — cf. Remark 3.1. Therefore, Corollary 4.1 provides the condi-

tions of uniform convergence for all three methods in the case where system matrices are

symmetric and positive definite. If ω1 = 1,ω2 = 0, Corollary 4.1 coincides with [1, Theo-

rem 4.2]. For Methods 3.2-3.3 the convergence conditions are new.

4.2. The case of H+-matrix

Now we consider the convergence of Method 3.4 for H+ system matrices.

Theorem 4.4. Let A= D−B ∈ Rn×n be an H+-matrix, D = diag(A), A= M−N a splitting of A

and mi :=max{2ωi − 1,1}, i = 1,2. If γ is a positive constant, Ω ∈ Rn×n a positive diagonal

matrix such that Ω ≥ D and 〈M〉 − m1|N | − (m2 − 1)Ω an M-matrix, then for any initial

vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated by Method 3.4 converges to

the unique solution z∗ of the LCP(q,A).

Proof. It is clear that mi ≥ 1, i = 1,2 and since 〈M〉−m1|N |− (m2−1)Ω is an M -matrix

and A= M − N is the splitting of the H+-matrix, one has

aii = mii − nii > 0, (4.12)

|mii| −m1|nii| − (m2 − 1)ωii > 0 (4.13)

for all i = 1,2, · · · , n. The inequalities (4.12), (4.13) yield mii > 0, and since 〈M〉 is an

M -matrix, Ω+M is an H+-matrix, as well. It follows that

0≤ |(Ω+M)−1| ≤ (Ω+ 〈M〉)−1.
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Recalling the condition Ω≥ D, we write

F + G = m1|(Ω+M)−1N |+m2|(Ω+M)−1(Ω− A)|

≤ |(Ω+M)−1|
�
m1|N |+m2|(Ω− D) + B|

�

≤ (Ω+ 〈M〉)−1
�
m1|N |+m2Ω−m2(D − |B|

�

≤ I − (Ω+ 〈M〉)−1
�
〈M〉 −m1|N | − (m2 − 1)Ω+m2(D − |B|

�
¬fW . (4.14)

Let us show the inequality ρ(fW ) < 1. Since 〈M〉−m1|N |− (m2−1)Ω is an M -matrix, there

is a positive vector v such that

�
〈M〉 −m1|N | − (m2 − 1)Ω

�
v > 0.

In other words,

(|mii| −m1|nii| − (m2 − 1)ωii)vi −
∑

j 6=i

(|mi j |+m1|ni j|)v j > 0 (4.15)

for all i = 1,2, · · · , n. We observe that

aii = |aii| ≥ |mii| − |nii| ≥ |mii| −m1|nii| − (m2 − 1)ωii

and

|ai j| ≤ |mi j|+ |ni j| ≤ |mi j|+m1|ni j|.

It follows from (4.15) that

m2(aii vi −
∑

j 6=i

|ai j|v j)> 0, i = 1,2, · · · , n.

Therefore,

u ¬
�
〈M〉 −m1|N | − (m2 − 1)Ω+m2(D − |B|)

�
v > 0.

Correspondingly,
fW v = v − (Ω+ 〈M〉)−1u < v,

which implies the inequality ρ(fW )< 1, and the proof is completed.

If 0≤ω1,ω2 ≤ 1, then m1 = m2 = 1 and

〈M〉 −m1|N | − (m2 − 1)Ω= 〈M〉 − |N |,

and we can rewrite Theorem 4.4 as follows.

Corollary 4.2. Let A ∈ Rn×n be an H+-matrix, D = diag(A), A= M − N an H-splitting of A

and 0 ≤ωi ≤ 1, i = 1,2. If γ is a positive constant and Ω ∈ Rn×n a positive diagonal matrix

such that Ω ≥ D, then for any initial vectors x (0), x (1) ∈ Rn, the iteration sequence {z(k)}+∞
k=0

generated by Method 3.4 converges to the unique solution z∗ of the LCP(q,A).
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Remark 4.3. For Methods 3.1-3.3, the corresponding parameters ω1,ω2 satisfy the in-

equality 0 ≤ ω1,ω2 ≤ 1 — cf. Remark 3.1. Therefore, Corollary 4.2 provides the condi-

tions of uniform convergence for these methods. Moreover, with the corresponding choice

of ω1 and ω2, Corollary 4.2 coincides with [29, Theorem 3.1] or with [27, Theorem 4.2].

We can also establish the convergence of the RTMAOR iteration method.

Theorem 4.5. Assume that the H+-matrix A∈ Rn×n is represented in the form A= D−L−U :=

D−B, where D is diagonal, L strictly lower-triangular and U strictly upper-triangular matrices

of the matrix A. Choose a positive constant γ and a positive diagonal matrix Ω ∈ Rn×n such

that Ω≥ D and set m1 =max{2ω1 − 1,1}. If the conditions

0≤ω1 <
1

ρ(D−1|B|)
, 0≤ω2 ≤ 1, and 0≤ β ≤ α, (4.16)

m1 − 1

(m1 + 1)(1−ρ(D−1|B|))
< α <

m1 + 1

m1 − 1+ (m1 + 1)ρ(D−1|B|)
(4.17)

hold, then the RTMAOR iteration method converges for any initial vectors x (0), x (1) ∈ Rn.

Proof. From the proof of Theorem 4.4, the method converges if ρ(fW ) < 1, where fW
is defined by (4.14). We note that the M and N in the RTMAOR iteration method are

presented in (3.4). Since m2 = max{2ω2 − 1,1} = 1 and m1 = max{2ω1 − 1,1} ≥ 1, we

have

〈M〉 −m1|N | − (m2 − 1)Ω+m2(D − |B|) = 〈M〉 −m1|N |+ D− |B|

=
1

α

�
D− β |L| −m1(|1−α|D+ (α− β)|L|+α|U |) +α(D− |B|)

�

=
1

α

�
(1+α− |1−α|m1)D− (α+ β + (α− β)m1)|L| − (m1 + 1)α|U |

�

≥
1

α

�
(1+α− |1−α|m1)D− (m1 + 1)α|B|

�
¬

1

α
bA. (4.18)

Recalling that Ω≥ D and A is an H+-matrix, we observe that αΩ+D−β |L| is an M -matrix

too. Therefore,

(αΩ+ D − β |L|)−1 > (αΩ+ D)−1, (4.19)

and the inequalities (4.18) and (4.19) yield

fW = I − (Ω+ 〈M〉)−1
�
〈M〉 −m1|N | − (m2 − 1)Ω+m2(D− |B|

�

≤ I − (αΩ+ D − β |L|)−1bA< I − (αΩ+ D)−1bA¬cW . (4.20)

It remains to show that ρ(cW ) < 1. By Lemma 2.2, bA is an H-matrix if and only if

ρ(D−1|B|) <
|1+α− |1−α|m1|
α(m1 + 1)

. (4.21)
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The inequality (4.18) implies that bA is a Z -matrix. Therefore, bA is an M -matrix if and only

if bA has positive diagonal entries and the inequality (4.21) holds — i.e. if

0< ρ(D−1|B|)<
1+α− |1−α|m1

α(m1 + 1)
. (4.22)

Straightforward calculations show that (4.22) is satisfied if and only if

m1 − 1

(m1 + 1)(1−ρ(D−1|B|))
< α≤ 1 (4.23)

or

1< α <
m1 + 1

m1 − 1+ (m1 + 1)ρ(D−1|B|)
. (4.24)

However, (4.23) and (4.24) compose the condition (4.17). Moreover, since ω1 satisfies

conditions (4.16) and A is an H+-matrix, we have

ρ(D−1|B|) < 1 and ρ(D−1|B|)ω1 < 1. (4.25)

It follows that ρ(D−1|B|)(m1+1)< 2. Therefore, the corresponding upper bound is at least

the corresponding lower bound in (4.17). So far we proved that bA is an M -matrix. Let us

now show that ρ(cW ) < 1. Since bA is an M -matrix, there is a positive vector v > 0 such that

u ¬ bAv > 0. Consequently,
cW v = v − (αΩ+ D)−1u < v,

and the inequalities cW v ≥ 0, (αΩ+ D)−1u> 0 yield ρ(cW ) < 1. It follows from (4.20) that

ρ(fW )< 1.

Remark 4.4. If ω1 and ω2 satisfy the conditions (4.16), then under the conditions of

Theorem 4.5, RTMJ and RTMGS iteration methods converge. On the other hand, RTMSOR,

RTMEJ and RTMEGS iteration methods converge ifω1,ω2 and α satisfy the corresponding

inequalities (4.16) and (4.17).

Further, if 0≤ω1,ω2 ≤ 1, Theorem 4.5 gives the following convergence results.

Corollary 4.3. Let 0 ≤ ωi ≤ 1, i = 1,2 and the H+-matrix A ∈ Rn×n be represented in the

form A= D − L − U := D − B, where D is diagonal, L strictly lower-triangular and U strictly

upper-triangular matrices of the matrix A. Choose a positive constant γ and a positive diagonal

matrix Ω ∈ Rn×n such that Ω≥ D. If the condition

0< α <
1

ρ(D−1|B|)
and 0≤ β ≤ α (4.26)

holds, then for any initial vectors x (0), x (1) ∈ Rn, the RTMAOR iteration method converges.

Remark 4.5. Assume that 0≤ β ≤ α.

• Ifω1 = 1 andω2 = 0, then Corollary 4.3 provides the convergence domain for the pa-

rameter α in the MAOR iterations, coinciding with the first item in [8, Relation (3.2)].

• If ω1 =ω2 = 1, Corollary 4.3 coincides with [27, Theorem 4.4].

• If ω1 = ω2 = 0, Corollary 4.3 provides the conditions of convergence for NTMAOR

iteration method.
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5. Numerical Examples

In this section, we consider two examples that show the effectiveness of the relaxation

two-sweep modulus-based matrix splitting iteration methods. Note that the number of

iteration steps, the elapsed CPU time (in seconds) and the norm of absolute residual vectors

are, respectively, denoted by ‘IT’, ‘CPU’ and ‘RES’. All initial vectors in our tests are the same

— viz.

x (0) = x (1) = (1,0,1,0, · · · , 1,0, · · · )⊺ ∈ Rn.

The computations are performed in MATLAB environment with double machine precision.

The iterations are terminated if

RES= ||min(Az(i) + q, z(i))||2 ≤ 10−5, (5.1)

where z(i) is the ith approximate solution to the LCP(q,A) and the minimum is taken com-

ponentwise. The notation “− ” is used in the case, if the stop criteria is not satisfied within

1500 iterations.

We will test the methods in Remark 3.1. They can be distributed into four groups — viz.

MAOR, TMAOR, NTMAOR and RTMAOR methods, according to the choice of the parame-

ters ωi, i = 1,2. Actually, the methods from the first three groups are special cases of the

methods from the fourth group. On the other hand, these methods can also be distributed

in three groups: MSOR type, the MEGS type and the MEJ type methods, according to the

choice of parameter β — cf. Table 1.

Table 1: Classi�ation of testing methods.

method MAOR TMAOR NTMAOR RTMAOR

MSOR type MSOR TMSOR NTMSOR RTMSOR

MEGS type MEGS TMEGS NTMEGS RTMEGS

MEJ type MEGS TMEJ NTMEJ RTMEJ

Example 5.1 (cf. Dong & Jiang [9]). Let m be a positive integer, n= m2 and µ a nonnega-

tive constant. Consider the LCP(q,A) with the matrix A= Â+µI and vector q = −Az∗ ∈ Rn,

where

Â=





S −I

−I S −I

−I S
. . .

. . .
. . . −I

−I S −I

−I S





∈ Rn×n

is a block-tridiagonal matrix, S = tridiag(−1,4,−1) ∈ Rm×m a tridiagonal matrix, and z∗ =

(1,2,1,2, · · · , 1,2, · · · )T ∈ Rn the unique solution of the LCP(q,A).
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Obviously, the system matrix A in Example 5.1 is symmetric and positive definite and

thus the corresponding LCP(q,A) has a unique solution.

Example 5.2 (cf. Bai [1]). Let m be a positive integer, n= m2 andµ a nonnegative constant.

Consider the LCP(q,A) with the matrix A= Â+µI and vector q = −Az∗ ∈ Rn, where

Â=





S −0.5I

−1.5I S −0.5I

−1.5I S
. . .

. . .
. . . −0.5I

−1.5I S −0.5I

−1.5I S





∈ Rn×n

is a block-tridiagonal matrix, S = tridiag(−1.5,4,−0.5) ∈ Rm×m a tridiagonal matrix, and

z∗ = (1,2,1,2, · · · , 1,2, · · · )T ∈ Rn the unique solution of the LCP(q,A).

It is easily seen that the system matrix A in Example 5.2 is an H+-matrix, and thus the

corresponding LCP(q,A) has a unique solution.

The numerical results with different problem sizes n = m2 and Ω = D, ω2 = 0 and

ω1 ∈ [0,1] are reported in Tables 3-5. The parameters α∗1, α∗2 and α∗3 are, respectively,

the quasi-optimal values of α in special cases of the iteration methods MAOR, TMAOR

and NTMAOR. The quasi-optimal values of α and ω1 in the special cases of the RTMAOR

iteration method are denoted by α∗ and ω1∗, respectively. These quasi-optimal parameters

are chosen to minimise the iteration steps for the problem of the smallest size m = 40. Then

they are used in associated larger problems, where m= 80 and m = 120 — cf. Table 2.

From Tables 2-5 we have the following observations and remarks.

(1) In all numerical tests for Examples 5.1-5.2, the special RTMAOR methods are always

superior to the methods MAOR, TMAOR and NTMAOR in terms of iteration steps

and elapsed CPU time. In addition, for the weakly diagonally dominant matrix A,

the special NTMAOR methods are more effective than MAOR and TMAOR methods.

For the strongly diagonally dominant matrix A, the special MAOR iteration methods

outperform TMAOR and NTMAOR iteration methods.

(2) Excluding the case µ = 0, Tables 3-5 suggest that all these methods have conver-

gence rate nearly independent of the scale of the test problems, which is a very useful

property of iterative methods. It allows to experimentally obtain the quasi-optimal

parameters by testing small size problems.

(3) For nonsymmetric system matrices, Tables 3-4 show that, NTMSOR and NTMEGS

methods have almost the same convergence rate as MSOR and MEGS iteration meth-

ods. Besides, Table 5 demonstrates that for larger µ, TMEJ method is more compet-

itive than NTMEJ one. In particular, it follows from Tables 2 and 5 that MJ method

— i.e. MEJ method with α= 1 is the best.
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Table 2: Quasi-optimal parameters for Examples 5.1-5.2, m= 40.

Method µ Example 5.1 Example 5.2

MSOR type 0 (α∗1,α∗2,α∗3) (2.2,2.2,3.5) (2.5,1.6,2.1)

(α∗,ω∗1) (4.3,0.6) (3.4,0.6)

2 (α∗1,α∗2,α∗3) (1.3,1.6,1.4) (1.4,1.2,1.3)

(α∗,ω∗1) (2.0,0.7) (1.5,0.6)

4 (α∗1,α∗2,α∗3) (1.2,1.4,1.2) (1.2,1.2,1.2)

(α∗,ω∗1) (1.5,0.7) (1.3,0.7)

MEGS type 0.5 (α∗1,α∗2,α∗3) (1.3,3.8,2.1) (1.5,3.0,2.1)

(α∗,ω∗1) (3.9,0.5) (3.6,0.5)

1.5 (α∗1,α∗2,α∗3) (1.2,2.6,1.5) (1.3,1.9,1.5)

(α∗,ω∗1) (2.7,0.6) (2.2,0.6)

2.5 (α∗1,α∗2,α∗3) (1.2,1.9,1.4) (1.2,1.5,1.3)

(α∗,ω∗1) (2.1,0.7) (1.7,0.6)

MEJ type 0.5 (α∗1,α∗2,α∗3) (1.0,4.3,1.7) (1.0,3.8,1.6)

(α∗,ω∗1) (4.3,0.5) (2.7,0.6)

1.5 (α∗1,α∗2,α∗3) (1.0,3.9,1.5) (1.0,3.6,1.4)

(α∗,ω∗1) (2.7,0.6) (2.2,0.6)

2.5 (α∗1,α∗2,α∗3) (1.0,2.8,1.3) (1.0,2.8,1.3)

(α∗,ω∗1) (2.1,0.7) (1.9,0.7)

6. Concluding Remarks

We used a relaxation strategy to introduce an RTMS iteration method. Choosing various

pairs of relaxation parameters, we obtain new two-sweep modulus-based matrix splitting

iteration methods and already known iteration procedures such as the MS [1] and TMS [27]

iteration methods. If the system matrix is positive definite or an H+-matrix and the relax-

ation parameters ω1 and ω2 satisfy the inequality 0≤ω1,ω2 ≤ 1, sufficient conditions for

the uniform convergence of MS, TMS and NTMS iteration methods are established. Numer-

ical results show that with quasi-optimal parameters, RTMS iteration method outperforms

MS and TMS iteration methods in terms of computing efficiency. Note that the finding

of optimal relaxation parameters is a challenging problem. Here, they are determined by

numerical tests for small size problems.
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Table 3: Numerial results for MSOR type methods.

Example 5.1 Example 5.2

m Method IT CPU RES IT CPU RES

µ= 0 40 MSOR 1408 0.5386 9.9e-06 94 0.0375 9.9e-06

TMSOR − − − 266 0.1026 9.5e-06

NTMSOR 639 0.2484 9.9e-06 57 0.0224 7.9e-06

RTMSOR 412 0.1814 9.9e-06 43 0.0191 9.4e-06

80 MSOR − − − 162 0.2621 8.2e-06

TMSOR − − − 514 0.8240 9.1e-06

NTMSOR − − − 93 0.1488 9.0e-06

RTMSOR − − − 78 0.1380 6.5e-06

120 MSOR − − − 225 0.8319 9.1e-06

TMSOR − − − 785 2.8603 8.7e-06

NTMSOR − − − 138 0.5311 9.2e-06

RTMSOR − − − 111 0.4423 6.5e-06

µ= 2 40 MSOR 26 0.0101 7.2e-06 20 0.0083 7.9e-06

TMSOR 43 0.0173 8.7e-06 45 0.0182 7.0e-06

NTMSOR 26 0.0113 8.3e-06 18 0.0070 7.2e-06

RTMSOR 16 0.0082 8.8e-06 17 0.0077 7.3e-06

80 MSOR 27 0.0431 7.9e-06 21 0.0368 7.9e-06

TMSOR 45 0.0717 8.4e-06 47 0.0801 8.2e-06

NTMSOR 28 0.0459 5.7e-06 19 0.0323 5.5e-06

RTMSOR 17 0.0290 5.2e-06 18 0.0322 7.0e-06

120 MSOR 28 0.1068 6.4e-06 22 0.0841 5.5e-06

TMSOR 47 0.1779 7.0e-06 49 0.1951 6.5e-06

NTMSOR 28 0.1112 9.1e-06 19 0.0721 8.1e-06

RTMSOR 17 0.0696 7.2e-06 19 0.0791 4.3e-06

µ= 4 40 MSOR 17 0.0072 8.1e-06 15 0.0062 3.8e-06

TMSOR 27 0.0115 9.6e-06 27 0.0106 4.5e-06

NTMSOR 20 0.0086 7.1e-06 15 0.0061 5.8e-06

RTMSOR 13 0.0069 7.2e-06 11 0.0048 5.4e-06

80 MSOR 18 0.0275 5.8e-06 15 0.0224 8.4e-06

TMSOR 29 0.0446 4.8e-06 27 0.0404 7.0e-06

NTMSOR 21 0.0319 7.0e-06 15 0.0237 8.5e-06

RTMSOR 14 0.0232 2.7e-06 11 0.0190 8.6e-06

120 MSOR 18 0.0673 8.4e-06 16 0.0573 4.1e-06

TMSOR 29 0.1120 6.1e-06 27 0.0943 9.2e-06

NTMSOR 22 0.0865 4.7e-06 16 0.0569 6.0e-06

RTMSOR 14 0.0543 3.4e-06 12 0.0471 4.4e-06
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Table 4: Numerial results for MEGS type methods.

Example 5.1 Example 5.2

m Method IT CPU RES IT CPU RES

µ = 0.5 40 MEGS 83 0.0412 9.6e-06 66 0.0264 8.4e-06

TMEGS 125 0.0513 9.8e-06 113 0.0453 9.4e-06

NTMEGS 84 0.0344 8.0e-06 64 0.0252 9.3e-06

RTMEGS 63 0.0275 9.8e-06 54 0.0239 9.9e-06

80 MEGS 89 0.1426 9.1e-06 73 0.1160 9.9e-06

TMEGS 134 0.2173 9.7e-06 127 0.2064 8.9e-06

NTMEGS 89 0.1443 9.3e-06 72 0.1165 9.2e-06

RTMEGS 68 0.1182 9.0e-06 61 0.1078 9.6e-06

120 MEGS 92 0.3370 8.9e-06 76 0.2771 9.9e-06

TMEGS 139 0.5220 9.0e-06 133 0.5030 8.4e-06

NTMEGS 92 0.3476 9.2e-06 75 0.2931 9.3e-06

RTMEGS 70 0.2816 9.6e-06 64 0.2569 8.9e-06

µ = 1.5 40 MEGS 35 0.0140 9.0e-06 30 0.0117 7.0e-06

TMEGS 51 0.0197 8.0e-06 49 0.0189 8.4e-06

NTMEGS 38 0.0152 9.9e-06 30 0.0119 7.1e-06

RTMEGS 26 0.0114 9.1e-06 24 0.0115 8.6e-06

80 MEGS 37 0.0577 8.7e-06 32 0.0503 6.2e-06

TMEGS 53 0.0860 9.0e-06 51 0.0813 8.5e-06

NTMEGS 41 0.0669 7.0e-06 32 0.0523 6.4e-06

RTMEGS 28 0.0486 5.8e-06 26 0.0443 6.1e-06

120 MEGS 38 0.1404 8.8e-06 33 0.1215 6.0e-06

TMEGS 55 0.2042 6.9e-06 53 0.1974 6.2e-06

NTMEGS 42 0.1565 7.4e-06 33 0.1269 6.2e-06

RTMEGS 28 0.1124 8.8e-06 27 0.1057 5.3e-06

µ = 2.5 40 MEGS 24 0.0098 8.8e-06 21 0.0082 9.3e-06

TMEGS 37 0.0145 9.5e-06 37 0.0149 6.1e-06

NTMEGS 27 0.0111 9.1e-06 22 0.0088 6.6e-06

RTMEGS 18 0.0084 8.7e-06 17 0.0074 9.6e-06

80 MEGS 25 0.0390 9.9e-06 23 0.0373 4.7e-06

TMEGS 39 0.0629 9.1e-06 39 0.0627 6.0e-06

NTMEGS 28 0.0457 7.8e-06 23 0.0367 7.3e-06

RTMEGS 19 0.0337 6.9e-06 18 0.0320 7.1e-06

120 MEGS 26 0.0971 7.9e-06 23 0.0848 7.5e-06

TMEGS 41 0.1491 6.0e-06 39 0.1454 9.7e-06

NTMEGS 29 0.1094 8.0e-06 24 0.0945 5.5e-06

RTMEGS 20 0.0803 4.2e-06 19 0.0806 4.1e-06
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Table 5: Numerial results for MEJ type methods.

Example 5.1 Example 5.2

m Method IT CPU RES IT CPU RES

µ= 0.5 40 MEJ 119 1.8251 9.9e-06 111 0.0284 9.7e-06

TMEJ 130 0.0347 9.8e-06 123 0.0330 9.8e-06

NTMEJ 127 0.0359 8.9e-06 122 0.0332 9.2e-06

RTMEJ 72 0.0223 9.9e-06 79 0.0253 9.7e-06

80 MEJ 128 0.1213 9.0e-06 125 0.1174 9.2e-06

TMEJ 139 0.1387 9.9e-06 139 0.1353 9.0e-06

NTMEJ 135 0.1336 9.7e-06 137 0.1322 9.4e-06

RTMEJ 78 0.0914 8.4e-06 89 0.0961 9.8e-06

120 MEJ 132 0.2775 9.1e-06 130 0.2805 9.5e-06

TMEJ 144 0.3215 9.5e-06 144 0.3221 9.9e-06

NTMEJ 139 0.3120 9.8e-06 143 0.3177 9.2e-06

RTMEJ 80 0.1988 9.5e-06 93 0.2325 9.6e-06

µ= 1.5 40 MEJ 49 0.0125 7.5e-06 48 0.0129 8.6e-06

TMEJ 51 0.0134 6.9e-06 53 0.0143 8.9e-06

NTMEJ 55 0.0144 6.9e-06 56 0.0153 9.0e-06

RTMEJ 32 0.0097 9.0e-06 36 0.0113 7.8e-06

80 MEJ 51 0.0472 9.3e-06 51 0.0481 8.5e-06

TMEJ 53 0.0519 7.6e-06 57 0.0543 7.4e-06

NTMEJ 57 0.0567 9.8e-06 59 0.0569 9.9e-06

RTMEJ 34 0.0372 8.0e-06 38 0.0414 8.0e-06

120 MEJ 53 0.1166 7.7e-06 53 0.1109 7.3e-06

TMEJ 55 0.1242 6.2e-06 59 0.1283 6.9e-06

NTMEJ 59 0.1316 9.8e-06 61 0.1342 9.3e-06

RTMEJ 35 0.0883 7.8e-06 39 0.0942 8.4e-06

µ= 2.5 40 MEJ 33 0.0090 8.8e-06 33 0.0089 8.0e-06

TMEJ 37 0.0100 6.0e-06 37 0.0098 8.4e-06

NTMEJ 40 0.0110 8.6e-06 40 0.0101 7.9e-06

RTMEJ 23 0.0072 8.0e-06 25 0.0073 7.3e-06

80 MEJ 35 0.0335 7.5e-06 35 0.0341 7.1e-06

TMEJ 39 0.0391 5.4e-06 39 0.0376 6.71e-06

NTMEJ 42 0.0406 8.7e-06 42 0.0422 8.4e-06

RTMEJ 24 0.0293 9.1e-06 26 0.0286 7.9e-06

120 MEJ 36 0.0747 7.2e-06 36 0.0760 6.9e-06

TMEJ 39 0.0845 8.5e-06 39 0.0851 9.8e-06

NTMEJ 43 0.0919 9.1e-06 43 0.0942 9.0e-06

RTMEJ 25 0.0635 7.1e-06 27 0.0660 6.3e-06
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