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Abstract. A pansharpening method based on the Rudin-Osher-Fatemi model and using a
reproducing kernel Hilbert space along with the approximated Heaviside function is de-
veloped. The corresponding minimisation problem is solved by the alternating direction
method of multipliers. Numerous numerical experiments with Pléiades and IKONOS
satellite datasets demonstrate the efficiency of the method in preserving spectral and
spatial information and show its superiority to other approaches.
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1. Introduction

The remote sensing images acquired by earth resource satellites — e.g. by QuickBird,
IKONOS, Landsat, are used to monitor the surface of the earth. They play an important
role in military intelligence, environmental monitoring, land-cover classification and so
on. Such images usually consist of two components — viz. the multi-spectral (MS) and
panchromatic (PAN) images which, respectively, provide spectral and spatial information.
At the same time, the high-resolution MS images are used in various applications, including
pattern classification, land-cover management, environmental monitoring, weather fore-
casting, and topographic map updating [7]. Nevertheless, physical and technical limitations
often lead to low resolution MS images. Therefore, the development of a super-resolution
technique is needed. The super-resolution of an MS image consists in deriving an HRMS
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image in both spatial and spectral domains by blending the geometric details of PAN im-
age and the rich spectral information of MS image. This fusion process is referred to as
pansharpening.

The pansharpening has attracted intensive attention in remote sensing. According to
Amro et al. [6], the pansharpening methods can be roughly classified into five categories —
viz. Component Substitution (CS), Relative Spectral Contribution (RSC), High-Frequency
Injection (HFI), Image Statistics Based (ISB), and Multiresolution Analysis (MRA). The CS
methods carry out spectral transformation, do the upsampling of a low resolution multi-
spectral (LRMS) images and substitute the corresponding components by high-resolution
PAN images. Classical CS methods include the intensity-hue-saturation [11,40], the prin-
cipal component analysis [34] and the Gram-Schmidt (GS) spectral sharpening [30]. On
the other hand, the RSC methods can be considered as an alternative to CS pansharpen-
ing methods, which works with linear combinations of spectral bands instead of substitu-
tions. The HFI methods proposed by Schowengerdt [37], add the high-frequency content
of the PAN image to upsampled LRMS images. The ISB methods use statistical informa-
tion of LRMS and PAN images during the pansharpening — cf. [24]. The MRA approach
decomposes low resolution multi-spectral and PAN images into different spatial levels and
improves the spatial details of low resolution multi-spectral images by adding high frequen-
cies from the PAN image. The corresponding approaches include Laplacian pyramid [10],
a-trous wavelet transform [38] and additive wavelet luminance proportional method [33].

In addition to the already mentioned approaches, another possibility to improve MS
images is provided by variational methods. The main idea of these methods consists in the
construction of an energy functional, which utilises prior information and assumptions, and
in finding the optimal solutions of the corresponding optimisation problem. In particular,
Ballester et al. [8] introduced a variational pansharpening model named P + X S-method.
It is based on the assumption that the geometry of the MS components are contained in
the topographic map of the PAN image, which in turn is the linear combination of HRMS
components. However, such interaction between PAN and MS images at the high spatial res-
olution produces spectral distortion [39]. Moller et al. [32] proposed a variational scheme
with integrate wavelet fusion into the P + XS-method. Restaino et al. [35] applied math-
ematical morphology to pansharpening and demonstrated the efficiency of this approach
for several data sets. Papers [7,21] provide an extensive review of pansharpening meth-
ods. Jiang et al. [28] used a hyper-Laplacian based pansharpening model. It estimates the
final pan-sharpened image directly, but not the coefficients of a basis as we do here. In
addition, differential operators are applied to the difference of latent combined HRMS and
panchromatic images, and a hyper-Laplacian regularisation is used. On the other hand,
in order to simultaneously fuse panchromatic and multispectral images, Zhang et al. [47]
presented a framelet based iterative pansharpening method. Unlike [28,47], this model is
based on a reproducing kernel Hilbert space and the Heaviside function, where the former
keeps the main image data and the later deals with the image edges. The coefficients in
the reproducing kernel Hilbert space and the Heaviside basis are used to foresee unknown
pixels, thus increasing the image resolution. In addition, an iterative strategy to enhance
the performance of image pansharpening is employed.
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The previous considerations show that optimisation models play an important role in
construction of high-quality pansharpening methods. Here we propose an effective pan-
sharpening model based on the following assumptions:

1. The gradient of the high-resolution PAN image is a linear combination of the gradients
of different bands of the desired HRMS image. This assumption helps to preserve
spatial information in HRMS images.

2. Each band of HRMS and PAN images can be represented by a redundant basis from a
reproducible kernel Hilbert space and the set of approximated Heaviside functions.

The outline of this paper is as follows. In Section 2, we briefly introduce a reproducible
kernel Hilbert space and approximated Heaviside functions. A new model and the corre-
sponding algorithm are presented in Section 3. Numerical experiments are carried out in
Section 4 and Section 5 contains conclusion remarks.

2. Reproducible Kernel Hilbert Space and Approximated Heaviside Functions

Deng et al. [18] represented the smooth part of an image by the elements of a repro-
ducing kernel Hilbert space (RKHS) and the edges by the set of approximated Heaviside
functions (AHF). Let f be a function defined on a continuous domain. The high and low-
resolution images can be considered as the fine and coarse discretisations of f, respectively.
The function f can be usually represented as a sum f = f, + f, of smooth f, and edge f,
components. As was shown in [18], every f, belongs to RKHS and f, describes the edges
at various locations with different orientations represented by a group of redundant AHE

Wahba [43] proved that an optimal spline smooth approximation of f can be obtained
by solving a variational minimisation problem. The smooth part f, can be determined by
the Dunchon method [20] — viz.

A =D Eibi(0) + D LGt ),
i=1 j=1

where functions ¢; constitute a basis in a polynomial space, m is the dimension of this
space, E;(t,t;) Green’s function for the k-iterated Laplacian, n the number of pixels in a
low-resolution image, and &;, {; are corresponding coefficients.

The edge part f, of f can be represented in the form

M n
fe= ZZyjl,b((cos 0;,sin 6;) - t +¢;),

j=1i=1

where M denotes the number of orientations, 8; and c; control the orientations of the edges
at different locations and

YP(x) = % + %arctan(f)

T
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is the approximation of the Heaviside function (AHF) [18].

Let u € R" be the vector-form of a low resolution image and let T! e R”™ K! € R™™,
and ¥! € R”M" be, respectively, matrix representations for the discretisation operators
generated by the functions ¢, E; and 1 — cf. [18]. Analogously, for the fine grid, the
matrices related to HR image U are referred to as T" € R™*™ K" € R™" and ®" € R™*Mn,
respectively. If a HR image has the form U = T"d + K"c + ¥" 3, then the coefficients d, c,
and 3 can be derived by solving the minimisation problem

1 z Lo s al @12 4 2T K
— |[lu—(T'"d+K'c+¥ +Ac'Kc+ .
min o [u—( 8|, all8ll;
In what follows, we apply RKHS and AHF for pansharpening with a specially designed
variational minimisation problem.

3. A New Model and Algorithm

We first introduce necessary notations. Let P € R™™*! be the vector form of a high-
resolution PAN image, u = (uy,---,uy), u; € R™M™*! j =1 2.... N the low resolu-
tion multi-spectral image with the band number N, and U = (Uy,---,Uy), U; € R™2n2*1,
i=1,2,---,N the HRMS image. Since every band in the HRMS image is supposed to be
represented by a basis in RKHS and AHE we have to find the corresponding coefficients.

Let us recall that the variational pansharpening model presented in [23] is based on the
assumption that the gradient of PAN image is a linear combination of the pan-sharpened
image bands. In addition, the efficiency of the ¢;-norm as fidelity term has been demon-
strated in [14]. Our work uses the assumptions mentioned. In addition, we employ the
basis introduced in Section 2. Thus let us consider the minimisation problem

N
{” (T"d; + K'e; + 9" 3,) — ; ||2 —c/Ke+1 ||3i||1}
=1

N
(Z (T"d; + K'; +qfhﬂl)>—VP

=1

+ 2y , (3.1)

1

where N,,,,, = m, - n, - N is the number of pixels in HRMS image, U, Aq and A, are regulari-
sation parameters, o; > 0,i=1,2,---,N the mixing coefficients, U = (U, U,,---,Uy) the
approximated HRMS image obtained by the GS method [30], and K' € lenlxmlnl,Th
R™22 ><M, Kh € RM22 Xmlnl, \IJh € RM22xm

The minimisation problem (3.1) can be solved by various optimisation methods, includ-
ing the alternating direction method of multipliers (ADMM) [22,25,27,31] and a fashion-
able primal-dual approach [13]. In this paper, we apply the ADMM method, which is a
splitting version of the augmented Lagrangian method. For this, we first rewrite (3.1) in a
matrix-vector form

: u
min ——— {IAx—y13 + £ IBxIE + 21 [C xll, | + 2 [VDx—=P)l,  (3:2)

um
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where
y=(0],0,,---,0,) e R™2N¥1,
x=(d;, ¢, B, ,dy, ¢y, By) € RMmtmm+miN=d,
A :=diag(G,G,- - ,G) € RmM2mNx(mtmin+Mny)N
G = (T, K", ®"), B:=diag(FF,---,F), F=(0,,(K)Y20,),
C:=(03,04,I), D:= (olTh,alKh,allIlh, ‘e ,oNTh,aNKh,GNlIlh),

I € R™™ is the unit matrix and O; € R™M™*™ 0, € RMMWMn o, ¢ RM2XMn: o, ¢
R™™M*™M gre zero matrices.

If the optimal solution X of the problem (3.2) is known, the HRMS image can be repre-
sented as AX. In order to find the solution of the problem (3.2), we introduce new auxiliary
variables w = Dx— P and t = Cx and rewrite this problem as

: u
min —— {[|Ax—I3 + S BxI + 21 [Cxll } + 2,1Vl (3:3)

2um

The corresponding augmented Lagrangian function for the problem (3.3) has the form

L(x,w,t) =

1 Y
N {IIAx—yH% + EIIBXIIS + MIICXIIl} + A2llVwlly

um

+§||w—(Dx—P)+b1||§+ gllt—Cx+b2||2, (3.4)

where b;,b, are the Lagrangian multipliers and 7 > 0,7 > 0 are the penalty parameters
controlling the linear constraints. According to the ADMM method, we shall find a saddle
point (x*,w*,t*) of the function £ in (3.4). The iterative scheme consists of fixing two
variables and searching the minimiser with respect to third one. The corresponding ADMM
procedure for (3.2) is written as Algorithm 3.1 below.

Algorithm 3.1 Iteration Scheme for Minimisation Problem (3.2)

Require: PAN image P, precomputed HRMS image (in vector form) y, mix coefficients
o;,1 = 1,2,--- /N, preconstructed matrices T, K", " K! found according to [18];
penalty parameters T, n); iteration number k = 0, initializations: t° and w®; multipliers
b? and b).

Ensure: HRMS image U = Ax*.

1: while Stopping criterion is not satisfied do

. 1% T n
2: xk = arg min, ||Ax—y||§+§||Bx||§+zllwk—(Dx—P)er]l‘II%JrElltk—CerngIz;

um
. T k
3: wktl = arg min,, E”W_ (Dx* —P) + b1||§ + 5| Vwl|;

& €7 = argmin, 2 [le— Cx* + B3+ 2allel;
5 b'f“ = bll< +wkt1 — (DxF — P);

k
6:  bEYT =1L+ (tF1 —cxb);
7 k=k+1;
8: end while
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It shows that the minimiser is obtained iteratively and alternatively. We study these
subproblems one by one. The minimisation problem with respect to x — cf. Step 3 in
Algorithm 3.1, is a least square problem, equivalent to the following normal equation:

( L aTay uB'B+1D'D + ncTc) X = LATy+ DT (wWk + P +b¥) + nCT (tF + bE).
Num Num

It is clear that finding the inverse matrix for the whole image is not very efficient way to
work. Instead, we will handle the pansharpening problem on patches. Thus, the whole
image is divided into a number of overlapped patches of a relatively small size and after
all patches are worked out, we combine them into a full image. However, we shall be sure
that for all patches the inversion operation is feasible.

Step 4 in Algorithm 3.1 is w-subproblem. It can be considered as an £,-total variation
denoising proposed by Rudin, Osher and Fatemi in 1992 [36]. This is why we named our
method as Rudin-Osher-Fatemi model based model. Approximate solution of this problem
can be found by Chambolle’s dual algorithm. We recall that considering an r x r patch,
Chambolle [12] proposed to replace the optimisation of the variable w by determining a
vector field p, which is connected with w as w = Dx* — P — A, /7divp and is a solution of
the minimisation problem

2 2
minHka—P — —zdiva2 such that |p;;| <1 forall 1<i,j<r, (3.5)
P T ’

where p; ; = (pl.lj, pl.2 j) is the dual variable at the i, j-th pixel location, p is concatenation of
allp; j, and divp = pl.l’j —pil_l,].+pl.27 j—piz’ i1 the discrete divergence of p with p(l), ;= pl.z’0 =0.
For simplicity, we set @ = A,/7 and g = Dx* —P. Then the iterative scheme for finding the
optimal solution of (3.5) is given by

l o1l
+yaV(adivp' —g); ;
i BTV P80 forall 1<ij<r, (3.6)
7 1+ ya|V(adivp! —fl)l-’jI

where v is the step size — cf. [12]. Assuming that p* is the minimiser of the constrained
optimisation problem (3.6), we write the solution of Step 4 in Algorithm 3.1 as

wktl =Dx* —p — A, /tdivp*.

The subproblem for t — i.e. the Step 5 in Algorithm 3.1 can be solved exactly. More
precisely, according to [19], the minimiser of the problem

.1 2
argmln§|2—5| +pls|, p>0
S

is
z2—p, 2>p,
s=10, lz] < p,
z2+p, z2<—p.
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It follows that the minimiser
rithm 3.1 can be represented as

ti.‘“ of the corresponding subproblem in Step 5 of Algo-

(cxk—bk) — 21, (ext—bk)> 21,

o n

=10, |(exk—bf)| < =,
]

(Cxt—bk) + % (cxk —b) < _%.

It is clear that Algorithm 3.1 is a particular case of ADMM. It is known [9] that if all sub-
problems in Steps 3-5 have closed-form solutions, then the method proposed converges. We
observe that Step 3 is related to a least squares problem which has a closed-form solution
and Step 5 reduces to a soft-thresholding problem [19], which has a closed-form solution.
However, it is not always possible to derive an exact solution of the Step 4 problem. On the
other hand, one can try to use an alternating splitting with w = VDx — VP, but it is difficult
to compute the inverse of the matrix related to (VD)? VD. Nevertheless, if the sequence
of errors of the successive solutions in Step 3 is absolutely summable, Algorithm 3.1 still
converges. The proof of this result can be found in [22, Theorem 8]. Similar considerations
are also present in [9].

It is easily seen that the solution of the proposed model (3.1) is related to the precom-
puted HRMS image U. To improve the accuracy, we can update the scheme in Algorithm 3.1
as is noted in Algorithm 3.2. The updating strategy of Algorithm 3.2 has been used by sev-
eral image applications, including natural image super-resolution [18] and remote sensing
image pansharpening [41]. Algorithm 3.2 can be considered as the acquisition of details
from an LRMS image for the use in the HRMS image. The downsample step in Algorithm 3.2
is defined as follows: ' is first filtered by a Gaussian filter matched with the modulation
transfer function (MTF) and then downscaled by a “nearest" interpolation to v! having the
same size as the LRMS image u.

Algorithm 3.2 Algorithm for Pansharpening based on RKHS and AHF representation
Require: PAN image P, LRMS image u, outer iteration number Iter Num, mix coefficients
o;,1=1,2,--- N. Initialization: LRMS image @1° = u; PAN image P =p.

Ensure: HRMS image U= Y""/"""U.

1: whilel < IterNum do

2: Compute the approximated HRMS image o by GS method given i;
3: Obtain the coefficient x! by Algorithm 3.1;
4 Compute the HRMS image U’ using U' = Ax/;
5: Downsample U to get the LRMS image v';
6:  Update the LRMS image as 't = a! —v/;
7
8
9

Update PAN image as P!*! = p! — Zflzl o;U

: [+1«1;
: end while
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4. Experiments

In this section, we provide numerical results demonstrating the performance of the
method. Various pansharpening methods are tested on the data from Pléiades and IKONOS
satellites. For both satellite data, the MS images have four bands — viz. blue, green, red and
near-infrared ones. Pléiades dataset can be downloaded from public web "Open Remote
Sensing" — cf. https://openremotesensing.net/knowledgebase/a-critical-
comparison-among-pansharpening-algorithms. For Pléiades dataset details see [5]
and references therein. The IKONOS dataset can be can be found at the Global Land Cover
Facility web page http://glcf.umd.edu/data. This web page also has MS and PAN
data from other satellites. The images in both datasets are very large. Therefore, for ex-
periments only small portions of the original images are used. For Pléiades dataset, we
crop the 64 x 64 x 4 and 256 x 256 upper left portion of the low resolution multi-spectral
bands and PAN image. Based on this dataset, we also manually set simulated test data —
e.g. the high-resolution panchromatic image is obtained by the average of green and red
bands of the HRMS image. The LRMS bands with four times lower spatial resolution than
of the panchromatic one, are simulated according to MTF filtering and decimation. Let us
call this simulated dataset PléiadesSimu. The test data from this dataset is obtained in the
same way as the previous one. For the data acquired by the IKONOS satellites, we choose
the mountainous and vegetated area of the Sichuan region in China. The experimental data
are collected similarly to Pléiades dataset but the cropped LRMS bands and PAN image are,
respectively, of the size 32 x 32 x 4 and 128 x 128.

The experiments are implemented in MATLAB(R2017a) environment on MacBook pro
PC with 8Gb RAM and Intel(R) Core(TM) CPU i5: @3.1 GHz. The parameters in the
algorithm are chosen as u = 1.2 x 10°,A = 2u,Ay = 4,7 = ©/100,7 = u/1000. The
mix coefficients o;, i = 1,2,3,4 are estimated by the linear regression of the MS bands
and the spatially degraded PAN image [3]. The dimension m of the polynomial space is 6,
the number of orientations M = 45 and 3-iterated Laplacian is used. The outer iterations
IterNum and the Chambolle’s denoising step are both equal to 5. To reduce computation
cost and the storage size, we apply our method to image patches with 6 x 6 of 5 pixels
patches overlap.

Our method is compared with ten popular pansharpening methods — viz. EXP [1] (MS
image interpolation, using a polynomial kernel with 23 coefficients), BDSD [26] (Band-
Dependent Spatial-Detail with local parameter estimation), GS [30] (Gram Schmidt),
PRACS [15] (Partial Replacement Adaptive Component Substitution), HPF [34] (High-Pass
Filtering with 5 x5 box filter for fusion), Indusion [29] (Decimated Wavelet Transform using
an additive injection model), ATWT [42] (Additive a Trous Wavelet Transform with unitary
injection model), AWLP [33] (Additive Wavelet Luminance Proportional), MTF-GLP-CBD
(Generalized Laplacian Pyramid (GLP) [1] with MTF-matched filter [2] and regression
based injection model [5]), ICIP-RKHS [16]. Note that [16] was the first work, where
RKHS was used for pansharpening. The reader can also find an extension of ICIP-RKHS
from [17]. The codes of the algorithms mentioned are freely available at the web page
https://openremotesensing.net/knowledgebase/a-critical-comparison-
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among-pansharpening-algorithms.

Figs. 1(b)-1(1) show the pansharpening for Pléiades dataset. For visual convenience, we
only show the blue, green and red bands of the HRMS image obtained. It is clear that the
fused HRMS image obtained by our method is competitive. It outperforms other methods
in terms of spatial and spectral fidelity with respect to the ground truth image. CS-based
method experiences significant loses spectral information while preserving spatial details.
The MRA-based method AWLP does not demonstrate good results in preserving spatial
information. On the other hand, the method we propose does preserve spatial details and
recover high-quality spectral information very well.

Fig. 2 demonstrates the fused images for IKONOS-China. Note a spectral distortion in
the images obtained by GS and ATWT methods. On the other hand, the HRMS images
obtained by ICIP-RKHS and our method have a better spatial and spectral quality —e.g.
the boundary of the river and the surface of the mountain are much clearer and more vivid.

(i) AWLP (j) MTF-GLP-CBD (k) ICIP-RKHS (1) Ours

Figure 1: Works of various methods on Pléiades dataset. GT denotes ground truth image.
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(@) GT (b) EXP

[ il

(i) AWLP (j) MTF-GLP-CBD (k) ICIP-RKHS (1) Ours

Figure 2: GT denotes ground truth image. Comparisons of different methods on IKONOS-China dataset.

For quantitative assessments of the fusion we use the Q4 vector index [4], Q index [45],
Spectral Angle Mapper (SAM) [46], Erreur Relative Globale Adimensionnelle de Syntheése
(ERGAS) [44], and Spatial Correlation Coefficient (SCC). The results are demonstrated in
Tables 1-3, where bold highlights the best performance. Overall, the quality of fused images
obtained by the method proposed are higher than for other methods. Moreover, they show
that the RKHS and AHF based representations are practically useful for pansharpening and
that the ROF based model outperforms the least square model.

Let us also discuss the role of various parameters in Algorithm 3.2, using Pléiades
dataset as a base for their testing. For simplicity, in experiments we only take the top-
left part of size 128 x 128 x 4. In order to independently evaluate the parameter sensitivity,
we fix all parameters except the one we want to study. To study the impact of the num-
ber of outer iterations on the performance of the method, we empirically set it to 1,5,25
and 30 and evaluate the corresponding changes in different measurements. The results
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Table 1: PléiadesSimu dataset. Bold highlights the best performance.

Q4 Q SAM | ERGAS | scc

EXP [1] 0.7878 | 0.7629 | 4.6685 | 5.7915 | 0.6500
BDSD [26] 0.9765 | 0.9734 | 3.4606 | 2.3104 | 0.9413
GS [30] 0.8975 | 0.9040 | 4.7511 | 3.9996 | 0.9325
PRACS [15] 0.9511 | 0.9449 | 3.8740 | 3.0323 | 0.9283
HPF [34] 0.9462 | 0.9397 | 3.6215 | 3.1337 | 0.9234
Indusion [29] 0.8924 | 0.8894 | 4.5325 | 4.3842 | 0.8658
ATWT [42] 0.9631 | 0.9571 | 3.2633 | 2.6712 | 0.9366
AWLP [33] 0.9617 | 0.9533 | 3.2526 | 2.7201 | 0.9294
MTE-GLP-CBD [5] | 0.9773 | 0.9730 | 3.1081 | 2.2222 | 0.9422
ICIP-RKHS [16] | 0.9756 | 0.9725 | 3.0782 | 2.2628 | 0.9424
Our Method 0.9812 | 0.9782 | 2.7565 | 2.0140 | 0.9517

Table 2: Pléiades dataset. The best results are highlighted by black bold.

Q4 Q SAM | ERGAS | sccC

EXP [1] 0.7878 | 0.7629 | 4.6685 | 5.7915 | 0.6500
BDSD [26] 0.9733 | 0.9703 | 3.6455 | 2.4611 | 0.9358
GS [30] 0.8943 | 0.9004 | 4.7790 | 4.0834 | 0.9264
PRACS [15] 0.9419 | 0.9354 | 3.9436 | 3.2840 | 0.9210
HPF [34] 0.9413 | 0.9348 | 3.7075 | 3.2726 | 0.9185
Indusion [29] 0.8897 | 0.8866 | 4.5589 | 4.4465 | 0.8612
ATWT [42] 0.9585 | 0.9525 | 3.3764 | 2.8409 | 0.9305
AWLP [33] 0.9571 | 0.9487 | 3.3590 | 2.8760 | 0.9236
MTE-GLP-CBD [5] | 0.9735 | 0.9694 | 3.3009 | 2.4051 | 0.9367
ICIP-RKHS [16] | 0.9710 | 0.9704 | 3.2752 | 2.3928 | 0.9446
Our Method 0.9771 | 0.9742 | 2.9758 | 2.2206 | 0.9417

Table 3: IKONOS-China dataset. The best results are highlighted by black bold.

Q4 Q SAM | ERGAS | scc

EXP [1] 0.8006 | 0.7916 | 5.2953 | 4.4520 | 0.6793
BDSD [26] 0.9237 | 0.9149 | 3.3210 | 2.8000 | 0.9215
GS [30] 0.8934 | 0.8890 | 4.3686 | 3.0929 | 0.9186
PRACS [15] 0.9196 | 0.9085 | 3.6495 | 2.8542 | 0.9104
HPF [34] 0.9141 | 0.9018 | 3.7200 | 2.9162 | 0.9066
Indusion [29] 0.8374 | 0.8473 | 4.6643 | 3.8194 | 0.8705
ATWT [42] 0.9244 | 0.9114 | 3.4225 | 2.7483 | 0.9182
AWLP [33] 0.9247 | 0.9107 | 3.3312 | 2.7629 | 0.9170
MTE-GLP-CBD [5] | 0.9251 [ 0.9129 | 3.1978 | 2.7015 | 0.9214
ICIPRKHS [16] | 0.9206 | 0.9071 | 3.3591 | 2.7870 | 0.9106
Our Method 0.9282 | 0.9187 | 3.1629 | 2.6774 | 0.9218
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Computational Time (second) Computational Time (second)
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Figure 3: Pansharpening for various outer iterations and overlapping size in Algorithm 3.2.

are shown in Figs. 3(a) and 3(b). The worst results are for outer iteration number 1, but
they got slightly better as iteration proceeds. However, in all experiments we set the num-
ber of outer iterations to 5 to balance computational cost and performance. Figs. 3(c) and
3(d) present the results with the patch overlap of different size. We observe that the best
performance is achieved for the overlap equals 5.

5. Conclusion

We studied the pansharpening problem based on the Rudin-Osher-Fatemi model by
using RKHS and AHF representation and proposed an efficient algorithm under the frame-
work of the classic ADMM method. To demonstrate the effectiveness of the method, we
carried out numerous experiments on Pléiades and IKONOS datasets and compared the
results with those obtained by ten known pansharpening methods. It turns out that the
method we propose is able to construct an HRMS image and preserves the spectral and
spatial information.
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