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Abstract. Feature identification is an important task in many fluid dynamics appli-
cations and diverse methods have been developed for this purpose. These meth-
ods are based on a physical understanding of the underlying behavior of the flow
in the vicinity of the feature. Particularly, they require the definition of suitable crite-
ria (i.e. point-based or neighborhood-based derived properties) and proper selection
of thresholds. However, these methods rely on creative visualization of physical id-
iosyncrasies of specific features and flow regimes, making them non-universal and
requiring significant effort to develop. Here we present a physics-based, data-driven
method capable of identifying any flow feature it is trained to. We use convolutional
neural networks, a machine learning approach developed for image recognition, and
adapt it to the problem of identifying flow features. This provides a general method
and removes the large burden placed on identifying new features. The method was
tested using mean flow fields from numerical simulations, where the recirculation re-
gion and boundary layer were identified in several two-dimensional flows through
a convergent-divergent channel, and the horseshoe vortex was identified in three-
dimensional flow over a wing-body junction.

AMS subiject classifications: 76G25, 76M99

Key words: Machine learning, feature identification, fluid dynamics, convolutional neural net-
work.

1 Introduction

Feature detection is an important component of data post-processing in fluid dynamics
experiments and simulations, and plays an important role in our physical understanding
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of flow phenomena and fluid-structure interactions. In this study we use convolutional
neural networks, a machine-learning approach developed for image recognition, to au-
tomatically detect features of interest in fluid flow fields. As with traditional methods,
feature detection is done by identification of patterns within the relevant physics-based
scalar fields of the flow. Unlike traditional methods, the specific patterns to use are not
explicitly specified, but inferred from a set of human-labeled training examples.

1.1 Feature detection in fluid flow fields

A flow feature is a physically meaningful structure within the flow that is of interest for
the application at hand. Examples include recirculation regions, shed vortices, boundary
layers, and shock waves. Applications of flow feature extraction include fundamental
physical understanding of flow dynamics (e.g. relation between coherent structures and
turbulence dynamics [1,2]), engineering design (e.g. reduction of shock wave drag [3]),
on-line steering of large simulations (e.g. feature-based adaptive mesh [4, 5]), among
others. Despite the important role flow features play in so many applications, the task of
accurately identifying these features remains a laborious one.

Post et al. [6] describe the general feature extraction pipeline as consisting of four steps:
selection, clustering, attribute calculation, and iconic mapping. Selection consists of iden-
tifying all points that are part of the feature of interest, and the output of this step is a
binary map. In the clustering step these points are divided into discrete instances of the
feature of interest. For instance, the input to the clustering step might be a binary map of
points that belong to vortices, and the output are groupings of these points into coherent
regions, e.g. distinct vortices. The last two steps, attribute calculation and iconic mapping,
consist of calculating properties of each coherent region (e.g. volume, length, centroid)
and fitting a parametrized icon (e.g. ellipsoid). This has the effect of reducing the dimen-
sionality of the problem, allowing the description of the evolution of features with only a
few parameters. In this paper we focus on the first two steps, selection and clustering, and
only imply these steps when referring to feature extraction or identification.

Many methods exist for identifying features based on an understanding of the un-
derlying physics of the phenomena. As an example, methods for identifying vortices
include identification based on local field values (e.g. vorticity, helicity, Q-criterion), as
well as methods based on global flow properties (e.g. curvature center, looping stream-
lines) [6]. The disadvantages with these methods are that they are specific to the feature
in question, limited to certain types of flows (e.g. external flows, turbo-machinery) [6],
and rely on creative visualization of the physical phenomena at hand. This has lead to
many disjoint methods particularly suited for very specific problems, and places a large
burden on developing methods for identifying new features.

As a specific example of the need for improved flow feature extraction we consider
the problem of turbulence. Turbulent flows contain temporally-coherent structures (flow
features) at various scales. These coherent structures are known to play an important
role in mass, momentum, and energy transport [1,2] and subsequently have an effect on
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(a) Coherent structures from large eddy simulation, reproduced with per-
mission from Frohlich et al. [7]
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(b) Schematic of coherent structures

Figure 1: Distinct vortex structures in the flow over periodic hills as identified by using isosurfaces of pressure
fluctuations from large eddy simulation data (a) reproduced with permission from Frohlich et al. [7], and a
schematic representation of such coherent structures (b). The types of vortices shown are: Kelvin-Helmholtz
vortices (KH), helical pairs of span-wise vortices (HP), streamwise vortices (S), and Gortler vortices (G).

overall flow dynamics. Despite this fact, existing turbulence models used for predicting
flow separation rely on time-averaged quantities and ignore the presence of coherent
structures. For instance, Frohlich et al. [7] found that the “splatting” of large-scale eddies
originating from the shear layer results in a high-level of spanwise velocity fluctuations
in the post-reattachment, which existing turbulence models fail to capture. Fig. 1 shows
an example of these turbulent coherent structures in a flow over periodic hills, showing
the large number of distinct types of features and scales present in turbulent flows. For
instance, Fig. 1 shows Kelvin-Helmholtz vortices in the leeward side of the hill and a
Gortler vortex in the windward side.

Fundamental understanding of turbulence and development of better predictive mod-
els requires establishing a link between organized fluid motion and turbulence statistics.
The failure to establish such a link is largely attributed to the lack of reliable data and
the lack of effective feature identification techniques for extracting physically significant
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coherent structures. Effective feature identification would require the ability to automat-
ically search through large time-resolved datasets, search for structures at many scales,
and differentiate between similar features (e.g. different types of vortical structures as
shown in Fig. 1). Existing methods, such as visualization of contours and isosurfaces
of flow field variables (e.g, u/, p, A2, and Q-criterion), require careful choice of criterion
and threshold which can be flow and structure dependent. This process requires iterative
visualization and relies on expert prior knowledge of the specific form of the structure,
making it unpractical for large number of time-resolved simulations. Moreover, previ-
ous studies [7, 8] reported that the identification with existing physics-based approaches
turned out to be even more difficult at high Reynolds number flows, where large-scale
structures are likely to be overwhelmed by small-scale eddies.

In this paper we provide a universal method for flow feature identification that could
replace or supplement the myriad of existing disjoint methods and remove the large bur-
den placed on developing methods for identifying new features. The method is based on
convolutional neural networks, a machine learning algorithm used in image recognition,
and learns to find structure within the data solely from the examples it is trained with.
The approach is fundamentally different to existing methods in that it is data-driven
rather than based on explicitly defined physics. This is still physics-based in that the fea-
tures are identified by searching for relevant structures within scalar fields of physical
quantities, but these relevant structures are inferred from the data rather than explic-
itly defined. This has the advantage of being a general approach, and allowing for the
identification of new features for which explicitly defined physics approaches do not ex-
ist. The method also has the potential of being more discerning between similar features
than existing methods, provided sufficient training data. The use of this type of machine
learning methods has gained popularity in science and engineering applications in recent
years with promising results (e.g. [9]). While flow feature extraction from time-resolved
flow fields (e.g. coherent structures in Fig. 1) is an important future application, in this
initial study we extract flow features from mean flow fields.

1.2 Machine learning for object detection in images

Machine learning is a class of algorithms that makes decisions based on learned param-
eters from data, rather than from explicit instructions. The machine learning algorithms
used in this paper were adapted from image recognition and object detection, and an
analogy is made between these tasks and flow feature detection. Image recognition con-
sists of classifying an image of a single object as belonging to some class (e.g. car, person).
Object detection consists of finding and classifying all objects within an image that contains
more than just a single object. Fabricated examples of image recognition and object de-
tection are shown in Fig. 2. Both of these tasks can be achieved using different machine
learning algorithms. In this paper we consider the object detection R-CNN method de-
veloped by Girshick et al. [10,11] and adapt it to the problem of flow feature extraction.
The R-CNN method consists of two main steps, a region proposal step that identifies sub-
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Figure 2: Fabricated examples of image recognition (a) and object detection (b) tasks in images. The number
indicates the probability of the region or image being an instance of the specified class. The labels for only two
of the "detected” objects in (b) are shown.

images containing objects of interest, and an image recognition step using convolutional
neural networks (CNN) that classifies those sub-images into appropriate classes.

Neural networks are a class of machine learning algorithms that are universal esti-
mators. That is they can be used to estimate any function to any desired accuracy by
choice of complexity. Neural networks consist of sequential layers of variables, referred
to as neurons, with the first and last layer corresponding to the inputs and outputs re-
spectively. The number of neurons in the first and last layer are determined by the di-
mensions of the inputs and outputs, while the number of intermediate layers and the
size of each are free hyper-parameters chosen to achieve a desired level of complexity.
Specific non-linear mappings are defined between adjacent layers, hence an input can
be propagated forward through the network resulting in an output. The parameters of
these non-linear mappings are learned from a set of training data. The specific choice of
layers and mappings is referred to as the network architecture. While neural networks
are universal estimators, estimating an image classification function can require complex
architectures with a large number of trainable parameters.

Convolutional neural networks (CNN) [12-14] are a class of neural networks that ex-
ploit known functional structures in the image classification problem in order to simplify
the network architecture and speed up training. Specifically CNNs use convolutional
layers which exploit translational invariance (e.g. whether a region of the image contains
an object of interest does not depend on the location of the region relative to the whole
image), greatly reducing the number of neurons. Informally a convolutional layer can be
thought of as scanning the image searching for different local-features (e.g. horizontal
lines, gradients), and creating a local-feature map for each. Convolution layers can be
used sequentially, identifying increasingly more complex patterns with the largest scale
patterns used for the final classification.
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1.3 Machine learning for feature detection in fluid flow fields

The problem of flow feature detection is analogous to the problem of object detection
in that flow features make a subset of the input and can be found anywhere within the
flow. For this reason the authors believe the R-CNN method, and CNNs in general, are
well suited for the task of flow feature extraction. However, adapting these algorithms to
physical flows presents some unique challenges.

The first challenge is in representing the flow in a manner conductive to the applica-
tion of these algorithms. An image is represented with three invariant (i.e. not dependent
on choice of coordinates) RGB color values at each pixel. Similarly, we represent the flow
by a suitable list of invariant physical properties at each of a number of discrete points.
The second challenge is that while algorithms developed to use images require inputs
with rectangular domains, the physical domain of fluid flows is generally not rectangu-
lar, containing boundaries of arbitrary shape as well as holes in the domain were solid
objects exist. To circumvent this challenge, in this initial study flows were restricted to
flows with singly-connected domains, and were mapped to rectangular domains. The
last challenge is that while objects in images can be identified using rectangular bound-
ing boxes of moderate aspect ratios that mostly contain only the object in question, not
all flow features can be identified in this manner. To address this we distinguish be-
tween what we call discrete features such as shed vortices which can be encompassed by
a bounding box and continuous features such as boundary layers which cannot. Continu-
ous feature problems have no analog to image recognition and the approach taken was
to provide a boolean field of points that belong to that feature, rather than a rectangular
bounding box. This corresponds to performing the selection step, but not the clustering
step in the feature extraction pipeline [6].

One final note on nomenclature: this paper combines concepts from different fields
and there is a terminology conflict that must be addressed. In image recognition the goal
is to detect objects within the image, and this is done by first identifying smaller scale
patterns (e.g. horizontal lines, or sharp gradients) referred to as features. The conflict
arises in that in fluid flows the ‘objects’ to be detected are also referred to as features. We
will avoid ambiguity by referring to these as local-features and flow features respectively.
The term feature is also commonly used to describe the point-based properties of the flow,
but these will be referred to as input parameters.

2 Methodology

The methodology, which we will refer to as Fluid R-CNN, is adapted from the R-CNN
method [10, 11] to work for fluid flow feature identification. The Fluid R-CNN can be
divided into four steps. First, the flow is represented as a three-dimensional rectangular
grid, with each point described by a list of invariant physical flow properties, analogous
to the three RGB values used to describe pixels in images. Next, in the region proposal
step, subsets of the flow are selected for classification. In the classification step, the pro-
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posed regions are evaluated using a trained CNN and classified as being either an in-
stance of the flow feature of interest or as background. Finally, in the selection step, the
information from all the region evaluations is used to select and report the number and
location of flow features.

2.1 Input array

The starting point of the method are fluid flow fields such as those obtained from either
mean or time-resolved simulations or experimental data. In particular for the case stud-
ies presented here they are mean fields from Reynold-averaged Navier-Stokes (RANS)
simulations. Following the procedures in Wang et al. [15] and Ling et al. [16], ten input
parameters are used to characterize the flow at each cell. These parameters are non-
dimensional, Galilean invariant, and based only on the flow properties at that point. The
ten input parameters are summarized in Appendix A and include turbulence intensity,
non-orthogonality of velocity and its gradient, and streamline curvature.

In these test cases we restrict our inputs to flows with a simply-connected domain
and uniform mesh. The uniform mesh can be directly represented as a rectangular three-
dimensional array, with each element corresponding to a mesh cell and having associated
(x,y,z) coordinates, cell volume, and ten-dimensional input. This array representation of
the flow fields is the input to the Fluid R-CNN method, and is referred to as the input
array.

2.2 Region proposal

While many region proposal algorithms are being developed [10] that can efficiently pro-
duce proposals for objects in thousands of classes, a brute search approach was used. The
brute search consists of searching the input array with a number of windows of different
shapes, using specified stride length. All the resulting regions are considered possible
flow features to be classified by the CNN. Brute search does not add significant computa-
tional cost in the test cases presented since only a single flow feature is being searched for
(binary classification). The advantage of more sophisticated region proposal algorithms
is more evident when a large number of classes are considered.

A consequence of scanning a rectangular representation of the flow is that since ele-
ments of the input array correspond to cells with different volumes, a scanning window
of fixed dimensions (e.g. nxm cells) will result in regions of vastly different physical
shapes and dimensions. Fig. 3 shows a rectangular subregion of the input array, and its
corresponding region in the physical domain. A second consideration is that the CNN
only accepts rectangular inputs of a fixed size, while the region proposal selects regions
of different sizes and aspect ratios. This second problem is shared with object detection
in images, where region proposals might have different size and aspect ratios than the
CNN input, and is solved by warping the image and using a CNN trained with warped
images.
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(a) Rectangular subregion of the input array (b) Same region in the physical domain

Figure 3: Example of a rectangular sub-region of the input array (a), and its corresponding region in the physical
domain (b). This example corresponds to the human-labeled recirculation region for the 2D periodic hills flow.

!

(a) Region as CNN input of shape 24 x 24 (b) Region in the physical domain

Figure 4: Mapping of a proposed region in the physical domain (b) to CNN input (a). The example region
corresponds to the region shown in Fig. 3, and the input shown is the non-orthogonality of velocity and its
gradient.

The goal is then to map each proposed region into a rectangular region of the specified
size, with as little deformation as possible. This was done by first normalizing each ele-
mentin [:,],k] rows based on the cells’” x-coordinates, each element in [i,:, k] rows based on
the cells’” y-coordinates, and each element in [f,],:] rows based on the cells’ z-coordinates.
This, now rectangular, region is interpolated to a uniform grid with the required CNN
input dimensions. The process is illustrated in Fig. 4.

2.3 Classification using CNN

Following the region proposal step, each proposed region must be classified. The classifi-
cation step is done using a convolutional neural network, trained to differentiate between
background regions and regions containing the feature of interest. The first step in cre-
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ating a CNN is determining its architecture. The architecture must be flexible enough to
make the classification task possible, while being simple enough to keep the number of
training parameters and computational cost low. The second step is training the CNN, in
which the optimal values for the trainable parameters are learned based on the training
examples provided.

2.3.1 CNN architecture

The CNN architecture was designed with the goal of obtaining as simple a network as
possible, while still being able to correctly identify the features of interest. All cases in
this study use a similar CNN, with a single convolutional layer, a pooling layer, and an
output layer consisting of 2 softmax neurons. A schematic of the CNN architecture used
in this study is shown in Fig. 5. For clarity of illustration, Fig. 5 shows an input with only
two physical dimensions rather than the full 3 dimensions actually used.

Input Convolutional Pooling Fully Connected
Layer Layer Layer Layers
3 channels @ 6x6 2 filters @ 4x4 2@2x2 5,2 neurons

=

O

Figure 5: Example schematic of the CNN architecture with one convolutional layer with 2 feature maps and a
pooling layer, followed by two dense layers, the first with 5 linear rectified neurons, and the output layer with 2
softmax neurons. For clarity of illustration, the input layer is shown as having two physical dimensions rather
than all three. For each layer following the input layer, the schematic shows the input for a single value in that
layer.

The input layer corresponds to a region in the flow domain, with each input point
described by a ten-dimensional input vector (10 channels). This input layer is a tensor of
size N X Ny X Ny x Nz, where N, is the number of channels and N, N,, N, are the number
of points in each spatial dimension. The input layer is followed by a convolutional layer,
which consists of N local-feature maps. Each map contains information of the presence
of a specific local-feature (e.g. a sharp gradient, or a horizontal line) at different locations
in the input. The map is created by sliding a window through the spatial dimensions of
the input layer, outputting a single neuron activation value at each location considered.
The sliding window over the inputs is called the local receptive field and has dimensions
NeXx Ny X Ngy X Ny, The neuron activation chosen is the rectified linear unit (ReLU), with

activation given by
N,
rf

y=max (O, Z(wixi)+b>/ (2.1)

i=1

where N, and x; are the number of inputs and the individual elements in the local recep-
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tive field respectively, and w; and b are the weights and bias respectively. The weights and
the bias are parameters that need to be determined through training. These weights and
bias are the same for all spatial locations, i.e. when the local receptive field is moved to a
different location in the input the weights and bias are unchanged. This enforces transla-
tional invariance, greatly reducing the number of trainable parameters. The example in
Fig. 5 has a two-dimensional input of size 6 x 6 with 3 channels (N: =3, Ny =6, N, =6).
The input layer is followed by a convolutional layer with two filters, each with a local
receptive field of shape 3x3x3 (N.=3, N x=3,Npy= 3) and stride length of one in both
directions, resulting in the local feature maps of size 4 x 4.

Immediately following the convolutional layer is a pooling layer, which has the role
of condensing the information and reducing the size of the input. It does this by dividing
the feature maps into windows of specified size (stride length is window dimensions) and
summarizing each region with a single value. Max pooling was used for this purpose,
where the output is the maximum value in the window. This results on information
on whether the feature is found anywhere in that window. These could potentially be
followed by more convolution-pooling layer pairs with the goal of identifying higher
scale features from smaller scale features, but for simplicity only one convolutional layer
was used. The example in Fig. 5 has a max pooling layer with input of size (2 x 2), which
condenses each feature map (size 4 x4) to size 2 x 2.

Finally, the CNN has one or more layers of fully connected neurons, with the output
layer being a softmax layer of size equal to the number of categories being considered.
Each neuron in a softmax layer outputs a probability of the input belonging to that cate-
gory, with the sum of all the outputs equal to one. The output of the softmax neuron is
given by

e
Yi= ZNcurr e 4 (22)
j=1
Nprev
zZj= Z (wk,]-xk) +b, (2.3)
k=1

where N and Ny, are the number of neurons in the current (softmax) and previous
layers respectively, and x; and wy ; are the output and weight from the k™ neuron of the
previous layer to the jh neuron of the current layer. In this study ReLU neurons are used
for all intermediate layers and two softmax neurons are used as the final layer, classifying
the input as belonging to the feature of interest or to the background. For all cases the
weights were initialized by sampling a normal distribution with mean zero and standard
deviation 0.1, and all biases were initialized to zero.

2.3.2 CNN training

The first step in training the CNN is creating examples of regions that are instances of
the flow feature of interest and examples of regions that belong to the background. For
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discrete features the training inputs are the entirety of the flow field with the instances
of the flow features of interest labeled. Labeling is done by identifying a bounding rect-
angle that completely encloses the flow feature of interest. Each labeled region can pro-
vide many training examples by shifting the bounding box and considering partial over-
lap [10]. Using different window sizes, the training case is scanned to create potential
training examples. For each potential example, the maximum intersection over union
(IoU) with a labeled region is calculated based on cell volume. The IoU for two regions
A and B is given by
ANB

where ANB and AUB denote the volume of their intersection and union respectively. Re-
gions with IoU above a certain threshold (e.g. 50%) are considered examples of the flow
feature. Those below the threshold are considered background. Furthermore those in the
background that have an IoU larger than some second threshold (e.g. 25%) are consid-
ered difficult examples [10] of the background. These regions are then down-sampled to
the desired number of training cases, ensuring sufficient examples of each category are
retained.

The CNN is then trained, with the data prepared as above. Training consists of
optimizing the CNN parameters, i.e. the biases associated with each neuron and the
weights associated with each connection. The training is done using stochastic gradient
descent [12] and back-propagation [12,17], with a categorical cross-entropy cost func-
tion. No dropout or regularization was used. Using gradient descent, each parameter a;
(weights and biases) is updated as

al(n+1) :afn) —9VC(a;), (2.5)

where the superscript indicates the update step, the learning rate <y is a hyper-parameter,
and C is the cost function which depends on all the parameters 4; and all the training
examples. The categorical cross-entropy cost function is given by

Nt Neat

C:—%Zzti,jln(i?i,j)/ (26)

ti=1i=1

where t;; and p;; are the true and predicted values of the i output neuron for the jh
training example, N, is the number of categories (i.e. number of neurons in last layer),
and N; is the number of training examples. For a given training case (j) one ¢;; has a
value of one and all others have a value of zero. Stochastic gradient descent refers to
approximating the gradient of C using only a random subset (mini-batch) of the training
data at each update step. Back-propagation is a method to calculate the gradients of C
with respect to each weight and bias by applying the chain rule to iteratively obtain the
gradients at each layer, starting from the output layer.
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At each training iteration a mini-batch is created with a random selection of a speci-
fied number of training examples. Each mini-batch is forced to contain a certain propor-
tion of each type of examples (e.g. 50% easy background examples, 25% difficult back-
ground examples, and 25% flow feature examples). This is to ensure the training sees
enough examples of the flow feature and difficult background examples. The training
goes on until an acceptable convergence is seen in the cost function.

The training for continuous features is similar except that section cuts of the original
flow are used as the training cases, rather than the entire flow domain. The flow feature
of interest is only identified and labeled in these section cuts. This procedure was chosen
because for continuous features a single bounding box mostly containing the flow feature
is not possible in the whole domain, but is possible in section cuts of the domain.

2.4 Selection

The goal of the selection step is to report one single region per flow feature based on the
results from the classification step. Each region from the region proposal step is assigned
a probability by the CNN and classified as either background or flow feature. For discrete
feature problems, many such regions describe the same feature. That is, multiple high
probability windows are clustered around the correct location and have some overlap
with each other. This is specially the case since the CNN is trained to positively classify
partial features (typically as low as 50% overlap), and some of the cell volumes are very
small. The goal is to report one single region per flow feature. This is achieved using
greedy non-maximum suppression [10, 18], rejecting any region that overlaps another
region with higher probability of being a feature, as illustrated in Fig. 6.

Star 0.98 Star 0.98

A
J

v

Star 0.79—gt4r 0.84

Figure 6: Example of how non-maximum suppression is used to select a single region for a given flow feature. In
this example the region proposal and CNN evaluation results in a three regions above the classification threshold
(left). Because the region with 84% probability overlaps with a region with higher probability (98%), this region
is discarded. Similarly the region with 79% probability is also discarded. This leaves a single region for the given
feature, which is the desired outcome.

The success of the method can be tested by using cases with known solutions, where
the correct region has been labeled by a human. For testing cases, a successful identifica-
tion is considered to be a selected region with IoU with a human labeled region above a
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certain threshold (e.g. typically IoU > 0.5 for object detection in images). The accuracy
of the method can then be quantified by the percentage of regions that were correctly
identified, as well as the percentage of false positives.

For continuous feature problems there are no discrete regions to be identified, but
rather a continuum. For these cases selection was done by assigning a boolean value to
each cell, with a True value for any cell that is within at least one of the regions classi-
fied by the CNN as being a feature. The selected region is then the union of all regions
classified positively by the CNN. Since non-maximum suppression is not used for contin-
uous feature problems, more aggressive choice of thresholds is needed to avoid selected
regions that are much larger than the flow feature. In the context of the feature extrac-
tion pipeline presented in Post et al. [6] the presented method performs the selection step
for both types of problems. It also performs the clustering step for the discrete feature
problems but not for the continuous feature problems.

2.5 Implementation

The method was implemented in Python and runs in CPUs. We used the Lasagne [19]
and Theano [20] libraries to create the CNN. The data creation task was parallelized with
each training case evaluated independently. The CNN classification step was also par-
allelized with different batches of proposed regions sent to different CPUs. The training
step was done in serial. As an example, Table 1 shows the computational cost and par-
allelization for the first case study. The largest costs are associated with the creation of
training data (including the warping and interpolation) and the evaluation of the CNN.
While some care was used to improve the cost, this was not the goal of this study and it
can still be improved significantly. In image recognition there has been a push towards
real-time identification, which is being achieved through algorithmic choices and GPU
implementation. Some of the same techniques can be leveraged to speed-up our imple-
mentation.

Table 1: Summary of computational cost for Case study |. The evaluation values are for the convergent-divergent
channel test case.

Task No. CPUs | time [s]
Create training data (3 train cases) 3 1,069
Train (500 steps) 1 169
Evaluate regions with CNN 72 1,982

3 Results

Three case studies were investigated, using data from Reynolds-averaged Navier-Stokes
(RANS) simulations. The first is a discrete feature problem: identifying the recirculation
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region in 2D flows (Fig. 8, Fig. 9). The other two are continuous feature problems: iden-
tifying the boundary layer in 2D flows (Fig. 11), and a horseshoe vortex in a 3D flow
(Fig. 13).

3.1 Case study I — Identifying 2D recirculation region

The first case study involved identifying regions of recirculation in 2D flows. This is a
discrete feature problem, in which the CNN is trained using flow cases with the whole re-
circulation region labeled. The CNN was trained using three flows: periodic hills, wavy
channel, and curved backwards-facing step. Each of these cases contained a single re-
circulation region, identified visually based on looping streamlines. The human-labeled
recirculation region is shown for one of the training cases in Fig. 3. The methodology was
then tested on two new flows: a convergent-divergent channel and flow over a NACA
0012 airfoil [21] at 4° angle of attack. These cases are summarized in Table 2 and shown
in Fig. 7. The Reynolds number is based on the chord length and mean flow velocity
for the airfoil and on the hill/step height and bulk mean velocity at the hill crest for all
other cases. The RANS turbulence model used were the k—w SST for the airfoil and the
Launder-Sharma k—e¢ for all other cases.

Table 2: Summary of the four RANS cases used in Case study | and II.

Case Reynolds Number Mesh Size Use
(rows x columns)
Curved backwards-facing step 13,700 199 %199 Training
Periodic hills 10,595 99 x 149 Training
Wavy channel 6,760 50 x 160 Training
Convergent-divergent channel 12,600 499 x 192 Testing
NACA 0012 airfoil 10,000 128 x 448 Testing

A CNN was trained using the three training examples. The CNN architecture consists
of inputs size 24 x 24, ten feature maps in the convolutional layer with window size 5x5
and max pooling with 2 x2 windows, and two dense layers of 10 ReLU and 2 softmax
neurons consecutively. The CNN was trained for 500 training steps with a learning rate
of 0.01 using mini-batches containing 5 recirculation cases, 5 difficult background cases,
and 10 background cases.

The first test case was the convergent-divergent channel. This case was chosen as a
test case since it is thought to contain a significantly different recirculation region, making
it a difficult case to predict. The most noticeable difference is the long aspect ratio and
short height of the recirculation region. The region proposal was done with 15 window
sizes corresponding to aspect ratios of 1:1, 2:1, 1:2 and scale factor of 10, 20, 30, 40, 50
cells. A stride of 2 cells was used in each direction, resulting in 266,525 proposed regions.
The Fluid R-CNN resulted in two regions selected as instances of recirculation, out of
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(d) Convergent-divergent channel (e) NACA 0012 Airfoil

Figure 7: Simulation cases used in Case study | and Il. The images show velocity magnitude as well as velocity
streamlines. Blue and red denote the smallest and largest velocity magnitudes respectively.

2,242 evaluated positively by the CNN. One region was correctly selected, with a 98%
probability of being recirculation, and an intersection over union of 68% with the human
labeled region. The other region, a false positive, was assigned a 77% probability of being
recirculation and has no intersection with any human labeled region. This false positive is
likely due to the limited amount of training cases, which cannot provide enough training
examples of all possible background regions. In the absence of large quantities of training
data, a probability threshold can be manually tuned to a value higher than 50% to reduce
these false positives. The results are summarized in Table 3 and shown in Fig. 8, with the
two identified regions labeled. Fig. 8(b) also shows a close-up view of the streamlines in
the two selected regions.

Table 3: Case study | results: list of selected regions with assigned probability of being a recirculation region
and loU with a correct, human-labeled, region.

Region | Probability ‘ IoU with correct region
Convergent-Divergent Channel
1 0.98 0.68
0.77 0.00
NACA 0012 Airfoil
1 0.92 0.25
0.97 0.43

The second test cases is a NACA 0012 airfoil at 4° angle of attack. This case was added
to provide a completely different flow geometry, an external flow. The mesh used in the
airfoil case is from NASA’s Turbulence Modeling Resources [21], and is significantly differ-
ent than the meshes used in the training cases. The computational domain extends to 500
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e

Region 1 Region 2

(a) Input array

(b) Physical domain

Figure 8: Case study | results: recirculation regions in the convergent-divergent channel flow. Blue denotes
regions that the CNN classified as recirculation, and red denotes those regions selected as instances of recircu-
lation.

chord lengths in any direction, the number of cells is small, and cells are concentrated to-
wards the airfoil. This results in large ratios of largest to smallest cell volume, and large
maximum aspect ratios. Since the mesh has a significant effect on the physical shape of
regions and the warping to CNN inputs, this is a challenging case for a CNN trained
with cases with very different meshes. The region proposal was done with 15 window
sizes corresponding to aspect ratios of 2:2, 2:1, 1:2 and scale factor of 15, 20, 25, 30, 35
cells. A stride of 1 cell was used in each direction, resulting in 534,565 proposed regions.
The Fluid R-CNN resulted in two regions selected as instances of recirculation, out of
2,731 evaluated positively by the CNN. One region was correctly selected, with a 92%
probability of being recirculation, and an intersection over union of 25% with the human
labeled region. The other region, a false positive, was assigned a 97% probability of be-
ing recirculation and an intersection over union of 43% with the human labeled region.
While the IoU metric suggests both identifications were failure, it can be seen in Fig. 9
that the correct solution would be a single region roughly equal to the union of the two
identified regions. These results are still promising considering that out of a domain of
size roughly 1,000 x 1,000 chord lengths the method was able to focus on the small region
on the upper surface of the airfoil. Furthermore the method did initially identify single
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Figure 9: Case study | results: recirculation regions in the flow over an airfoil. Blue denotes regions that the
CNN classified as recirculation, and red denotes those regions selected as instances of recirculation.

regions that more closely capture the whole recirculation but these were discarded dur-
ing the non-maximum suppression step, indicating that the two separate regions were
assigned higher probability than the single region. Again, this is likely due to the limited
amount of training cases used to train the CNN. The results are summarized in Table 3
and shown in Fig. 9, with the two identified regions labeled.

3.2 Case study II — Identifying 2D boundary layer

For the second case study the boundary layer, a continuous feature, is identified in two
different flows. The flows used are the periodic hills, and the convergent-divergent chan-
nel flows shown in Fig. 7. A CNN was trained using four section cuts from the periodic
hills case, shown in Fig. 10. The boundary layer was identified visually based on wall-
distance Reynolds number.

|

Figure 10: Section cuts (blue) and human-labeled boundary layer regions (red) used to train the boundary layer
CNN for Case study II.

The CNN architecture was identical to that for Case study I. The CNN was trained for
500 training steps with a learning rate of 0.01 using mini-batches containing 5 boundary
layer cases, no difficult background cases, and 15 background cases. All training win-
dows were restricted to be the same width as the section cuts, namely 3 cells. The Fluid
R-CNN was first tested on the entire periodic hill case, to identify the entire boundary
layer after training with sectional cuts from the same case. The region proposal for the
periodic hills case was done with 5 windows of width 3 and heights 10,15,20,25,30 cells
with stride of 2 in both directions, resulting in 15,974 total regions. The results are shown
in Fig. 11(a).
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(a) Periodic hills (b) Convergent-divergent channel

Figure 11: Case study Il results: boundary layers (red/dark gray) in the periodic hills and convergent-divergent
channel flows.

The Fluid R-CNN was then used on a new flow, the convergent-divergent channel,
for which the CNN training saw no data from. The region proposal for the convergent-
divergent channel case was done with 6 windows of width 3 and heights 10,20,30,40,50,60
cells with stride of 2 in both directions, resulting in 15,974 total regions. The results are
shown in Fig. 11(b).

For both cases the algorithm was able to identify the entirety of the boundary layer.
This was verified visually rather than quantitatively. One noticeable quirk of the results
is that the boundary layer is significantly thicker than the human labeled examples used
for training. This was expected since non-maximum suppression is not used for these
cases, and the creation of training cases considers partial overlap regions (up to some
IoU threshold) as examples of boundary layer. This behavior is inherent in the method
used and cannot be eliminated, but some steps were taken to mitigate it. The IoU thresh-
old was increased to 0.75 from the typical 0.5. In addition, since the boundary layer is
a gradient with no clear edge, no difficult examples were used for background and its
threshold was lowered to 0.1 from the typical 0.25. An alternative would be to use train-
ing examples with intermediate values of the probabilities for the different categories,
rather than with examples labeled as 100% probability of belonging to one or the other.

3.3 Case study III — Identifying 3D horseshoe vortex

The third case study consists of identifying the horseshoe vortex in a 3D wing-body junc-
tion flow based on the experimental setup of Devenport et al. [22]. The problem is illus-
trated in Fig. 12. This is a continuous feature problem and the CNN was trained with
section cuts of the domain. The Fluid R-CNN was then tested in the same flow in order
to identify the entirety of the horseshoe vortex. The horseshoe vortex identification was
done in only half the domain, but the results are mirrored for visualization. The RANS
simulation for this case was done for half of the domain, using a symmetry plane, and a
mesh size of 149 x 98 x 49 rows, columns, and layers respectively. The Reynolds number
is about 10° based on airfoil thickness, and the turbulence model used was the k—w SST
model.

A CNN was trained using four section cuts shown in Fig. 13(a). The horseshoe vortex
was identified visually based on looping streamlines of the cross-flow components of ve-
locity (no mean flow direction) at different cross-sections normal to the airfoil. The CNN
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Horseshoe
vortex

CNN-identified
Horseshoe vortex

(a) Schematic (b) Results

Figure 12: Schematic of a horseshoe vortex around the wing-body junction geometry used in Case study Il (a),
and results from the Fluid R-CNN method (b).

(a) Training cases (b) Identified horseshoe vortex

Figure 13: Case study Il training cases (a) and results (b). The training cases consist of section cuts of the
domain (blue) and human-labeled regions containing the horseshoe vortex (red). The results show the entire,
mirrored, simulation domain including the wall (grey), airfoil (blue), and the identified vortex (red).

architecture consists of inputs size 10x10x 10, ten feature maps in the convolutional layer
with window size 4 x4 x4 and max pooling with 2x2x 1 windows, and two dense layers
of 10 ReLU and 2 softmax neurons. Similar to boundary layer case, the training windows
were restricted to be the same width as the section cuts. The mini-batches consisted of 5
horseshoe vortex cases, 5 difficult background cases, and 10 background cases with the
IoU thresholds being the typical 0.5 and 0.25. The region proposal was done with 25 win-
dows of width 3, height-to-depth ratios of 1:1,1:2,1:3,1:4,1:5 and scales 10,20,30,40,50
cells, with strides of (4,1,2) cells in the (x,y,z) directions, resulting in 181,728 total re-
gions.

The results were evaluated qualitatively and are shown in Fig. 13(b). The Fluid R-
CNN was able to identify most of the horseshoe vortex, doing particularly well down-
stream of the airfoil, but not as well around the airfoil where large portions of the vortex
were not identified. The identified vortex in the wake also contains erroneous sections
near the symmetry plain that extend far from the wall. The method also falsely identifies
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a region of the wall near the inlet as horseshoe vortex. It is believed that these failures are
due to the limited amount of training data, and the simplicity of the CNN architecture
used.

4 Discussions

The goal of this study was to evaluate the potential of adapting a data-driven algorithm
developed for image recognition to the problem of flow feature detection. The results
are very encouraging, specially considering the limited amount of training data, the sim-
plicity of the CNN architecture, and all the simplifications done to the overall R-CNN
method. For instance, the recirculation CNN was trained using only three examples of
recirculation. In image recognition it is typical to use hundreds to tens of thousand of
images for any given category, and it is widely recognized that the best way to improve
the performance of a CNN is by using more training data [13]. This and other important
considerations need to be taken into account if this method will continue to be pursued.

4.1 Improving the Fluid R-CNN method

The Fluid R-CNN method can be improved at every stage using techniques already used
in the image recognition counter-parts. The CNN classification can be improved by: (1)
using more training examples and artificially augmenting the training data, (2) using
deeper architecture and optimizing the architecture and training hyper-parameters, (3)
using regularization techniques during training, such as dropout, to avoid over-fitting.
For applications requiring identification of several classes of flow features the CNN could
be used for local-feature extraction only, with classification done by class-specific support
vector machines, allowing for greater specialization of these classifiers. For these cases
a more sophisticated region proposal algorithm can be used, which would only pass
the most likely regions to the classifiers. For cases with more than one instance of a
feature of interest, an IoU threshold can be used on the non-maximum suppression at
the selection step to allow for some amount of intersection between selected regions (see
Fig. 2). As can be appreciated from this discussion, the methodology can become very
complex very quickly. Although such complexities were not warranted for a first study
into the adaptability of these methods to fluid flows, their incorporation should improve
the performance significantly.

In this study the flows were restricted to flows with singly-connected domains, and
were mapped to a rectangular domain. There are several ways of making this a general
method. One possible approach would be to divide a multiply-connected domain into
several singly-connected domains. The Fluid R-CNN method would first be used on
each individually, and then regions along the boundaries which encompass two domains
would need to be considered. Another approach we have tried with initial success is to
completely forgo the domain mapping and search the physical domain directly, using
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rectangular windows of fixed physical dimensions. The biggest challenge of this ap-
proach is in handling the boundaries, a problem shared with other fluid dynamics data
post-processing techniques such as particle image velocimetry (PIV). Some of the same
boundary-handling methods used in PIV could be used for the Fluid R-CNN method.

Another aspect of the formulation that requires more thought is the identification
of continuous flow features, which has no analogue in image recognition. For instance
addressing the issue with larger regions (e.g. thicker boundary layer) through either
modifying the training data creation step or the selection step. Similarly, the clustering
of the identified region into different instances of the flow feature was not considered in
this study.

4.2 Application and limitations of the method

The method is shown to work reasonably well in the test cases presented and is expected
to perform much better with more training data and better CNN architecture. However
it must be pointed out that the computational cost of this method is much higher than
existing identification methods based on calculating a field value and applying a thresh-
old. For instance for vortex identification in time-dependent flows the Q-criterion or
Ap-criterion can be calculated and a threshold applied. This would be much faster and
sufficient for many applications.

The advantage of the presented method comes in when there is no simple existing
method for the feature in question, or when a higher level of granularity is desired in dis-
tinguishing between similar features. For instance the Q-criterion or Aj-criterion meth-
ods are not applicable to identifying the recirculation regions in mean flows, as in the first
case study. These two criteria are equivalent for planar incompressible flows and consist
of a non-linear mapping from the three-dimensional velocity field to a scalar field. Due
to the nonlinearities, the mapping applied to the mean velocity field is not equivalent to
the time-average of the mapping applied to the instantaneous field. While the mapping
can still be applied, the resulting scalar field will generally fail at identifying the recir-
culation region. For creating the training and testing examples the recirculation regions
were determined manually by visualizing streamlines of the velocity field. The presented
method would be a good choice for automatic detection of these features. The strength
of this method is in being able to identify features solely from examples provided. The
features themselves do not need to be well defined physically or mathematically as long
as sufficient examples can be provided.

4.3 Extension to time-dependent cases

As discussed in the introduction, flow feature identification in time-dependent flow fields
(e.g. coherent structures in turbulent flows) is an important application and motiva-
tion for the development of this method. While the current study focused on time-
independent problems, the presented methodology can be used directly for identifying
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flow features at individual time-steps in time-dependent flows. Time-dependent datasets
have additional problems of interest, including event detection and feature tracking [6].
Feature tracking consist of determining if features at different times correspond to the
same feature. Events in the time evolution of features include changing shape, splitting
into two, dissipating, merging with another feature, and entering or leaving the domain.
Two common approaches for feature tracking and event detection include extracting fea-
tures from the spatial-temporal domain directly (e.g. treating the problem as four dimen-
sional), or by extracting features at each separate time and solving the correspondence
problem. The presented method should be useful in either of these approaches.

5 Conclusions

Feature identification is an important task in fluid dynamics applications. Existing meth-
ods are feature-specific and are based on physical understanding of the behavior of the
flow at regions where the feature occurs. In this study convolutional neural networks,
a machine learning technique developed for image recognition, were used to solve the
problem of flow feature identification. These techniques work well because the two tasks,
object detection in images and flow feature detection, are analogous. In particular, CNNs
are well suited for flow feature identification because like objects in images, flow features
can occur anywhere within the domain, and CNNs exploit this translation invariance.
The novelty of the approach is that it is data-driven, performing the feature detection
based on learning from training examples rather than on explicit interpretation of phys-
ical laws governing the flow. The method was proven to be successful by applying it
to three different case studies: detecting recirculation regions and boundary layer in 2D
RANS simulations, and horseshoe vortex in 3D RANS simulations. The results were sur-
prisingly good for the limited amount of training data used and simplicity of the CNN
architecture.

The main advantage of this data-driven method is that it is a general approach to
feature extraction rather than being feature-specific, with the ability to detect new fea-
tures for which a physics based detection method does not exist. Being a data-driven
method, it potentially has the ability to distinguish between very similar features, pro-
vided enough training data. There are also some challenges with this data-driven method.
The method relies on a large amount of human-labeled training data, which can be diffi-
cult to obtain. The method is also more computationally intensive than some of the cur-
rent techniques that rely on calculation of a single quantity at each point. Because of this,
the method is more useful for flow features which have no existing method of calculat-
ing a field value used for feature identification. For instance, while vortex identification
methods, such as the Q-criterion or Aj-criterion, exist for identifying these features in
time-dependent flows, such methods cannot be directly applied for recirculation regions
in the mean flow. The method could also be useful to differentiate between different type
of vortex structures, which could not be done with existing methods.
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In this study we have demonstrated that data-driven methods can provide a general
approach to flow feature extraction. Future work will focus on improving the perfor-
mance by incorporating the changes discussed in Section 4.1 and using the method for
identifying flow features in time-dependent flows.

Acknowledgments

The authors thank Dr. Todd Lowe at Virginia Tech for his valuable input throughout the
project, Dr. Lian Duan at Missouri S&T for his support on developing the background
material, and Yang Zeng for his help in creating some of the images. This work was in
part possible thanks to the Kevin T. Crofton Graduate Fellowship.

Appendix

A Input parameters

This appendix summarizes the ten input parameters used from Wang et al. [15] and Ling
et al. [16]. The definition of the invariants is shown in Table 5. These inputs are non-
dimensional and Galilean invariant. Each input g is obtained by
q
9= 7T (A1)
(I41+1g*1)

Table 4: Nomenclature for input definition.

Symbol Definition
u; Mean velocity
k Turbulent kinetic energy
u Fluctuation velocity
0 Fluid density
€ Turbulence dissipation rate
S Strain rate tensor
(@) Rotation rate tensor
v Fluid viscosity
d Wall distance
r Unit tangential velocity vector
L. Characteristic mean flow length scale
p Fluid pressure
X Position
t Time
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Table 5: Non-dimensional flow features used as input in the classification.

Normalization factor

Input (g) Raw input (§) @)
Ratio of excess rotation rate to 1 2 5 >
strain rate (Q-criterion) 21917 =11S1%) Kl
Turbulence intensity k % u;u;
Wall-distance based Reynolds . < Vkd )
min| —,2 —
number 50v
Pressure gradient along JP dP JP
. Ups— - Uil;
streamline Xy Jx; 0x;
Ratio of turbulent time scale to k 1
mean strain time scale e IS]
Ratio of pressure normal dP 0P 1 ou?
stresses to shear stresses 9x; 0x; 7P 9
Non-orthogonality between L 90U ou; - dly
velocity and its gradient il ox; it t; ox; i 0x;
Ratio of convection to U<ﬂ Wl S|
production of TKE "dx; j Rk
Ratio of total to normal (] 2
Reynolds stresses i
Streamli t =L !
reamline curvature TOID? L

where § and g* are the raw input and normalization factor respectively. The exception is
wall-distance based Reynolds number which does not require a normalization parameter
and is given by g =4. The definition of non-orthogonality of velocity and its gradient
comes from Gorle et al. [23]. The nomenclature for the variables used in Table 5 is given
in Table 4. Repeated indices imply summation, D denotes the total derivative, ||-|| the
matrix norm, and |- | the vector norm.



C. Michelén Strofer et al. / Commun. Comput. Phys., 25 (2019), pp. 625-650 649

References

[1] A. K. M. Fazle Hussain. Coherent structures and turbulence. ]. Fluid Mech., 173(-1):303,
December 1986.

[2] S. K. Robinson. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.,
23(1):601-639, 1991.

[3] Dennis M. Bushnell. Shock wave drag reduction. Annu. Rev. Fluid Mech., 36(1):81-96, 2004.

[4] John Van Rosendale. Floating shock fitting via Lagrangian adaptive meshes. In 12th Compu-
tational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, June
1995.

[5] S.]J. Kamkar, A. M. Wissink, V. Sankaran, and A. Jameson. Feature-driven Cartesian adaptive
mesh refinement for vortex-dominated flows. J. Comput. Phys., 230(16):6271-6298, July 2011.

[6] Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee, and Helmut Doleisch.
The state of the art in flow visualisation: Feature extraction and tracking. In Computer Graph-
ics Forum, volume 22, pages 775-792. Wiley Online Library, 2003.

[7] Jochen Frohlich, Christopher P. Mellen, Wolfgang Rodi, Lionel Temmerman, and Michael A.
Leschziner. Highly resolved large-eddy simulation of separated flow in a channel with
streamwise periodic constrictions. J. Fluid Mech., 526:19-66, March 2005.

[8] M. Breuer, N. Peller, Ch. Rapp, and M. Manhart. Flow over periodic hills: Numerical and
experimental study in a wide range of reynolds numbers. Comput. Fluids, 38(2):433-457,
2009.

[9] Jiequn Han, Linfeng Zhang, Roberto Car, et al. Deep Potential: A general representation of
a many-body potential energy surface. Commun. Comput. Phys., 23:629-639, 2018.

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580-587,2014.

[11] Shaoqging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91-99, 2015.

[12] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86:2278-2324, November 1998.

[13] Patrice Simmard, Dave Steinkraus, and John Platt. Best practices for convolutional neu-
ral networks applied to visual document analysis. In Proceedings of the seventh international
conference on document analysis and recognition, 2003.

[14] Michael A. Nielsen. Neural Networks and Deep Learning. 2015.

[15] Jian-Xun Wang, Jin-Long Wu, and Heng Xiao. Physics-informed machine learning approach
for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev.
Fluids, 2(3), March 2017.

[16] J.Ling and J. Templeton. Evaluation of machine learning algorithms for prediction of regions
of high Reynolds averaged Navier Stokes uncertainty. Phys. Fluids, 27(8):085103, March 2015.

[17] David E Rumelhart, Geoffrey E Hinton, and Ronald ] Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533,1986.

[18] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detec-
tion with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell.,
32(9):1627-1645, 2010.

[19] Sander Dieleman, Jan Schlter, Colin Raffel, Eben Olson, Sren Kaae Snderby, Daniel Nouri,
et al. Lasagne: First release., August 2015.



650 C. Michelén Strofer et al. / Commun. Comput. Phys., 25 (2019), pp. 625-650

[20] Theano Development Team. Theano: A Python framework for fast computation of mathe-
matical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[21] NASA Langley Research Center turbulence modeling resource. https://turbmodels.
larc.nasa.gov/index.html.

[22] William ]J. Devenport and Roger L. Simpson. Time-dependent and time-averaged turbulence
structure near the nose of a wing-body junction. J. Fluid Mech., 210:2355, 1990.

[23] Catherine Gorle, Michael Emory, and Gianluca laccarino. RANS modeling of turbulent mix-

ing for a jet in supersonic cross flow: Model evaluation and uncertainty quantification. In
ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc., 2012.



