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Abstract. The aim of this paper is to derive a stable and efficient scheme for solving the
one-dimensional time-fractional nonlinear Schrödinger equation set in an unbounded
domain. We first derive absorbing boundary conditions for the fractional system by
using the unified approach introduced in [47, 48] and a linearization procedure. Then,
the initial boundary-value problem for the fractional system with ABCs is discretized,
a stability analysis is developed and the error estimate O(h2+τ) is stated. To accel-
erate the L1-scheme in time, a sum-of-exponentials approximation is introduced to
speed-up the evaluation of the Caputo fractional derivative. The resulting algorithm
is highly efficient for long time simulations. Finally, we end the paper by reporting
some numerical simulations to validate the properties (accuracy and efficiency) of the
derived scheme.
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1 Introduction

The classical Schrödinger equation serves as the Feynman propagator for nonrelativis-
tic quantum mechanics by using a Gaussian probability distribution in the space of all
possible paths. This provides a useful mechanism that accounts naturally for the non-
Gaussian distributions corresponding to fractional structures. By extending the Feynman
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path integral from Gaussian distribution to Lévy-like quantum mechanical paths, Laskin
[28, 29] proposed a space fractional Schrödinger equation. Naber [39] built the Time
Fractional Schrödinger Equation (TFSE) in analogy with the fractional Fokker-Planck
equation as well as with the application of the time Wich rotation. Related works have
next been developed [10, 15, 32, 35, 40, 45], including e.g. the generalization of the TFSE
to a full space and some new results on the correct continuity equation for the prob-
ability density. The fractional nonlinear Schrödinger equation is used to describe the
nonlocal quantum phenomena in quantum physics and explore the quantum behaviors
of either long-range interactions or multi-scale time-dependent processes. Many possi-
ble applications explain why this new direction in quantum physics is rapidly emerg-
ing [26, 28, 29, 35, 39, 40, 46]. Some analytical and approximate solutions have first been
considered for the TFSE [23,41]. Nevertheless, the complexity of the mathematical struc-
ture of the TFSE with different potentials and nonlinearities leads to extremely difficult
detailed analytical studies of its non standard properties, which are sometimes impossi-
ble to derive. Therefore, efficient and accurate numerical simulations [3, 6, 11, 17, 19] are
urgently needed to understand them.

In this paper, we develop and analyze some original accurate and efficient numer-
ical methods for computing the solution to the general 1D Time-Fractional Nonlinear
Schrödinger Equation (TFNSE)





iC
0Dα

t ψ(x,t)=−ψxx+V(x)ψ+ f (|ψ|2)ψ, (x,t)∈R×(0,T],

ψ(x,0)=ψ0(x), x∈R,

ψ(x,t)→0 when |x|→+∞, t∈ (0,T],

(1.1)

where i=
√
−1 and V(x) is the external potential. The function f models general nonlin-

ear effects with respect to ψ, e.g. for the case of the cubic nonlinearity f (|ψ|2)ψ= g|ψ|2ψ
that arises in nonlinear optics. If g=+1, one gets the well-known defocusing nonlinearity
while g=−1 corresponds to the focusing situation. The operator C

0Dα
t denotes the Caputo

fractional derivative of order α (0<α<1) with respect to t [49] and given by

C
0Dα

t ψ(x,t)=
1

Γ(1−α)

∫ t

0

1

(t−s)α

∂ψ(x,s)

∂s
ds, 0<α<1, (1.2)

where Γ(·) is the Gamma special function. Three crucial and fundamental difficulties
appear when numerically solving problem (1.1)

(i) the spatial domain is unbounded,

(ii) the TFNSE is a nonlinear equation,

(iii) the (nonlocal) Caputo derivative a priori needs a huge storage and a high computa-
tional cost when discretized.

Over the past few decades, many contributions were made to overcome the numerical
difficulties arising from solving PDEs in unbounded domains. For example, the method
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of Artificial/Absorbing Boundary Conditions (ABCs) is a powerful way to (exactly or ap-
proximately) reformulate the initial problem in the unbounded domain under the form of
another problem appropriately set in a finite domain [2]. The basic idea is to build a suit-
able ABC to eliminate the waves striking a fictitious boundary introduced to truncate the
computational domain. In the literature, a lot of attention has been directed towards the
construction of ABCs for time-fractional linear PDEs [7,12,14,18] as well as Schrödinger-
type equations [2,4,5]. However, the question of designing accurate and stable ABCs for
the TFNSE remains open, mainly due to the presence of the nonlinear term f . Indeed,
the Laplace transform which is the main ingredient for building ABCs cannot be applied
directly to the nonlinear case. To overcome this problem, the unified approach has been
proposed in [47, 48] to construct accurate ABCs for the standard nonlinear Schrödinger
equation (α=1).

The presence of a nonlocal convolution in the expression of the exact/approximate
ABCs leads to extremely difficult questions regarding both the development and numer-
ical analysis of the truncated initial boundary-value problem (IBVP), and this even for
the standard linear Schrödinger equation [44]. In practice, only the sub-optimal estimate
is proved (see [44]). In addition, the brute force discretization of the Caputo derivative
induces a huge storage and a high computational cost for simulating the TFNSE. For in-
stances, the L1-approximation scheme [27, 30, 34, 44] requires the storage of all the past
values of the unknown function, and O(n) flops at the n-th time step and each spatial grid
point. Thus, the average storage is O(NJ) and the total computational cost is O(N2 J),
where N and J are the total numbers of time steps and spatial grid points, respectively. As
a consequence, this is a severe limitation for the long time simulation of time-fractional
PDEs, which would be even worst for higher-dimensional problems. The summation of
exponentials (SOEs) to approximate the convolution kernel turns out to be successful to
highly speed-up the evaluation of the Caputo derivative [20,38]. Indeed, the exponential
kernel can be rewritten as a sequence of ODE systems or under the form of a standard
recurrence relation. As proved in [20], the resulting algorithm has a nearly optimal com-
plexity, i.e. O(JN log2 N) flops and O(J log2 N) storage for solving the TFNSE.

The goal of this paper is to develop some new stable and efficient schemes to simulate
the TFNSE defined in an unbounded domain and to develop the numerical analysis of the
resulting scheme. To this aim, we first extend the unified approach to derive some new
nonlinear ABCs for the TFNSE arising in system (1.1), and present some original a pri-
ori energy estimates for the truncated bounded problem. We next derive a discretization
scheme by using the L1-approximation of the Caputo derivative and build a linearized
finite-difference scheme by linearizing the nonlinear term and implementing the ABCs.
The resulting scheme avoids any extra computational cost compared with an implicit
scheme. In addition, we introduce the fast algorithm developed in [20] to speed-up the
evaluation of the time convolution arising in the Caputo derivative. Consequently, this
significantly reduces both the memory storage and computational cost of the overall al-
gorithm while keeping an almost similar accuracy compared with the direct method. For
the theoretical analysis, the corresponding error estimates is proved to be O(h2+τ) (di-
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rect scheme) and O(h2+τ+ε) (accelerated scheme) by using a nontrivial and original dis-
crete fractional-type Gronwall-inequality [31]. The absolute error ε is chosen during the
approximation of the kernel by using the SOEs for the fast algorithm, and is far smaller
than the mesh sizes h and ∆t. This parameter then does not affect the standard accuracy
of the scheme.

The paper is organized as follows. In Section 2, we propose the construction of ABCs
for the TFNSE based on the unified approach. In Section 3, we derive some a priori er-
ror estimates for the resulting truncated IBVP. Section 4 is devoted to the discretization
scheme and its numerical analysis. Some numerical examples in Section 5 allows to con-
firm the efficiency of the scheme and validate the error estimates. In addition, we provide
some examples to illustrate the behavior of the solution of the TFNSE. Finally, Section 6
concludes the paper.

2 Construction of nonlinear ABCs for the TFNSE

Let us introduce a computational bounded domain Ωint := {xℓ < x < xr}, with left and
right finite fictitious boundaries Γℓ := {xℓ} and Γr := {xr}. The two points xℓ and xr are
chosen such that the initial data ψ0(x) is compactly supported in Ωint. We define the left
and right half-spaces by Ωℓ :={−∞< x< xℓ} and Ωr :={xr < x<+∞}, respectively, and
the exterior domain by Ωext=Ωℓ∪Ωr. Let us apply the basic ideas of the unified approach
proposed in [47, 48] to construct some ABCs for the TFNSE:

(1) Firstly, the TFNSE arising in (1.1) is rewritten in operator form in Ωext as

iC
0Dα

t ψ(x,t)=Lψ(x,t)+Nψ(x,t), x∈Ωext, (2.1)

where the linear and nonlinear operators are respectively given by

Lψ=−ψxx and Nψ=Vψ+ f (|ψ|2)ψ.

Based on the operator splitting method [13], for a small time step, the original equa-
tion is considered as taking first a linear effect and next a nonlinear effect.

(2) On Ωext, we approximate the linear operator L by an approximate one-way opera-
tor Lapp (by distinguishing between the right- and left-traveling waves) which can
absorb the wave striking the artificial boundaries. The one-directional operators
Lapp are then used to replace the original linear operator L.

(3) Taking the time step infinitesimal, we obtain an approximate one-directional equa-
tion by coupling the approximate operator Lapp with the nonlinear operator N

iC
0Dα

t ψ(x,t)=Lappψ(x,t)+Nψ(x,t). (2.2)
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Finally, applying the approximate equation (2.2) at the fictitious boundaries, one gets
some ABCs. Therefore, the main point now is to construct the one-directional operators
Lapp.

To derive an operator Lapp approximating L, we first consider the following time-
fractional linear Schrödinger equation (TFLSE) in the exterior domain

iC
0Dα

t ψ(x,t)=Lψ(x,t)=−ψxx(x,t), x∈Ωext, (2.3)

ψ0(x)=0, x∈Ωext, (2.4)

ψ(x,t)→0, when |x|→+∞. (2.5)

Let us recall that the Laplace transform of the Caputo fractional derivative [49] is

̂C
0Dα

t [ψ(t)](s)= sαψ̂(s)−sα−1ψ(0), (2.6)

where the Laplace transform is defined by

ψ̂(s)=
∫ +∞

0
e−stψ(t)dt, ℜ(s)>0.

Thus Eq. (2.3) can be written in the Laplace domain as

isαψ̂(x,s)=−ψ̂xx(x,s), ℜ(s)>0. (2.7)

Setting
√
−i=e−

πi
4 , the general form of the solution to Eq. (2.7) is

ψ̂(x,s)=A−(s)e−
πi
4 e−

√
sαx+A+(s)e

− πi
4 e

√
sαx,

where the coefficients A±(s) are two arbitrary analytic functions. From (2.5), we deduce
that

ψ̂(x,s)=

{
A+(s)e−

πi
4 e

√
sαx, x∈Ωℓ,

A−(s)e−
πi
4 e−

√
sαx, x∈Ωr.

(2.8)

Differentiating ψ̂(x,s) with respect to x, one gets the two following relations

∂xψ̂(x := xℓ,s)=e−
πi
4 s

α
2 ψ̂(x := xℓ,s), (2.9)

∂xψ̂(x := xr ,s)=−e−
πi
4 s

α
2 ψ̂(x := xr,s), (2.10)

which correspond to the Dirichlet-to-Neumann (DtN) maps at the interfaces for the TFLSE
written in the Laplace domain.

Exact ABCs for the TFLSE. Applying the inverse Laplace transform to (2.9)-(2.10), one
naturally gets the exact ABCs (DtN maps) for the TFLSE

∂nψ(x,t)=− e−
πi
4

Γ(1− α
2 )

∫ t

0

∂sψ(x,s)

(t−s)
α
2

ds=−e−
πi
4 C

0D
α
2

t ψ(x,t), on Γℓ,r. (2.11)
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In the above relation, we introduced ∂n as the outwardly directed unit normal vector to
Γℓ,r.

Approximate ABCs for the TFLSE. The exact ABCs (2.11) cannot be directly combined
with the nonlinear term Nψ. To localize boundary conditions, we proceed as in the stan-
dard approach originally introduced by Engquist and Majda [16] for wave-like equations
to obtain some local ABCs. To this aim, we first introduce the diagonal (P,P)-Padé ap-
proximation of the function

√
sα used in [4, 5, 8, 9, 21]

√
sα= s

α
2
0

[
1−

P

∑
p=1

Ap(sα
0−sα)

sα
0−(sα

0−sα)Bp

]
+EP(s

α), (2.12)

where s0 is the expansion point, and the coefficients {Ap}1≤p≤P and {Bp}1≤p≤P are given
by

Ap=
2

2P+1
sin2

(
pπ

2P+1

)
, Bp=cos2

(
pπ

2P+1

)
.

The error estimate of the Padé approximation is established in [37], for all sα >0,

EP(s
α)=2

√
sα

(
γ2P+1(sα)

1+γ2P+1(sα)

)
, with γ(sα)=

√
sα−1√
sα+1

. (2.13)

Here, we only consider the simplest case, i.e. P=1, and obtain the third-order diagonal
Padé approximation

√
sα≈ s

α
2
0

sα
0+3sα

3sα
0+sα

. (2.14)

Replacing
√

sα in (2.9) and (2.10) by the approximation (2.14), one gets

(3sα
0+sα)∂xψ̂(x,s)±e−

πi
4 s

α
2
0 (s

α
0+3sα)ψ̂(x,s)=0, (2.15)

where the plus (minus, respectively) sign in ± represents the right(left, respectively)-
hand side boundary condition. After some simple algebraic calculations with (2.15), we
deduce the relation

sαψ̂(x,s)=−(∂x±3e−
πi
4 s

α
2
0 )

−1(3sα
0∂x±e−

πi
4 s

α
2
0 sα

0)ψ̂(x,s). (2.16)

Applying the inverse Laplace transform to (2.16) and multiplying by i, one gets

iC
0Dα

t ψ(x,t)=−i(∂x±3e−
πi
4 s

α
2
0 )

−1(3sα
0∂x±e−

πi
4 s

α
2
0 sα

0)ψ(x,t). (2.17)

Comparing (2.17) with (2.3), we can derive the approximate operator

Lapp=−i(∂x±3e−
πi
4 s

α
2
0 )

−1(3sα
0∂x±e−

πi
4 s

α
2
0 sα

0). (2.18)
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Nonlinear approximate ABCs for the TFNSE. Substituting (2.18) into (2.2), the nonlinear
ABCs for the TFNSE are

(∂x±3e−
πi
4 s

α
2
0 )

C
0Dα

t ψ+(3sα
0∂x±e−

πi
4 s

α
2
0 sα

0)ψ=−i(∂x±3e−
πi
4 s

α
2
0 )(Vψ+ f (|ψ|2)ψ). (2.19)

By using an approach similar to the one by Kuska [25], we linearize the nonlinear term
f (|ψ|2) to obtain a variety of boundary conditions:

(∂x±3e−
πi
4 s

α
2
0 )

C
0Dα

t ψ+(3sα
0∂x±e−

πi
4 s

α
2
0 sα

0)ψ=−i(V+ f (|ψ|2))(∂xψ±3e−
πi
4 s

α
2
0 ψ). (2.20)

Finally, we obtain an IBVP in Ωint×[0,T] with the boundary conditions (2.20) on Γℓ,r

iC
0Dα

t ψ(x,t)=−ψxx+Vψ+ f (|ψ|2)ψ, t>0, x∈Ωint, (2.21)

ψ(x,0)=ψ0(x), x∈Ωint, (2.22)

(∂x∓3e−
πi
4 s

α
2
0 )

C
0Dα

t ψ+(3sα
0∂x∓e−

πi
4 s

3α
2

0 )ψ=−i(V+ f (|ψ|2))(∂x∓3e−
πi
4 s

α
2
0 )ψ, x∈Γℓ,r.

(2.23)

Remark 2.1. Generally, the ABCs (2.19) perform better than (2.20). However, the stability
analysis with (2.20) is easier to handle than with (2.19). The comparison is discussed
in [50] for general nonlinear Schrödinger equations. In this paper, we consider (2.20) as
ABC.

3 A priori error estimates

To state the stability of (2.21)-(2.23), we introduce two auxiliary variables

θ(t)=∂xψ(xℓ,t)−3s
α
2
0 e−

πi
4 ψ(xℓ,t),

φ(t)=∂xψ(xr,t)+3s
α
2
0 e−

πi
4 ψ(xr ,t).

Thus, the reduced problem (2.21)-(2.23) can be equivalently rewritten as

iC
0Dα

t ψ(x,t)=−ψxx+Vψ+ f (|ψ|2)ψ, x∈Ωint, t>0, (3.1)

ψ(x,0)=ψ0(x), x∈Ωint, (3.2)

ψx(x,t)= θ(t)+3s
α
2
0 e−

πi
4 ψ(x,t), x∈Γℓ, (3.3)

C
0Dα

t θ(t)+i(V(x)+ f (|ψ|2))θ(t)+3sα
0θ(t)+8s

3α
2

0 e−
πi
4 ψ(x,t)=0, x∈Γℓ, (3.4)

ψx(x,t)=φ(t)−3s
α
2
0 e−

πi
4 ψ(x,t), x∈Γr, (3.5)

C
0Dα

t φ(t)+i(V+ f (|ψ|2))φ(t)+3sα
0φ(t)−8s

3α
2

0 e−
πi
4 ψ(x,t)=0, x∈Γr. (3.6)

Some useful lemmas are now given to state a priori estimate for the reduced problem
(3.1)-(3.6).
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Lemma 3.1 ([33]). Let u(t) be a complex-valued function which is absolutely continuous on
[0,T]. Then, the following inequality holds

C
0Dα

t |u(t)|2 ≤ ū(t)C
0Dα

t u(t)+u(t)C
0Dα

t ū(t), 0<α<1, (3.7)

where |u|2 = ūu and ū represents the complex conjugate function of u.

Now, let us consider the following lemma (see e.g. [42]).

Lemma 3.2. Let 0<α<1. We assume that y(t) is a nonnegative absolutely continuous function
that satisfies

C
0Dα

t y(t)≤ c1y(t)+c2(t), 0<α<1, t∈ (0,T], (3.8)

where c1>0 and c2(t) is an integrable nonnegative function on [0,T]. Then, we have

y(t)≤y(0)Eα,1(c1tα)+Γ(α)Eα,α(c1tα)0D−α
t c2(t), (3.9)

where Eα,β(z) = ∑
∞
n=0

zn

Γ(nα+β)
are the Mittag-Leffler functions and D−α

t u(t) is the Riemann-

Liouville integral given by

0D−α
t u(t)=

1

Γ(α)

∫ t

0

u(τ)

(t−τ)1−α
dτ, 0<α<1.

We can then deduce the following result.

Theorem 3.1. Let (ψ(x,t),φ(t),θ(t)) be the solution of the reduced problem (3.1)-(3.6). Then,
for 0<α<1, we have the following a priori estimate

∫ xr

xℓ
|ψ(x,t)|2dx+

1

8
s
− 3α

2
0

(
|φ(t)|2+|θ(t)|2

)
≤

∫ xr

xℓ

|ψ0(x)|2dx. (3.10)

Proof. By multiplying (3.1) by ψ̄(x,t), integrating by parts the result over Ωint, taking the
complex conjugate of (3.1), multiplying the result by ψ(x,t) and integrating by parts over
Ωint, and finally combining the two equations and taking the complex parts, we have

∫ xr

xℓ

[
ψ̄(x,t)C

0Dα
t ψ(x,t)+ψ(x,t)C

0Dα
t ψ̄(x,t)

]
dx=− 2Im{ψ̄ψx}|xr

xℓ
. (3.11)

Substituting ψx(xℓ,t) and ψx(xr,t), defined by (3.3) and (3.5), into (3.11), we arrive at

∫ xr

xℓ

[
ψ̄(x,t)C

0Dα
t ψ(x,t)+ψ(x,t)C

0Dα
t ψ̄(x,t)

]
dx

=−3
√

2s
α
2
0

(
|ψ(xℓ,t)|2+|ψ(xr,t)|2

)
+2Im

{
e−

πi
4 (φ(t)ψ̄(xr,t)−θψ̄(xℓ,t))

}
. (3.12)



226 J. Zhang, D. Li and X. Antoine / Commun. Comput. Phys., 25 (2019), pp. 218-243

Multiplying (3.6) by 1
8 s

− 3α
2

0 φ̄(xr,t), then taking the complex conjugate of (3.6), multiplying

the result by 1
8 s

− 3α
2

0 φ(xr,t), combining the two equations, taking the real parts, and using
the same arguments as (3.4), we obtain

1

8
s
− 3α

2
0

[
θ̄(t)C

0Dα
t θ(t)+θ(t)C

0Dα
t θ̄(t)

]
=−3

4
s
− α

2
0 |θ(t)|2−2Re{e−

πi
4 θ(t)ψ̄(xℓ,t)}, (3.13)

1

8
s
− 3α

2
0

[
φ̄(t)C

0Dα
t φ(t)+φ(t)C

0Dα
t φ̄(t)

]
=−3

4
s
− α

2
0 |φ(t)|2+2Re{e−

πi
4 φ(t)ψ̄(xr,t)}. (3.14)

Adding (3.12), (3.13) and (3.14), applying Lemma 3.1 and noticing that |Im{Z}|+|Re{Z}|≤√
2|Z| lead to

C
0Dα

t

∫ xr

xℓ
|ψ(x,t)|2dx+

1

8
s
− 3α

2
0

C
0Dα

t

[
|φ(t)|2+|θ(t)|2

]

≤−3
√

2s
α
2
0

(|ψ(xℓ,t)|2+|ψ(xr ,t)|2)− 3

4
s
− α

2
0 (|θ(t)|2+|φ(t)|2)+2

√
2(|φ(t)ψ̄|+|θψ̄|). (3.15)

Applying the Cauchy-Schwarz inequality

|θ(t)ψ̄(xℓ,t)|≤
1

4ǫ
|θ(t)|2+ǫ|ψ(xℓ,t)|2 and |φ(t)ψ̄(xr,t)|≤

1

4ǫ
|φ(t)|2+ǫ|ψ(xr ,t)|2,

with ǫ= 3
2 s

α
2
0 to Eq. (3.15), we get

C
0Dα

t

[∫ xr

xℓ

|ψ(x,t)|2dx+
1

8
s
− 3α

2
0

(|φ(t)|2+|θ(t)|2)
]
≤− 9

24
s
− α

2
0

(|φ(t)|2+|θ(t)|2)≤0. (3.16)

Finally applying Lemma 3.2 completes the proof.

4 Discretization and analysis of the schemes

The section focuses on the construction and numerical analysis of the linearized numer-
ical schemes. Let τ = T/N and h = (xℓ−xr)/J be the temporal and spatial step sizes,
respectively, where N and J are two given positive integers. We denote the discrete time
by tn=nτ (0≤n≤N) and Ωτ={tn|0=t0<t1< ···<tN=T}. A point of the uniform spatial
grid is such that xj = jh, (0≤ j≤ J), and Ωh ={xj|xj = xℓ+ jh,0≤ j≤ J}. We also set

ψn
j =ψ(xj,tn), Vj=V(xj), φn =φ(tn), θn = θ(tn).

4.1 Derivation of the linearized L1-scheme

The L1-scheme for approximating the Caputo fractional derivative is

C
0Dα

tn
v=

1

Γ(1−α)

∫ tn

0

v′(s)
(tn−s)α

ds=
τ−α

Γ(2−α)

n

∑
k=1

an−k(v
k−vk−1)+Qn,
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where vn =v(tn) and ak =(k+1)1−α−k1−α, k≥0.
Denote the L1 scheme by

C
0 D

α
τ =

τ−α

Γ(2−α)

n

∑
k=1

an−k(v
k−vk−1).

If v∈C2([0,T]), the truncation error Qn satisfies [34, 44]

|Qn|≤Cτ2−α. (4.1)

For a sequence of functions {wn
j }0≤n≤N,0≤j≤J, we define

δxwn
j+ 1

2
=

wn
j+1−wn

j

h
, δ2

xwn
j =

1

h

(
δxwj+ 1

2
−δxwj− 1

2

)
,

δtw
n
j =

wn
j −wn−1

j

τ
, C

0 D
α
τwn

j :=
τ−α

Γ(2−α)

n

∑
k=1

an−k(w
k
j −wk−1

j ). (4.2)

Writing the TFNSE equation at the left point xℓ

iC
0Dα

t ψn
0 =−(ψn

0 )xx+V0ψn
0 + f (|ψn

0 |2)ψn
0 ,

and using the Taylor expansion, we have

(ψn
0 )x =

1

h
(ψn

1 −ψn
0 )−

h

2
(ψn

0 )xx+O(h2)

=δxψn
1
2
+

h

2

(
i C

0Dα
t ψn

0 −(V0+ f (|ψn
0 |2))ψn

0

)
+O(h2). (4.3)

Similarly, at the right boundary point xJ , we have

(ψn
J )x =δxψN

J− 1
2
− h

2

(
i C

0Dα
t ψn

J −(VJ+ f (|ψn
J |2))ψn

J

)
+O(h2). (4.4)

We apply the L1-scheme to approximate the time-fractional Caputo derivative, the
second-order central finite difference method to approximate the second-order spatial
derivative at the interior points, and use (4.3) and (4.4) to couple the ABCs and the lin-
earized approach to deal with the nonlinear term. This yields

i C
0 D

α
τψn

j =−δ2
xψn

j +
[
Vj+ f (|ψn−1

j |2)
]
ψn

j +Tn
j , 1≤ j≤ J−1, 1≤n≤N, (4.5)

i
h

2
C
0 D

α
τψn

0 =−δxψn
1
2
+
(
θn+3s

α
2
0 e−

πi
4 ψn

0

)
+

h

2

[
V0+ f (|ψn−1

0 |2)
]

ψn
0 +Tn

0 , (4.6)

C
0 D

α
τθn =−i

[
V0+ f (|ψn−1

0 |2)
]
θn−3sα

0θn−8s
3α
2

0 e−
πi
4 ψn

0 +Rn
0 , (4.7)

i
h

2
C
0 D

α
τψn

J =δxψn
J− 1

2
+
(
3s

α
2
0 e−

πi
4 ψn

J −φn
)
+

h

2

[
VJ+ f (|ψn−1

J |2)
]

ψn
J +Tn

J , (4.8)

C
0 D

α
τφn=−i

[
VJ+ f (|ψn−1

J |2)
]

φn−3sα
0φn+8s

3α
2

0 e−
πi
4 ψn

J +Rn
J , (4.9)

ψ0
j =ψ0(xj), 0≤ j≤ J. (4.10)
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Applying the Taylor expansion and (4.1), we have

|Tn
j |≤C(τ+h2), 1≤ j≤ J−1, 1≤n≤N, (4.11)

|Tn
0 |≤C(τ+h2), |Tn

J |≤C(τ+h2), 1≤n≤N, (4.12)

|Rn
0 |≤Cτ, |Rn

J |≤Cτ, 1≤n≤N. (4.13)

Omitting the small terms in (4.5)-(4.10) based on the above error bounds, we construct
the following finite difference scheme for solving problem (3.1)-(3.4) by

i C
0 D

α
τΨn

j =−δ2
xΨn

j +
[
Vj+ f (|Ψn−1

j |2)
]
Ψn

j , 1≤ j≤ J−1, 1≤n≤N, (4.14)

i
h

2
C
0 D

α
τΨn

0 =−δxΨn
1
2
+
(
Θn+3s

α
2
0 e−

πi
4 Ψn

0

)
+

h

2

[
V0+ f (|Ψn−1

0 |2)
]
Ψn

0 , (4.15)

C
0 D

α
τΘn =−i

[
V0+ f (|Ψn−1

0 |2)
]
Θn−3sα

0Θn−8s
3α
2

0 e−
πi
4 Ψn

0 , (4.16)

i
h

2
C
0 D

α
τΨn

J =δxΨn
J− 1

2
+
(
3s

α
2
0 e−

πi
4 Ψn

J −Φn
)
+

h

2

[
VJ+ f (|Ψn−1

J |2)
]

Ψn
J , (4.17)

C
0 D

α
τΦn =−i

[
VJ+ f (|Ψn−1

J |2)
]
Φn−3sα

0Φn+8s
3α
2

0 e−
πi
4 Ψn

J , (4.18)

Ψ0
j =Ψ0(xj), 0≤ j≤ J, (4.19)

where Ψn
j ,Φn and Θn correspond to the numerical approximations of ψn

j ,φn and θn, re-

spectively.

4.2 Numerical analysis of the linearized L1-scheme

Let us now consider the stability and convergence analysis of the finite difference scheme.
Let u={(u0,u1,··· ,uJ)} and v={(v0,v1,··· ,vJ)} defined on Ωh. We introduce the follow-
ing inner products and norms

(u,v)=h

(
1

2
ū0v0+

J−1

∑
j=1

ūjvj+
1

2
ūJvJ

)
, ‖u‖=

√
(u,u),

|u|1=

√√√√h
J

∑
j=1

|δxūj− 1
2
| |δxuj− 1

2
|, ‖u‖∞ = max

0≤j≤J
|uj|.

Lemma 4.1 ([24]). For any discrete function v∈Ωh, the following inequality holds

‖v‖2
∞ ≤ǫ|v|21+

(1

ǫ
+

1

xr−xℓ

)
‖v‖2 for any ǫ>0.

Lemma 4.2 ([31]). Suppose that {ωn}n=0,··· and {gn}n=0,··· are two nonnegative sequences that
satisfy ω0≤ g0 and

C
0 D

α
τωn≤λ1ωn+λ2ωn−1+gn, n≥1,
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where λ1 > 0 and λ2 ≥ 0 are two given real-valued constants. Then, there exists a constant τ∗

such that, for τ≤τ∗,

ωn ≤2
(

ω0+
tα
n

Γ(1+α)
max

0≤j≤n
gj
)

Eα(2λtn), 1≤n≤N, (4.20)

where Eα(z)=Eα,1(z) and λ=λ1+
λ2

λ1(a0−a1)
.

Lemma 4.3. Let {vn}N
n=0 be a sequence of functions defined in Ωτ. If v0≤κ and

Re( C
0 D

α
τvn,vn)≤C‖vn−1‖2+C‖vn‖2+κ2, 2≤n≤N, (4.21)

where κ>0 and C is a positive constant bounded independently of τ, then, there exists a positive
constant τ∗ such that, for τ<τ∗,

‖vn‖≤Cκ. (4.22)

Proof. Using the definition of C
0 D

α
τ and the facts that a0> a1 > ···> an →0, we have

Re( C
0 D

α
τvn,vn)=Re(

τ2−α

Γ(2−α)

(
a0vn−

n−1

∑
j=1

(an−j−1−an−j)v
j−an−1v0,vn

)

≥ τ2−α

Γ(2−α)

(
a0‖vn‖2−

n−1

∑
j=1

(an−j−1−an−j)
‖vj‖2+‖vn‖2

2
−an−1

‖v0‖2+‖vn‖2

2

)

=
1

2
C
0 D

α
τ‖vn‖2. (4.23)

Substituting (4.23) into (4.21) and using Lemma 4.2, we can easily get (4.22).

We now define the error function on the grid, for 0≤ j≤ J, 0≤n≤N,

en
j =ψn

j −Ψn
j , ϕn=φn−Φn, ϑ= θn−Θn.

Let K=max1≤n≤N{‖ψn‖∞+|φn|+|θn|}+1. We have the following result.

Theorem 4.1. Let us assume that system (3.1)-(3.4) has unique smooth solutions ψ(x,t), θ(t)
and φ(t) in Ωint×[0,T]. Then, there exist two positive constants τ0 and h0 such that, when
τ≤τ0 and h≤h0, system (4.14)-(4.19) admits a unique solution {Ψn

j ,Φn,Θn}, for n=1,2,··· ,N,

satisfying

‖Ψn‖∞+|Θn|+|Φn|≤K, (4.24)

‖en‖+|ϕn|+|ϑn|≤C∗(τ+h2). (4.25)
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Proof. At each discrete time t=tn, the proposed numerical method produces a tridiagonal
system of linear algebraic equations. Since the associated matrix is strictly diagonally
dominant, then the numerical solution of the problem is unique.

Now, we prove the error estimates of the numerical scheme. Subtracting (4.14)-(4.19)
from (4.5)-(4.10), we have the error equations: for 1≤n≤N

i C
0 D

α
τen

j =−δ2
xen

j +Vje
n
j + f (|ψn−1

j |2)ψn
j − f (|Ψn−1

j |2)Ψn
j +Tn

j , 1≤ j≤ J−1, (4.26)

i
h

2
C
0 D

α
τen

0 =−δxen
1
2
+
(
ϑn+3s

α
2
0 e−

πi
4 en

0

)

+
h

2
V0en

0+
h

2

(
f (|ψn−1

0 |2)ψn
0 − f (|Ψn−1

0 |2)Ψn
0

)
+Tn

0 , (4.27)

C
0 D

α
τϑn=−i

(
V0ϑn+ f (|ψn−1

0 |2)θn− f (|Ψn−1
0 |2)Θn

)
−3sα

0ϑn−8s3α/2
0 e−

πi
4 en

0 +Rn
0 , (4.28)

i
h

2
C
0 D

α
τen

J =δxen
J− 1

2
+
(
3s

α
2
0 e−

πi
4 en

J −ϕn
)

+
h

2
VJe

n
J +

h

2

(
f (|ψn−1

J |2)ψn
J − f (|Ψn−1

J |2)Ψn
J

)
+Tn

J , (4.29)

C
0 D

α
τ ϕn=−i

[
VJ ϕn+ f (|ψn−1

J |2)φn− f (|Ψn−1
J |2)Φn

]
−3sα

0 ϕn+8s
3α
2

0 e−
πi
4 en

J +Rn
J , (4.30)

e0
j =0, 0≤ j≤ J. (4.31)

Multiplying Eq. (4.26) by hen
i , and summing up over j from 1 to J−1, we have

ih
J−1

∑
j=1

( C
0 D

α
τen

j )e
n
j

=h
J−1

∑
j=1

{
−(δ2

xen
j )e

n
j +Vje

n
j en

j +
[

f (|ψn−1
j |2)ψn

j − f (|Ψn−1
j |2)Ψn

j

]
en

j +Tn
j en

j

}
.

Multiplying en
0 , iϑ

n
, en

J and iϕn on both sides of (4.27)-(4.30), respectively, adding the
results with the above formula, then using the following summation by parts formulas

−h
J−1

∑
j=1

(δ2
xen

j )e
n
j −en

0 δxen
1
2
+en

J δxen
J− 1

2
= |en|21

and

h
(1

2
en

0
C
0 D

α
τen

0 +
J−1

∑
j=1

( C
0 D

α
τen

j )e
n
j +

1

2
en

J
C
0 D

α
τen

J

)
=
(

C
0 D

α
τen, en

)
,
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we arrive at

i
(C

0
D

α
τen, en

)
+iϕn C

0 D
α
τ ϕn+iϑ

n C
0 D

α
τϑn

=|en|21+h
J−1

∑
j=1

Vje
n
j en

j +h
J−1

∑
j=1

[
f (|ψn−1

j |2)ψn
j − f (|Ψn−1

j |2)Ψn
j

]
en

j +h
J−1

∑
j=1

Tn
j en

j

+
(
ϑn+3s

α
2
0 e−

π
4 ien

0

)
en

0+
h

2
V0en

0 en
0+

h

2

(
f (|ψn−1

0 |2)ψn
0 − f (|Ψn−1

0 |2)Ψn
0

)
en

0+Tn
0 en

0

+
(

V0ϑn+ f (|ψn−1
0 |2)θn− f (|Ψn−1

0 |2)Θn
)

ϑ
n−3isα

0ϑnϑ
n−8is3α/2

0 e−
πi
4 en

0 ϑ
n
+iRn

0 ϑ
n

+
(
3s

α
2
0 e−

πi
4 en

J −ϕn
)
en

J +
h

2
VJe

n
J en

J +
h

2

(
f (|ψn−1

J |2)ψn
J − f (|Ψn−1

J |2)Ψn
J

)
en

J +Tn
J en

J

+
[
VJ ϕn+ f (|ψn−1

J |2)φn− f (|Ψn−1
J |2)Φn

]
ϕn−3isα

0 ϕn ϕn+8is
3α
2

0 e−
π
4 ien

J ϕn+Rn
J ϕn. (4.32)

We now prove the results (4.24) and (4.25) by mathematical induction. First, we show
that the estimates hold for n=1. Since {Ψ0

j ,Φ0,Θ0}={ψ0
j ,φ0,θ0}, we have

(
f (|ψ0

j |2)ψ1
j − f (|Ψ0

j |2)Ψ1
j

)
e1

j =
(

f (|ψ0
j |2)ψ1

j − f (|ψ0
j |2)Ψ1

j

)
e1

j = f (|ψ0
j |2)|e1

j |2, (4.33)
(

f (|ψ0
0 |2)θ1− f (|Ψ0

0|2)Θ1
)

ϑ
1
=
(

f (|ψ0
0 |2)θ1− f (|ψ0

0 |2)Θ1
)

ϑ
1
= f (|ψ0

0 |2)|ϑ1|2, (4.34)
(

f (|ψ0
J |2)φ1− f (|Ψ0

J |2)Φ1
)

ϕ1=
(

f (|ψ0
J |2)φ1− f (|ψ0

J |2)Φ1
)

ϕ1= f (|ψ0
J |2)|ϕ1|2. (4.35)

Moreover, it holds that

Im
(
(ϑ1+3s

α
2
0 e−

π
4 ie1

0)e
1
0+T1

0 e1
0

)

=− 3
√

2

2
3s

α
2
0 |e1

0|2+Im
(
ϑ1e1

0+T1
0 e1

0

)

≤− 3
√

2

2
3s

α
2
0 |e1

0|2+ε1|e1
0|2+

1

4ε1
|ϑ1|2+

(3
√

2

2
3s

α
2
0 −ε1

)
|e1

0|2+
1

4( 3
√

2
2 3s

α
2
0 −ε1)

|T1
0 |2

=
1

4ε1
|ϑ1|2+ 1

4( 3
√

2
2 3s

α
2
0 −ε1)

|T1
0 |2, (4.36)

where ε1 is a constant, satisfying 0< ε1 <
3
√

2
2 3s

α
2
0 . Similarly, we have

Im
(
(3s

α
2
0 e−

πi
4 e1

J−ϕ1)e1
J +T1

J e1
J

)
≤ 1

4ε1
|ϕ1|2+ 1

4( 3
√

2
2 3s

α
2
0 −ε1)

|T1
J |2. (4.37)

Thus, taking the imaginary part of (4.32) and using the Cauchy-Schwarz inequality
yields

Re
(
( C

0 D
α
τe1, e1)+ϕ1 C

0 D
α
τ ϕ1+ϑ

1 C
0 D

α
τϑ1

)
≤C‖e1‖2+C|ϕ1|2+C|ϑ1|2+C(τ+h2)2. (4.38)
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By Lemma 4.3, we conclude that there exists a parameter τ1 such that, for τ≤τ1,

‖e1‖+|ϕ1|+|ϑ1|≤C∗(τ+h2). (4.39)

Meanwhile, we have

|e1|21=h
J

∑
j=1

|δx ē1
j− 1

2
| |δxe1

j− 1
2
|≤h

J

∑
j=1

( |e1
j |+|e1

j−1|
h

)2
≤ 4

h2
‖e1‖2≤ 4C∗

h2
(τ+h2)2. (4.40)

Together with (4.39), (4.40) and Lemma 4.1, we deduce that

‖e1‖L∞ ≤C
(

τ+h2+
τ

h

)
.

Hence, one obtains

‖Ψ1‖∞+|Θ1|+|Φ1|≤‖ψ1‖∞+|θ1|+|φ1|+‖e1‖L∞+|ϑ1|+|ϑ1|
≤‖ψ1‖∞+|θ1|+|φ1|+C1

(
τ+h2+

τ

h

)
≤K,

whenever C1(τ+h2+ τ
h )≤1.

Now, suppose that the main results (4.24) and (4.25) hold for n≤ k−1, then we have

(
f (|ψk−1

j |2)ψk
j − f (|Ψk−1

j |2)Ψk
j

)

=
(

f (|ψk−1
j |2)ψk

j − f (|Ψk−1
j |2)ψk

j

)
+
(

f (|Ψk−1
j |2)ψk

j − f (|Ψk−1
j |2)Ψk

j

)

=ψk
j f ′(ξk−1

j )(|ψk−1
j |2−|Ψk−1

j |2)+ f (|Ψk−1
j |2)(ψk

j −Ψk
j )

≤C(|ek−1
j |+|ek

j |), (4.41)

where ξk−1
j ∈ (ψk−1

j ,Ψk−1
j ) and we remark that ‖Ψk−1

j ‖L∞ ≤K. Similarly, we show that

f (|ψk−1
0 |2)θk− f (|Ψk−1

0 |2)Θk ≤C|ek−1
0 |+C|ϑk|, (4.42)

f (|ψk−1
J |2)φk− f (|Ψk−1

J |2)Φk ≤C|ek−1
J |+C|ϕk|. (4.43)

In addition, we can write that

Im
(
(ϑk+3s

α
2
0 e−

π
4 iek

0)e
k
0+Tk

0 ek
0−8is3α/2

0 e−
πi
4 ek

0ϑ
k
)

=− 3
√

2

2
s

α
2
0 |ek

0|2+Im
(

ϑkek
0+Tk

0 en
0−8is3α/2

0 e−
πi
4 ek

0ϑ
k
)

≤− 3
√

2

2
s

α
2
0 |ek

0|2+
(

C1|ek
0|2+

1

4C1
|ϑk|2

)
+
(

C2|ek
0|2+

1

4C2
|Tk

0 |2
)

+8s3α/2
0

(
C3|ek

0|2+
1

4C4
|ϑk|2

)
,
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where Ci > 0, i = 1,2,3 are arbitrary positive and small constants. Let us set C1+C2+

8s3α/2
0 C3=3

√
2s

α
2
0 /2 in the above formula. We then deduce that

Im
(
(ϑk+3s

α
2
0 e−

π
4 iek

0)e
k
0+Tk

0 ek
0−8is3α/2

0 e−
πi
4 ek

0ϑ
k
)
≤C|ϑk|2+C|Tk

0 |2. (4.44)

Similarly to (4.44), we obtain

Im
(
(3s

α
2
0 e−

πi
4 en

J −ϕn)en
J +Tn

J en
J +8is

3α
2

0 e−
π
4 ien

J ϕn
)
≤C|ϕn|2+C|Tn

J |2. (4.45)

Now, let us consider n = k in (4.32). By taking the imaginary part of the resulting
equation, using (4.41)-(4.45) and the Cauchy-Schwarz inequality, one gets

Re
(
( C

0 D
α
τek,ek)+ϕk C

0 D
α
τ ϕk+ϑ

k C
0 D

α
τϑk

)

≤C
(
‖ek−1‖2+‖ek‖2+|ϕk|2+|ϑk|2+(τ+h2)2

)
. (4.46)

Now, by Lemma 4.3, when τ<τ2, we prove that there exists a parameter τ2 such that

‖ek‖+|ϕk|+|ϑk|≤C∗(τ+h2). (4.47)

Moreover, we have

|ek|21=h
∣∣∣

J

∑
j=1

(δx ēk
j− 1

2
)(δxek

j− 1
2
)
∣∣∣≤ 4

h2
‖ek‖2≤ 4C∗

h2
(τ+h2)2. (4.48)

Together with (4.47), (4.48) and Lemma 4.1, we deduce that

‖ek‖L∞ ≤C
(

τ+h2+
τ

h

)
.

Therefore, we obtain

‖Ψk‖∞+|Θk|+|Φk|≤‖ψk‖∞+|θk|+|φk|+‖ek‖L∞+|ϑk|+|ϑk|
≤‖ψk‖∞+|θk|+|φk|+C

(
τ+h2+

τ

h

)
≤K,

as long as C2(τ+h2+ τ
h )≤1. Finally, the conclusions also hold for n=k, completing hence

the proof.

4.3 Fast evaluation based on the L1-scheme

In this section, we consider the fast evaluation of the Caputo derivative, proposed in [20],
to circumvent the huge storage and computational cost for the long time simulation. The
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main idea of this fast algorithm is to split the Caputo derivative into the sum of a local
part and a history part

C
0Dα

t ψn =
1

Γ(1−α)

∫ tn

tn−1

ψ′(x,s)ds

(tn−s)α
+

1

Γ(1−α)

∫ tn−1

0

ψ′(s)ds

(tn−s)α
:=Cloc(tn)+Chist(tn).

For the local part Cloc(tn), we apply the L1-approximation, i.e.,

Cloc(tn)≈
ψ(x,tn)−ψ(x,tn−1)

τΓ(1−α)

∫ tn

tn−1

1

(tn−s)α
ds=

ψ(x,tn)−ψ(x,tn−1)

ταΓ(2−α)
. (4.49)

For the history part Chist(tn), we integrate by part and get

Chist(tn)=
1

Γ(1−α)

[
ψ(x,tn−1)

τα
−ψ(x,t0)

tα
n

−α
∫ tn−1

0

ψ(x,s)ds

(tn−s)1+α

]
. (4.50)

Then, we use a sum-of-exponentials expansion to approximate the convolution integral
of ψn with the kernel t−1−α. For a given absolute error ε and for α, there exist some
positive real numbers si and wi, i= 1,··· ,Nexp (Nexp is the number of exponentials) such
that ∣∣∣∣∣

1

t1+α
−

Nexp

∑
i=1

ωie
−sit

∣∣∣∣∣≤ ε, for all t∈ [τ,T]. (4.51)

We replace the kernel 1
t1+α in (4.50) by its sum-of-exponentials approximation in (4.51) to

have

Chist(tn)≈
1

Γ(1−α)

[
ψ(x,tn−1)

τα
−ψ(x,t0)

tα
n

−α
Nexp

∑
i=1

ωiUhist,i(tn)

]
,

where Uhist,i(tn) is defined by

Uhist,i(tn)=
∫ tn−1

0
e−(tn−s)siψ(x,s)ds,

and has a simple recurrence relation

Uhist,i(tn)= e−siτUhist,i(tn−1)+
∫ tn−1

tn−2

e−si(tn−s)ψ(x,s)ds, (4.52)

with Uhist,i(t0)=0. The integral can be calculated by

∫ tn−1

tn−2

e−si(tn−s)ψ(x,s)ds≈ e−siτ

s2
i τ

[
(e−siτ−1+siτ)ψ

n−1+(1−e−siτ−e−siτsiτ)ψ
n−2

]
.
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Finally, the Fast approximate evaluation of the Caputo fractional derivative is given by

FC
0 D

α
t ψn =

ψ(x,tn)−ψ(x,tn−1)

ταΓ(2−α)
+

1

Γ(1−α)

[
ψ(x,tn−1)

τα
−ψ(x,t0)

tα
n

−α
Nexp

∑
i=1

ωiUhist,i(tn)

]
,

(4.53)

for n>0, and where Uhist,i(tn) can be obtained by the recurrence relation (4.52).
By using the fast evaluation of the Caputo derivative instead of the direct L1-

approximation in (4.14)-(4.19), we have the finite difference scheme given by

iFC
0 D

α
t Ψn

j =−δ2
xΨn

j +
[
Vj+ f (|Ψn−1

j |2)
]
Ψn

j , 1≤ j≤ J−1, 1≤n≤N, (4.54)

i
h

2
FC
0 D

α
t Ψn

0 =−δxΨn
1
2
+
(
Θn−3s

α
2
0 e−

πi
4 Ψn

0

)
+

h

2

[
V0+ f (|Ψn−1

0 |2)
]
Ψn

0 , (4.55)

FC
0 D

α
t Θn =−i

[
V0+ f (|Ψn−1

0 |2)
]
Θn+3sα

0Θn+8s
3α
2

0 e−
πi
4 Ψn

0 , (4.56)

i
h

2
FC
0 D

α
t Ψn

J =δxΨn
J− 1

2
+
(
3s

α
2
0 e−

πi
4 Ψn

J −Φn
)
+

h

2

[
VJ+ f (|Ψn−1

J |2)
]

Ψn
J , (4.57)

FC
0 D

α
t Φn =−i

[
VJ+ f (|Ψn−1

J |2)
]
Φn+3sα

0Φn−8s
3α
2

0 e−
πi
4 Ψn

J , (4.58)

Ψ0
j =Ψ0(xj), 0≤ j≤ J. (4.59)

5 Numerical examples

In this section, we provide four examples to demonstrate the effectiveness of our method,
and illustrate the dynamics of numerical solutions of TFNSEs in different situations.

Example 5.1. In this example we consider the TFNSE with cubic nonlinearity, i.e. f (|ψ|)=
2|ψ|2 and with the gaussian potential V(x) := e−5x2

. The initial data is: ψ0(x) = e−5x2
.

For the calculations in Figs. 1 and 2, we fix: T = 4 and ]xℓ,xr[:=]−5,5[. The left and

right pictures represent the amplitude of the wave field, i.e. |ψα,fast
τ,h |, for α= 0.5 and α=

0.75, respectively, and computed by the fast scheme (4.54)-(4.59) for the discretization
parameters τ :=T/N=10−3 (N=4×103) and h :=(xr−xℓ)/J=5×10−2 (J=200), with the
tolerance parameter ε=10−9. For the ABCs, we fix s0 =20 (we see below that any other
value s0 does not modify the results). The CPU time for α= 0.5 is 21 (sec.) and 27 (sec.)
for α = 0.75. Using the fast scheme compared with the direct scheme (4.14)-(4.19) does

not affect the accuracy. Indeed, we report on Fig. 2 the absolute error between ψα,fast
τ,h and

ψα,dir
τ,h (”dir” means ”direct” here): |ψα,fast

τ,h −ψα,dir
τ,h |, on the grid for the same discretization

parameters τ and h, and the two values of α. The error is smaller than ε and clearly
does not modify the accuracy of a given computation. To demonstrate the complexity of
the two schemes (direct vs. fast), we plot on Fig. 3 the CPU time of the two schemes in
seconds vs. the number N of grid points in time. We observe that while the CPU time for
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Figure 1: Example 5.1: Amplitude |ψα,fast
τ,h | for α=0.5 (left) and α=0.75 (right).

Figure 2: Example 5.1: Absolute error |ψα,fast
τ,h −ψα,dir

τ,h | for α=0.5 (left) and α=0.75 (right).

Figure 3: Example 5.1: Comparison of the CPU time (sec. in log10-scale) required for the direct and fast
methods vs. the number N of time points (log10 scale) (left: α=0.5; right: α=0.75).
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Figure 4: Example 5.1: E∞(N0, J) vs. J (both in log10-scale) for various values of s0 and by using the fast
scheme (4.54)-(4.59) (left: α=0.5; right: α=0.75).

the direct scheme scales as O(N2), it increases almost linearly with respect to N for the
fast scheme. There is a significant speed-up even for moderate values of N.

From these first computations, we conclude that the fast scheme leads to a similar
accuracy as for the direct scheme (according to the tolerance ε, other computations con-
firming this observation) while being much more efficient, with a nearly linear cost in
time for a low storage, most particularly when τ gets smaller. For these reasons, we now
always use the fast scheme to study the convergence rates in space and time, and for the

various simulations. We also denote ψα,fast
τ,h by ψτ,h to simplify the notations.

We now analyze both the truncation error related to the introduction of an ABC and
the convergence rate of the fast scheme. To this aim, we compute a reference solution ψref

on the larger domain ]−12,12[ until the time T=0.5, for some extremely small values of
τ and h. We report the following error: we define E∞(N, J) := ||ψref−ψτ,h||∞ for two fixed
values of τ and h. When analyzing the convergence rate in space of the fast scheme, we
represent the quantity E∞(N0, J) := ||ψref−ψτ0,h||∞ vs. J (both in log10-scale) for τ0 =10−4

(N0 =5×103) and for various values of s0. When we study the convergence rate in time,
we fix h0 :=5×10−3 (J0=2×103) and represent E∞(N, J0) :=||ψref−ψτ,h0

||∞ vs. N (in log10-
scale). From Figs. 4 and 5, we show that both the convergence rate of the fast scheme
(4.54)-(4.59) (as well as direct scheme (4.14)-(4.19)) is of the order of O(h2+τ). In addition,
the ABCs are accurate and not affected by the choice of the parameter s0. Finally, an
analysis (not reported here) shows that the L∞-error of the direct and fast schemes is
almost the same (up to the tolerance ε).

Example 5.2. In this second example, we investigate the evolution of the numerical so-
lution ψ of the TFNSE for different fractional orders α with the nonlinearity f (|ψ|2)ψ=
−2|ψ|2ψ and for V(x)=0. The initial data is ψ0 =e2i(x+3)sech(x+3). The computational
domain is ]−10,10[ for a maximal time of computation T=3. The discretization parame-
ters are τ=3×10−3 (N=103) and h=10−3 (J=2×103). For the ABC, we consider s0=20.
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Figure 5: Example 5.1: E∞(N, J0) vs. N (both in log10-scale) for various values of s0 and by using the fast
scheme (4.54)-(4.59) (left: α=0.5; right: α=0.75).

In the standard situation, i.e. for α = 1, the soliton propagates from the left to the
right domain with a given angle. One can see on Fig. 6 that the evolution of the solution
is pretty sharp on the first time steps and then the solution propagates straight when
α=0.25 with less dispersion. The situation tends to the standard case when α tends to 1.

Figure 6: Example 5.2: Evolution of |ψ| for α=0.25, 0.5, 0.75 and 0.95.
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Example 5.3. This third example, reported on Fig. 7, is dedicated to the collision of two
waves for different values of α. The nonlinearity and the external potential for the TFNSE
are respectively given by

f (|ψ|2)ψ=−2|ψ|2ψ, V(x)=e−3x2
.

The initial data is built as the superposition of two waves

ψ0(x)=e−2i(x−8)sech(x−8)+e2i(x+8)sech(x+8).

We consider the interval ]−20,20[ and a final computational time T=7. We fix N=4000
grid points in time and J=1000 spatial discrete points. For the ABC, we choose s0=20.

Figure 7: Example 5.3: Evolution of |ψ| for α=0.5, 0.75, 0.95 and 0.99.

For the standard nonlinear equation with α = 1, the two soliton waves collide and
keep their own shapes moving away after the collision. This can be observed here when
α is close to 1. For smaller values of α, this property is loss and the waves do not even
cross. At the same time, some waves are created, with high oscillations corresponding to
fluctuations and suggesting the appearance of a decoherence phenomena that depends
on α.
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Example 5.4. In this last example, we consider the TFNSE with a cubic-plus-quintic non-
linearity f (|ψ|2)ψ=2|ψ|2ψ+|ψ|4ψ and V(x)=0. The initial data is built as the superpo-
sition of two Gaussian functions

ψ0=e−3(x−2)2
+e−3(x+2)2

.

The interval of computation is ]−15,15[ and the final time is T = 3. The time step is
τ=2×10−3 (for N=1500 points) and the spatial mesh size is equal to h=1.5×10−2 (with
J=2×103 points). For the ABC, we consider s0=20.

The dynamics of the solution is plotted on Fig. 8 for various values of α. While the two
waves clearly mixed for α close to 1 with many oscillations and then largely spread out,
they tend to form just one smooth wave after a short time, propagating without being
deformed. The support tends to be smaller when α decays.

Figure 8: Example 5.4: Evolution of |ψ| for α=0.25, 0.5, 0.75 and 0.95.

We point out here on the fact that the proposed ABCs are not exact, and therefore
lead to existing small reflections at the fictitious boundary while the wave strikes the
boundaries (see e.g. Figs. 6, 7 and 8).
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6 Conclusion

In this paper, we studied the computation of the time fractional nonlinear Schrödinger
equation (TFNSE) on unbounded domain. First, we generalized the construction of ap-
proximate nonlinear ABCs through the unified approach proposed in [47,48] to compute
the solution to the TFNSE. In addition, we analyzed the stability of the reduced problem
with the approximate nonlinear ABCs and the convergence of the linearized finite dif-
ference scheme by using the discrete fractional-type Gronwall inequality. To speed-up
the computations, we used the fast evaluation of the fractional Caputo derivative given
in [20]. We presented some numerical examples to verify the performance of the pro-
posed numerical methods. The extension of the method to the two-dimensional TFNSE
on unbounded domain and its fast evaluation for high-order numerical schemes will be
discussed in a future work.
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