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Abstract. The aim of this paper is to derive a stable and efficient scheme for solving the
one-dimensional time-fractional nonlinear Schrédinger equation set in an unbounded
domain. We first derive absorbing boundary conditions for the fractional system by
using the unified approach introduced in [47,48] and a linearization procedure. Then,
the initial boundary-value problem for the fractional system with ABCs is discretized,
a stability analysis is developed and the error estimate O(h%+7) is stated. To accel-
erate the L1-scheme in time, a sum-of-exponentials approximation is introduced to
speed-up the evaluation of the Caputo fractional derivative. The resulting algorithm
is highly efficient for long time simulations. Finally, we end the paper by reporting
some numerical simulations to validate the properties (accuracy and efficiency) of the
derived scheme.
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1 Introduction

The classical Schrodinger equation serves as the Feynman propagator for nonrelativis-
tic quantum mechanics by using a Gaussian probability distribution in the space of all
possible paths. This provides a useful mechanism that accounts naturally for the non-
Gaussian distributions corresponding to fractional structures. By extending the Feynman
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path integral from Gaussian distribution to Lévy-like quantum mechanical paths, Laskin
[28, 29] proposed a space fractional Schrodinger equation. Naber [39] built the Time
Fractional Schrodinger Equation (TFSE) in analogy with the fractional Fokker-Planck
equation as well as with the application of the time Wich rotation. Related works have
next been developed [10, 15, 32, 35, 40, 45], including e.g. the generalization of the TFSE
to a full space and some new results on the correct continuity equation for the prob-
ability density. The fractional nonlinear Schrodinger equation is used to describe the
nonlocal quantum phenomena in quantum physics and explore the quantum behaviors
of either long-range interactions or multi-scale time-dependent processes. Many possi-
ble applications explain why this new direction in quantum physics is rapidly emerg-
ing [26,28,29, 35,39,40,46]. Some analytical and approximate solutions have first been
considered for the TFSE [23,41]. Nevertheless, the complexity of the mathematical struc-
ture of the TFSE with different potentials and nonlinearities leads to extremely difficult
detailed analytical studies of its non standard properties, which are sometimes impossi-
ble to derive. Therefore, efficient and accurate numerical simulations [3,6,11,17,19] are
urgently needed to understand them.

In this paper, we develop and analyze some original accurate and efficient numer-
ical methods for computing the solution to the general 1D Time-Fractional Nonlinear
Schrodinger Equation (TFNSE)

i§DF () ==+ V() P+ F([917)g,  (x) ERX(0,T],
P(x,0)=1o(x), X€R, (1.1)
P(x,t) >0 when |x|—+oo, te€(0,T],

where i=+/—1 and V(x) is the external potential. The function f models general nonlin-
ear effects with respect to ¢, e.g. for the case of the cubic nonlinearity f(||?)y =g|¥|*y
that arises in nonlinear optics. If ¢=+1, one gets the well-known defocusing nonlinearity
while g=—1 corresponds to the focusing situation. The operator {D¥ denotes the Caputo
fractional derivative of order « (0 <a <1) with respect to t [49] and given by

Comat 1 1 ay(x,s)
ODtlp(x't)_F(l—tx)/o(t—s)“ s ds, O<a<l, (1.2)

where T'(-) is the Gamma special function. Three crucial and fundamental difficulties
appear when numerically solving problem (1.1)

(i) the spatial domain is unbounded,
(ii) the TFNSE is a nonlinear equation,

(iii) the (nonlocal) Caputo derivative a priori needs a huge storage and a high computa-
tional cost when discretized.

Over the past few decades, many contributions were made to overcome the numerical
difficulties arising from solving PDEs in unbounded domains. For example, the method
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of Artificial/Absorbing Boundary Conditions (ABCs) is a powerful way to (exactly or ap-
proximately) reformulate the initial problem in the unbounded domain under the form of
another problem appropriately set in a finite domain [2]. The basic idea is to build a suit-
able ABC to eliminate the waves striking a fictitious boundary introduced to truncate the
computational domain. In the literature, a lot of attention has been directed towards the
construction of ABCs for time-fractional linear PDEs [7,12,14,18] as well as Schrodinger-
type equations [2,4,5]. However, the question of designing accurate and stable ABCs for
the TENSE remains open, mainly due to the presence of the nonlinear term f. Indeed,
the Laplace transform which is the main ingredient for building ABCs cannot be applied
directly to the nonlinear case. To overcome this problem, the unified approach has been
proposed in [47,48] to construct accurate ABCs for the standard nonlinear Schrodinger
equation (x =1).

The presence of a nonlocal convolution in the expression of the exact/approximate
ABCs leads to extremely difficult questions regarding both the development and numer-
ical analysis of the truncated initial boundary-value problem (IBVP), and this even for
the standard linear Schrodinger equation [44]. In practice, only the sub-optimal estimate
is proved (see [44]). In addition, the brute force discretization of the Caputo derivative
induces a huge storage and a high computational cost for simulating the TFNSE. For in-
stances, the L1-approximation scheme [27, 30, 34, 44] requires the storage of all the past
values of the unknown function, and O(n) flops at the n-th time step and each spatial grid
point. Thus, the average storage is O(NJ) and the total computational cost is O(N?]),
where N and ] are the total numbers of time steps and spatial grid points, respectively. As
a consequence, this is a severe limitation for the long time simulation of time-fractional
PDEs, which would be even worst for higher-dimensional problems. The summation of
exponentials (SOEs) to approximate the convolution kernel turns out to be successful to
highly speed-up the evaluation of the Caputo derivative [20,38]. Indeed, the exponential
kernel can be rewritten as a sequence of ODE systems or under the form of a standard
recurrence relation. As proved in [20], the resulting algorithm has a nearly optimal com-
plexity, i.e. O(JNlog?N) flops and O(Jlog”N) storage for solving the TENSE.

The goal of this paper is to develop some new stable and efficient schemes to simulate
the TFNSE defined in an unbounded domain and to develop the numerical analysis of the
resulting scheme. To this aim, we first extend the unified approach to derive some new
nonlinear ABCs for the TENSE arising in system (1.1), and present some original a pri-
ori energy estimates for the truncated bounded problem. We next derive a discretization
scheme by using the L1-approximation of the Caputo derivative and build a linearized
finite-difference scheme by linearizing the nonlinear term and implementing the ABCs.
The resulting scheme avoids any extra computational cost compared with an implicit
scheme. In addition, we introduce the fast algorithm developed in [20] to speed-up the
evaluation of the time convolution arising in the Caputo derivative. Consequently, this
significantly reduces both the memory storage and computational cost of the overall al-
gorithm while keeping an almost similar accuracy compared with the direct method. For
the theoretical analysis, the corresponding error estimates is proved to be O(h?+7) (di-
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rect scheme) and O (h?+7+¢) (accelerated scheme) by using a nontrivial and original dis-
crete fractional-type Gronwall-inequality [31]. The absolute error ¢ is chosen during the
approximation of the kernel by using the SOEs for the fast algorithm, and is far smaller
than the mesh sizes h and At. This parameter then does not affect the standard accuracy
of the scheme.

The paper is organized as follows. In Section 2, we propose the construction of ABCs
for the TENSE based on the unified approach. In Section 3, we derive some a priori er-
ror estimates for the resulting truncated IBVP. Section 4 is devoted to the discretization
scheme and its numerical analysis. Some numerical examples in Section 5 allows to con-
firm the efficiency of the scheme and validate the error estimates. In addition, we provide
some examples to illustrate the behavior of the solution of the TFNSE. Finally, Section 6
concludes the paper.

2 Construction of nonlinear ABCs for the TFNSE

Let us introduce a computational bounded domain Q™ := {x, < x < x,}, with left and
right finite fictitious boundaries I'* := {x,} and I := {x,}. The two points x; and x, are
chosen such that the initial data (x) is compactly supported in Q. We define the left
and right half-spaces by O/ :={—co<x < x/} and )" := {x, < x < +00}, respectively, and
the exterior domain by Q®t=0UQ)". Let us apply the basic ideas of the unified approach
proposed in [47,48] to construct some ABCs for the TFNSE:

(1) Firstly, the TENSE arising in (1.1) is rewritten in operator form in Q®* as
i$DEp(x,t) = Ly (x,t) +Np(x,t), x€Q>, (2.1)

where the linear and nonlinear operators are respectively given by
Ly=—pu and Np=Vy+f(p]*)y.

Based on the operator splitting method [13], for a small time step, the original equa-
tion is considered as taking first a linear effect and next a nonlinear effect.

(2) On O, we approximate the linear operator £ by an approximate one-way opera-
tor L?PP (by distinguishing between the right- and left-traveling waves) which can
absorb the wave striking the artificial boundaries. The one-directional operators
LPP are then used to replace the original linear operator L.

(3) Taking the time step infinitesimal, we obtain an approximate one-directional equa-
tion by coupling the approximate operator £L2PP with the nonlinear operator N/

DY (x,t) = L3PPP(x,t) + N (x,t). (2.2)



222 J. Zhang, D. Li and X. Antoine / Commun. Comput. Phys., 25 (2019), pp. 218-243

Finally, applying the approximate equation (2.2) at the fictitious boundaries, one gets
some ABCs. Therefore, the main point now is to construct the one-directional operators
LAPP,

To derive an operator L£¥PP approximating £, we first consider the following time-
fractional linear Schrodinger equation (TFLSE) in the exterior domain

DM (x,8) = Lp(x,t) = —Prr(x,8), x€Q, (2.3)
Yo(x)=0, x€Q, (2.4)
P(x,t)—0, when |x|— +oo. (2.5)

Let us recall that the Laplace transform of the Caputo fractional derivative [49] is

—

§DE[p(1)](s) =s"P(s) —s"(0), (2.6)

where the Laplace transform is defined by
+o00
B(s)= / e Sty(t)dt, R(s)>0.
0

Thus Eq. (2.3) can be written in the Laplace domain as

is*P(x,5) = —Prx(x,5),  R(s)>0. 2.7)
Setting / —i= e 7, the general form of the solution to Eq. (2.7) is

P(x,s)=A_ (s)e*ﬂTi e VYL AL (s)e*ﬂTi eV,

where the coefficients A (s) are two arbitrary analytic functions. From (2.5), we deduce
that

~ _m e ‘
LER A i e

Differentiating 1(x,s) with respect to x, one gets the two following relations
axtf(x::xg,s):e’%is%l:b\(x::xg,s), (2.9)
O P(x:=x,,5) = —e_%is%lﬁ(x::xr,s), (2.10)

which correspond to the Dirichlet-to-Neumann (DtN) maps at the interfaces for the TFLSE
written in the Laplace domain.

Exact ABCs for the TFLSE. Applying the inverse Laplace transform to (2.9)-(2.10), one
naturally gets the exact ABCs (DtN maps) for the TFLSE

pust

___e*7 Losp(xs) | —C O
antp(x,t)——r(l %)/0 (i—s)8 ds=—e +yD/¢(x,t), onI™. (2.11)
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In the above relation, we introduced d,, as the outwardly directed unit normal vector to
rér.

Approximate ABCs for the TFLSE. The exact ABCs (2.11) cannot be directly combined
with the nonlinear term N . To localize boundary conditions, we proceed as in the stan-
dard approach originally introduced by Engquist and Majda [16] for wave-like equations
to obtain some local ABCs. To this aim, we first introduce the diagonal (P,P)-Padé ap-
proximation of the function Vs® used in [4,5,8,9,21]

Ap(sg—s®)
sg—(sg—s“)BP

ve=si[i-¥.

] FEp(sY), 2.12)
p=1

where s is the expansion point, and the coefficients { A, }1<,<p and {B, }1<,<p are given

by
2 . prt prt
Ap=—sin2( P7 ), B,=cos?( 7).
P opy1T <2P+1> p= 08 <2P+1>

The error estimate of the Padé approximation is established in [37], for all s* >0,

N A i G , ay_ Vi1
Ep(s )_2\/?<m>, with (s )_\/?ﬂurl' (2.13)

Here, we only consider the simplest case, i.e. P=1, and obtain the third-order diagonal
Padé approximation

_ &sp+3s”
Vst rost 3 et (2.14)

Replacing /s* in (2.9) and (2.10) by the approximation (2.14), one gets
(383 +5) 0y p(x,5) L e~ %isé (s5+3s")9(x,5) =0, (2.15)

where the plus (minus, respectively) sign in + represents the right(left, respectively)-
hand side boundary condition. After some simple algebraic calculations with (2.15), we
deduce the relation

s*(x,5) =—(9y+3e” %isé ) 1(3s80, te~ %isg s )W(x,s). (2.16)
Applying the inverse Laplace transform to (2.16) and multiplying by i, one gets
iSDMp(x,t) = —i(Dy£3e Fsi)(Bsiay ke Tsish)p(xt). (2.17)

Comparing (2.17) with (2.3), we can derive the approximate operator

71

Lo — (3, +3e~ ¥s3) L (3§, ke Folsy). (2.18)
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Nonlinear approximate ABCs for the TENSE. Substituting (2.18) into (2.2), the nonlinear
ABCs for the TFNSE are

i i

(9x %3¢~ ¥55)§DRp+ (3si0r Lo Fsish)yp=—i(.+3e Fs3) (Vi f(|9P)p).  (219)

By using an approach similar to the one by Kuska [25], we linearize the nonlinear term
f(|y|?) to obtain a variety of boundary conditions:

(9x =3¢~ ¥'55)§DRp+ (3six£e Tsish)yp=—i(V+F(|[y)) (@xp=3e 55 9).  (220)

Finally, we obtain an IBVP in Q™" x [0,T] with the boundary conditions (2.20) on T'*"

DM (x,t) = — P + VO F(J9P)w, >0, xcQM, (2.21)
P(x,0)=¢o(x), xeQ™, (2.22)
(8:F3e TSI+ (BstdsFe Tsg Jp=—i(V+f([pP)(@xF3e Tsd)y, xer™.

(2.23)

Remark 2.1. Generally, the ABCs (2.19) perform better than (2.20). However, the stability
analysis with (2.20) is easier to handle than with (2.19). The comparison is discussed

in [50] for general nonlinear Schrodinger equations. In this paper, we consider (2.20) as
ABC.

3 A priori error estimates

To state the stability of (2.21)-(2.23), we introduce two auxiliary variables

NI=

0(t) =3, p(xyt) —3sie” T (x4,1),
P(t) =3 p(x,,t)+3s2 e T (2, t).

Thus, the reduced problem (2.21)-(2.23) can be equivalently rewritten as

=2

i§DMY(x,t) = —Pur +VP+ £ (|92, xeQM, t>0, (3.1)
¥ (x,0) =1po(x), xeQ™  (3.2)
Po(x,b) =0(t)+3si e Typ(x,t), xel!, (33)
SDRO(1) +i(V (x)+ f(|9[2))8(+) +3s30(+) + 857 e Fp(x,t) =0, xeT!, (3.4
Po(x,t) = (t) —3sie T p(x,b), xel’, (3.5)
SDRO (1) +i(V+ £ (1)) (1) +3559 () —8sF e Fp(x,t) =0, xel’. (3.6)

Some useful lemmas are now given to state a priori estimate for the reduced problem
(3.1)-(3.6).
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Lemma 3.1 ([33]). Let u(t) be a complex-valued function which is absolutely continuous on
[0,T]. Then, the following inequality holds
SDXu(t) > <a(t)§Dlu(t) +u(t)§Dra(t), O0<a<l, (3.7)
where |u|* =1u and i represents the complex conjugate function of u.
Now, let us consider the following lemma (see e.g. [42]).

Lemma 3.2. Let 0<a <1. We assume that y(t) is a nonnegative absolutely continuous function
that satisfies

$Dry(t) <cry(t)+ca(t), 0<a<1, t€(0,T], (3.8)

where c1 >0 and cy(t) is an integrable nonnegative function on [0,T]. Then, we have

y() <y(0)Ena(crt®) +T (@) Ega(crt®)oDy “ea(t), (39)

n

where Eqp(z) = fo’zom are the Mittag-Leffler functions and D, “u(t) is the Riemann-

Liouville integral given by

ODt”‘u(t):r(llX) /Ot (ti{(f)zadr, O<a<l

We can then deduce the following result.

Theorem 3.1. Let (¢(x,t),¢(t),0(t)) be the solution of the reduced problem (3.1)-(3.6). Then,
for 0<a <1, we have the following a priori estimate

Xy 1 _3a Xy
[ Pt gsy (9P HOWP) < [ yo(x) P (3.10)

4

Proof. By multiplying (3.1) by 9(x,t), integrating by parts the result over Q™™, taking the
complex conjugate of (3.1), multiplying the result by (x,t) and integrating by parts over
Oi"t, and finally combining the two equations and taking the complex parts, we have

Xy _ _ _ x
[ [en§ Dt g 9§D dr=—2m {Gpd 7. @)
Xy
Substituting ¢, (x4, f) and ¢y (x,,t), defined by (3.3) and (3.5), into (3.11), we arrive at

[ [P 05D ) -9 e 05D 1)
==3V/2s5§ (19 (et P9 (xr D)+ 20m{e ¥ (9P () 0P (xet) | (312)
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s
Multiplying (3.6) by §s, 2 #(x,t), then taking the complex conjugate of (3.6), multiplying

_
the result by %50 2 ¢(x,,t), combining the two equations, taking the real parts, and using
the same arguments as (3.4), we obtain

550 [0SR +0()S DR = —55 16 P~ Refe To(F (a0} (313)

S50 © [BOSDEQ() +9(DSDIF(H] =50 P 19(D) P +2Refe To(0§(x 1)}, (319

Adding (3.12), (3.13) and (3.14), applying Lemma 3.1 and noticing that [Im{Z}|+|Re{Z}|<
V2|Z| lead to

Xy 1 _ 3a
5t [ lp(tPdxtgsy S5DE [lo(0)+10(0)P]
a 3 _a
<=3v2sg (9o t) P+ ) %) = 50 * (10D +19(D ) +2V2(|¢()F] +[09]). (3.15)
Applying the Cauchy-Schwarz inequality
- 1 . 1
0P (x| < 10D +elp(xt) and  [p()P(xr )| < 9B +elp(xn, )],

with e= %sg to Eq. (3.15), we get

528 | [ oot Pax gy (I90F+100)P) | < —55s0F (00 +e(P) <0. 316)

Finally applying Lemma 3.2 completes the proof. O

4 Discretization and analysis of the schemes

The section focuses on the construction and numerical analysis of the linearized numer-
ical schemes. Let T=T/N and h= (xy—x,)/] be the temporal and spatial step sizes,
respectively, where N and | are two given positive integers. We denote the discrete time
by t,=nT (0<n<N)and Q;={t,|0=ty<t; <---<ty=T}. A point of the uniform spatial
grid is such that x; =jh, (0<j<J), and Q) = {x;[x; =x,+jh,0<j<]}. We also set

Yi=p(xte), Vi=V(x)), ¢"=¢(ts), 0"=0(tn).

4.1 Derivation of the linearized L1-scheme

The L1-scheme for approximating the Caputo fractional derivative is

R Y LA O R ’
th”U_I"(l—oc)/o (s Z“” Ho = +Q"
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where v" =v(t,) and a; = (k+1)! "% —k!~%, k>0.
Denote the L1 scheme by

CDac _ T ia (vk_kal)
0 T_r(z_“)kzl n—k .

If v€ C?([0,T]), the truncation error Q" satisfies [34,44]
’ Qn| < CT27“.
For a sequence of functions {w} }o<n<n,0<j<), we define

wh L —w”
+1
5xw;7+ =1 _J  Pur=

Nl—=

w’

h
n__ ,n—1
i Y

n__ Ciya,, . __ " < k k—1
5tZUj = P ODij .—mgan,k(w]‘—wj )

Writing the TENSE equation at the left point x,
i DR = — (0 e+ Vo + £ (195 1) 5,

and using the Taylor expansion, we have
n 1 n n h n 2
(90)x =7 ($7 —95) — 5 () xx + O (%)
hoy.
=5+ (i §DIYE — (Vo+ FWE )y ) +O ().
Similarly, at the right boundary point x;, we have

ho.
(W)x=0:) =3 (i 6D19) = (Vi+F (9] ) g} ) + O02).

227

(4.1)

(4.2)

(4.3)

(4.4)

We apply the L1l-scheme to approximate the time-fractional Caputo derivative, the
second-order central finite difference method to approximate the second-order spatial
derivative at the interior points, and use (4.3) and (4.4) to couple the ABCs and the lin-

earized approach to deal with the nonlinear term. This yields

DSy =~y (Vi f(lpr T ) [ +T7, 1<i<) -1, 1<n<N,

h ¢ h _

iz SDSYE =~ + (0" +3s5 e F i) +3 [Vo+ F(1g " P)| Wi+ T3,
3 i

§D50" = —i | Vo+ f (1 ™' [2)| 0" —3s50" ~8s;7 ¢~ g+ Ry,

'ECDD( n_g " 3% —%i n__ n h \V4 n—1)2 non

i5 DT =69y + (Bsge” < 9f—¢")+ | Vi+f () 1) | ¥] +T7,
B

§Dsg" = —i|Vy+ £ (|97 )| @" 3" +8s5 e~ gy +RY,

W) =1o(x;), 0<j<].

(4.5)
(4.6)
4.7)
(4.8)

(4.9)
(4.10)
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Applying the Taylor expansion and (4.1), we have

T <C(t+k?), 1<j<]-1, 1<n<N, (4.11)
IT§|<C(t+h*), |T}|<C(t+k?*), 1<n<N, (4.12)
[R§|<Ct, |R}|<Ct, 1<n<N. (4.13)

Omitting the small terms in (4.5)-(4.10) based on the above error bounds, we construct
the following finite difference scheme for solving problem (3.1)-(3.4) by

P SDEYY = 02+ [Vj+f(y‘1f;?*1|2)}‘f;?, 1<j<J-1, 1<n<N,  (414)

h L3 i h
i §DY¥) = —3:¥] + (0" +3sje T¥F) + 2 [Vo +F(En |2)} ¥ (4.15)
2
3a pust
‘D O" = —i [V0+ F(lent 12)] @"—3540"—8s; e T ¥, (4.16)
e PP h -1)2
i FDYY] =0, ¥) | +(3sje 4wy—cp”)+§[v,+f(yw7 |)} 3 (4.17)
3a s
‘DY = —i [V,+ FOEp |2)} " 3s§ D" +8s7 e ¥, (4.18)
Y ="Yo(x;), 0<j<], (4.19)

where ¥7,®" and ©" correspond to the numerical approximations of ¥j,¢" and 6", re-
spectively.
4.2 Numerical analysis of the linearized L1-scheme

Let us now consider the stability and convergence analysis of the finite difference scheme.
Let u={(uo,us,---,uj)} and v={(vg,v1,---,vy) } defined on Q). We introduce the follow-
ing inner products and norms

1 = 1
(u,0)=h <§ﬁovo+ Zﬂfvf+§ﬂﬂ’1>/ [ul =/ (u,u),
j=1

J
|uls J hj;wxﬂj_ﬂ [0xtt;_1 ], luleo :gg%x]|uj|.

Lemma 4.1 (24]). For any discrete function v € Yy, the following inequality holds

1
Xr— Xy

1
ol <efolfi+(c+—=)l0I* forany e>o0.
Lemma 4.2 (31]). Suppose that {w" },—o,... and {g" }n=o,... are two nonnegative sequences that
satisfy w® < ¢° and
g]Dﬁcu” <MW"+ A"t +g", n>1,
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where A1 >0 and Ay > 0 are two given real-valued constants. Then, there exists a constant T*
such that, for T <%,

a .

t
)’l< 0 n ] < < .
w _Z(w +r(1+“)0r2]a<xng)Ea(2Atn), 1<n<N, (4.20)

where Ey(z) =Ey1(z) and A=A+ m

Lemma 4.3. Let {v"})\_ be a sequence of functions defined in Q. If vo <x and
Re( §D%",0") <C|lo" !|*+C|[v"||*+x?, 2<n<N, (4.21)

where k>0 and C is a positive constant bounded independently of T, then, there exists a positive
constant T, such that, for T < T,

[v"]| < Cr. (4.22)

Proof. Using the definition of g]D§ and the facts that ag >a; > --- >a, — 0, we have

2—n n—1

C _ T ‘ 0
Re( jD%v",v") —Re(m <aov” - ]; (an—j—1—ap—j)v' —a,_1v ,v”)
L 2 v [/ [[>+]|o" |12 [2°12+ (2" |1?
> m (ao 0" _j; (an—j—l_an—j)f_anflf>
1
=5 gDl (4.23)
Substituting (4.23) into (4.21) and using Lemma 4.2, we can easily get (4.22). O

We now define the error function on the grid, for 0<j<J,0<n <N,
e =y Y, ¢"'=¢"-0", §=0"-0O"
Let K=maxi<,<N{||¢" ||+ |¢"|+|0"| } +1. We have the following result.

Theorem 4.1. Let us assume that system (3.1)-(3.4) has unique smooth solutions {(x,t), 6(t)
and ¢(t) in Q"™ x[0,T). Then, there exist two positive constants Ty and hy such that, when
T <79 and h<hy, system (4.14)-(4.19) admits a unique solution {‘I’;‘,@”,@”},for n=1,2,---,N,

satisfying
[¥"[|oo+1©"] +|P"| <K, (4.24)
" ||+ @" |+ [8"| < C*(t+1?). (4.25)
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Proof. At each discrete time t=t,, the proposed numerical method produces a tridiagonal
system of linear algebraic equations. Since the associated matrix is strictly diagonally
dominant, then the numerical solution of the problem is unique.

Now, we prove the error estimates of the numerical scheme. Subtracting (4.14)-(4.19)
from (4.5)-(4.10), we have the error equations: for 1 <n <N

i§D%ef =03l +Viel + f([yf ' P)pf — f(1¥] ' P)E] +T7, 1<j<] -1, (4.26)
hC

i5 ;ID%ef = —5er + (19”+3s%e’%ieg)

h - n
avacy+ o (F05 g — £ P + T3, (427)
CD% " = —l(voﬂ”+ F(lyrt2)0m— F(en1 2 )@”)—35319”—853“/2e*%ie3+123, (4.28)

I’l 4 i
2 O]D"‘ 5xe;’_%+(3s§ e_Te}’—go”)

h n— n
+5Viej+3 (f(|¢ By — £ )‘I’;)+TF, (4.29)
3 i
CDggon:_i[V]gouf(wf )" —f(]‘I’?*1|2)q>”] —3s3¢"+8s7 e Tel+R},  (4.30)
e?:@, 0<j<J. (4.31)

Multiplying Eq. (4.26) by ke, and summing up over j from 1 to | —1, we have
ih Z C]Doc n

—hZ{ (e + Viee+ [ (19 o) — (7 Py e+ 77 )

Multiplying e, i9", e} and ig" on both sides of (4.27)-(4.30), respectively, adding the
results with the above formula, then using the following summation by parts formulas

-1
—hz (03¢l Ve — epoxet +ej0xe] 1_|e”y%

and

1 = 1
h el C]Doce + ClDoz n)e 4= e lDoz — ClDaen, el ,
(30es+ £ 5iear+ o i) = (52 )
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231
we arrive at

C
i(OlDﬁe” ) ip" g]D"‘(p”—l—zﬂ C]D"‘l9”

J-1 J-1
:ye”y§+h2Vje +hz[ (YR ﬂéy—khZ;TJﬂE?
: ]:

+(8 )eo+hV0€o€0+ (f<|¢ 1)
(Voo F(lyg 6"~ £ (15 11)
)

"+3s5e Tief vy~ F¥ T PG )+ Tyey
)19 —3isi9"9" —8is>*/ %e ’Tegﬂ " FiRED"
+aste Te—g")E+ 3 Ve +5 (41w W08 ¥ e 7
Vg A9 e - £ cb"]qo ~3is§ g +8isg e ¥

le? ¢'+Rjp". (4.32)
We now prove the results (4.24) and (4.25) by mathematical induction. First, we show
that the estimates hold for n=1. Since {¥?,®°,0°} = {y?,¢°,6°}, we have

(FCl? 2y} —f <r‘1f°|2>‘1f1)

]

(£} —F P2 )l = F(1? ) e} P,

(4.33)
—1
(£8P0 —£(¥8)01 )8 = (F(19d12)0" —F(I¥§2)0" ) = F(lphP)O' 2, (4.34)
(FUlf )9 =¥ 2@ )7 = (F(gPPIe = F(1f )0 ) 7' = F(14f )" 2. (4.35)
Moreover, it holds that
Im((191+35§e’%ie(1))é(1)+T&E(1))
3\/73 2 |60]2+Im(1916(1,+T e)
3\/5 3v2 1
<= 2235k b erleb P+ g8+ (92305 e ) e+ — e |TAP
1 4(7350 —81)
1 1
=—[o'+ —ITg 1%, (4.36)
de 3\2/5350 —&
where ¢; is a constant, satisfying 0 <e1 < %35%. Similarly, we have
& i 1 1
Im((3sie tej—¢l)ej+Tle) ) < —|¢' P+ —————|T}|* (4.37)
0 J JT4 ]> 4eq 4(%5353—81) ]

Thus, taking the imaginary part of (4.32) and using the Cauchy-Schwarz inequality
yields

Re((C]D"‘l )43 SD%! +3 C]D"‘191><C||e 12+ Cl@! 2+ C|0 2+ C(T+12)2. (4.38)
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By Lemma 4.3, we conclude that there exists a parameter 71 such that, for t<t,

et + |t + [0 < C*(T+1?). (4.39)
Meanwhile, we have
lef|+lej 11\2 4 4C*
51 j j < F 2 < 2
h2|5e] | 1sel_y|< ]g( L) < Sl P < T (rH) @40)

Together with (4.39), (4.40) and Lemma 4.1, we deduce that
e < 2.1,
et i <C TR+ )
Hence, one obtains
¥ oo+ 10|+ [ <9 oo +10" [+ ¢ [+ [le" |+ [0+ [0
SHzpllloo+|911+y¢1!+cl(r+h2+%)SK,

whenever Cy(tT+h?+ %) <1.
Now, suppose that the main results (4.24) and (4.25) hold for n <k—1, then we have

(FUe Pyl —f e e
= (FUEE PYgs—FEE Ryl )+ (FUEE Py —f (e )5 )
) (P TR P ()
<C(lef 1|+|€§‘|), (4.41)
where (;‘;"1 € (1,[7;?’1,?’;."1) and we remark that H‘I’;f’l ||L= <K. Similarly, we show that
Fllwg 120 = F(1¥5 )@ < Cleg ! |+Cl8"], (442)
FUW ¢ = F(1 1)@ <Clej ™[+ Clg"|. (4.43)
In addition, we can write that
Im((ﬁk+3s§e_%ie’5)ég + Tek —8isg“/2e_%ie'55k>
3vV2

. _mi gk
Ty % ’eo|2+lm<l9ke + Ty —8isy /e 46519)

< V2 (ol 64 ) (e o T
< 5 50160 1/€p 4C, 0 4C, 0

1
+8s3"‘/2(c3yé’5 2+E’l9k|2),
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where C; >0, i =1,2,3 are arbitrary positive and small constants. Let us set C;+Cy+
858"‘/ 2Cy= 3\/553 /2 in the above formula. We then deduce that

Im((ﬁk+3so e~ Tief)ek + Theh —8is/2e 1 kB >§C|z9k|2+C|T(’§|2. (4.44)
Similarly to (4.44), we obtain
Im<(3s§e_%e?—q)”)é?+T e]+81so e_ile”go”> <Cle"|*+C|T} > (4.45)

Now, let us consider n =k in (4.32). By taking the imaginary part of the resulting
equation, using (4.41)-(4.45) and the Cauchy-Schwarz inequality, one gets

Re(( fD3e",¢) +7" §Digk+3" fD10")
<C (Il 2+ 1412+ | 2+ 2+ (r+12)2). (4.46)
Now, by Lemma 4.3, when T < 15, we prove that there exists a parameter 1, such that
¥ )|+ @k |+ [0F| < C* (T+K?). (4.47)
Moreover, we have

AC*
12 < F(r+h2) (4.48)

rekrl—h\z ]

k
]

)| <

e

1
2

I\?I»—l

Together with (4.47), (4.48) and Lemma 4.1, we deduce that

T 2, 1Y

ekl <C TR+ )
Therefore, we obtain
¥ oo+ 1@ |+ [ @F| < (146"l eo +6F | ] + [l [ + 0%+ 6"]
T

<[ loo 6]+ I +C (r+12+ 2 ) <K,
as long as Co(T-+h*+F) <1. Finally, the conclusions also hold for n=k, completing hence
the proof. O

4.3 Fast evaluation based on the L1-scheme

In this section, we consider the fast evaluation of the Caputo derivative, proposed in [20],
to circumvent the huge storage and computational cost for the long time simulation. The
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main idea of this fast algorithm is to split the Caputo derivative into the sum of a local
part and a history part

1 by’ (x,5)ds 1 b1 ¢/ (s)ds
§Diy" = / 1= Cloc(tn ist(tn).-
0 Y F(l—tx) by (tn—s)”‘ +1—~(1_“) 0 (tn—s)”‘ Cloc( )+Chlst( )
For the local part Cjoc(t,), we apply the L1-approximation, i.e.,
Pl ) (% tn1) /t” 1 P tn) (X, tn1)
Cloc(tn) ~ ds= . 4.49
toc(tn) r(1—a) ty 1 (tn—8)~ ° T (2—a) (4.49)
For the history part Cpst(t,), we integrate by part and get
__ 1 Jete)  $lxio) /*"—1 P (x,5)ds
Chist (£n) = T [ = Y S o e B (4.50)

Then, we use a sum-of-exponentials expansion to approximate the convolution integral
of ¥" with the kernel +~!7%. For a given absolute error ¢ and for &, there exist some
positive real numbers s; and w;, i=1,+,Nexp (Nexp is the number of exponentials) such
that

1 Nep

e Y wie | <e, forall te[r,T]. (4.51)
i=1

We replace the kernel ﬂ% in (4.50) by its sum-of-exponentials approximation in (4.51) to
have

N,
1 X, t,_ x,t P
Chist(tn)%r(l_“) [110( T; 1)_lp(t% 0) _“Z;wiuhist,i(tn) ’
i=

where Uyg i(f,) is defined by

th1
uhist,i(tn):/ ef(tnfs)sil)b(xls)ds’
0
and has a simple recurrence relation
th-1
uhist,i(tn) = e_siruhist,i(tnfl) +/ e_si(tn_s)l,b(xrs)dsr (452)
th—2

with Upgt i (o) =0. The integral can be calculated by

—S;T

|:(efs,'r -1 —|—SZ'T)1./J”71 4 (1 _e ST _efs,'rsi,[) IPnfz] )
T

b
/ 1 e Sl =s)y(x,5)ds ~ 5
1

) S;
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Finally, the Fast approximate evaluation of the Caputo fractional derivative is given by

FCya n_¢(x,tn)—lp(x,tn_1) 1 lp(x,tn_l) ¢(x,t0) Nexp o
0 th N T“r(z—a) +r(1—0€) [ ™ B t% _a;wluhlst,z(tn) ’

(4.53)

for n>0, and where Uyqi(t,) can be obtained by the recurrence relation (4.52).
By using the fast evaluation of the Caputo derivative instead of the direct L1-
approximation in (4.14)-(4.19), we have the finite difference scheme given by

LDy = — 527 + [vj +F( ¥ 12)]\17, 1<j<J-1, 1<n<N,  (454)

2 b DYy = 6. + (@ ~3sie T¥Y) +§ [v0+ F(rent H]wg, (4.55)
D0 = —i[Vo+ £ %51 P)] @ 13550 + 857 e 1 ¥, (4.56)

ZgCID“‘Y” 5x‘i’?_;+(3s§e_%i‘{’7—<b”)+z[V]—i—f(|‘1’” 112 )] " (4.57)
FCpegyn = —i[v,+f(|‘1f7—1 12)] O 4 355" 85 e 1 ¥, (4.58)
T?:‘Po(xj), 0<j<]. (4.59)

5 Numerical examples

In this section, we provide four examples to demonstrate the effectiveness of our method,
and illustrate the dynamics of numerical solutions of TFNSEs in different situations.

Example 5.1. In this example we consider the TENSE with cubic nonlinearity, i.e. f(|¢|)=
2||? and with the gaussian potential V(x) :=e 5. The initial data is: o(x) = e 5%
For the calculations in Figs. 1 and 2, we fix: T =4 and |xy,x,[:=]—5,5]. The left and
right pictures represent the amplitude of the wave field, i.e. |7 faSt] for a=0.5 and a =
0.75, respectively, and computed by the fast scheme (4.54)-(4.59) for the discretization
parameters T:=T/N=10"3 (N=4x10%) and h:= (x,—x;) /] =5x10"2 (J=200), with the
tolerance parameter ¢ = 10~7. For the ABCs, we fix s) =20 (we see below that any other
value sy does not modify the results). The CPU time for a =0.5 is 21 (sec.) and 27 (sec.)
for &« =0.75. Using the fast scheme compared with the direct scheme (4.14)-(4.19) does

not affect the accuracy. Indeed, we report on Fig. 2 the absolute error between 1,0“ Aast and

gbiﬁ“ ("dir” means “direct” here): [¢7; Aast —gbiﬁlr|, on the grid for the same discretization
parameters T and 4, and the two Values of a. The error is smaller than ¢ and clearly
does not modify the accuracy of a given computation. To demonstrate the complexity of
the two schemes (direct vs. fast), we plot on Fig. 3 the CPU time of the two schemes in
seconds vs. the number N of grid points in time. We observe that while the CPU time for
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a=0.5 a=0.75

a=0.5 a =0.75
x107°
3
_ 25
%\“ 2
Js
:37 1
0.5
0
5
4
; . . « fast «,dir _ _ .
Figure 2: Example 5.1: Absolute error |7 — 77 "| for a=0.5 (left) and a=0.75 (right).
a=0.5 a =0.75
4 , . 4 "
=— Direct Evaluation =e— Direct Evaluation
3.5 | | == Fast Evaluation 3.5 | | =*= Fast Evaluation
§ s § s
) )
g25 g25
o 5
a2 a2
o) S
9
=15 S15
< <
1 1
0.5 0.5
3 3.2 3.4 3.6 3.8 4 4.2 3 3.2 3.4 3.6 3.8 - 4.2
logyo(V) logy4(NV)

Figure 3: Example 5.1: Comparison of the CPU time (sec. in log;,-scale) required for the direct and fast
methods vs. the number N of time points (log;, scale) (left: a=0.5; right: =0.75).
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Figure 4: Example 5.1: Ew(Np,J) vs. ] (both in log,-scale) for various values of sy and by using the fast
scheme (4.54)-(4.59) (left: «=0.5; right: «=0.75).

the direct scheme scales as O(N?), it increases almost linearly with respect to N for the
fast scheme. There is a significant speed-up even for moderate values of N.

From these first computations, we conclude that the fast scheme leads to a similar
accuracy as for the direct scheme (according to the tolerance ¢, other computations con-
firming this observation) while being much more efficient, with a nearly linear cost in
time for a low storage, most particularly when 7 gets smaller. For these reasons, we now

always use the fast scheme to study the convergence rates in space and time, and for the

various simulations. We also denote gbi’,fqas" by ¢, to simplify the notations.

We now analyze both the truncation error related to the introduction of an ABC and
the convergence rate of the fast scheme. To this aim, we compute a reference solution lpmf
on the larger domain |—12,12[ until the time T=0.5, for some extremely small values of
T and h. We report the following error: we define Ex(N,]):=||¢™f — b, ;|| for two fixed
values of T and h. When analyzing the convergence rate in space of the fast scheme, we
represent the quantity Ee(No,J):= || — 1 1||o vs. ] (both in log,,-scale) for 7p=10"*
(Np =5 x103) and for various values of so. When we study the convergence rate in time,
we fix ho:=5x1073 (Jo=2x10%) and represent Ec (N, Jo):=|[$"f = j,, |0 vS. N (in log,,-
scale). From Figs. 4 and 5, we show that both the convergence rate of the fast scheme
(4.54)-(4.59) (as well as direct scheme (4.14)-(4.19)) is of the order of O (h?+7). In addition,
the ABCs are accurate and not affected by the choice of the parameter sy. Finally, an
analysis (not reported here) shows that the Lo-error of the direct and fast schemes is
almost the same (up to the tolerance ).

Example 5.2. In this second example, we investigate the evolution of the numerical so-
lution 1 of the TENSE for different fractional orders a with the nonlinearity f(|y|?)p =
—2|9[* and for V(x) =0. The initial data is 1 = e?(**3)sech(x+3). The computational
domain is | —10,10] for a maximal time of computation T =3. The discretization parame-
ters are T=3x10"3 (N=10%) and h =103 (] =2 x 10%). For the ABC, we consider sy =20.
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Time convergence: o = 0.5 Time convergence: o = 0.75

-0 59 =2 -1.6¢ -e- 50 =2
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ig) -2.2 -» 59 =20 ig) -» 59 =20
= —Slop —1 = —Slop —1
—=-24} =
’ﬁF ’ﬁF 29
Z 26 z
3 3
< 28 w -2.4
3l | | | | -2.6 | | | |
0.8 1 1.2 1.4 0.8 1 1.2 1.4
N (logy) N (logy)

Figure 5: Example 5.1: Ew(N,Jo) vs. N (both in log;,-scale) for various values of sy and by using the fast
scheme (4.54)-(4.59) (left: «=0.5; right: «=0.75).

In the standard situation, i.e. for a =1, the soliton propagates from the left to the
right domain with a given angle. One can see on Fig. 6 that the evolution of the solution
is pretty sharp on the first time steps and then the solution propagates straight when
a=0.25 with less dispersion. The situation tends to the standard case when « tends to 1.

a =0.25

0.8
08
04
0.2
10
0.8 - 0.8
Z 06 Z 06
SF04 5 04
T 02 T o2
10 -10 _
—~-y 0 ~ =
10 3 t 10 3 t
T T

Figure 6: Example 5.2: Evolution of |¢| for a=0.25, 0.5, 0.75 and 0.95.
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Example 5.3. This third example, reported on Fig. 7, is dedicated to the collision of two

waves for different values of «. The nonlinearity and the external potential for the TFNSE
are respectively given by

_ 342
F9P)w==2¢l¢, V(x)=e.
The initial data is built as the superposition of two waves
o (x) =e 2 8sech(x —8) 42 8)sech(x+8).

We consider the interval | —20,20[ and a final computational time T=7. We fix N =4000
grid points in time and | =1000 spatial discrete points. For the ABC, we choose sy = 20.

a =0.5 a =0.75

a,fast
7.h

|

s ‘ 20
20 -10 0

u.fastl

7,h

|

Figure 7: Example 5.3: Evolution of || for a=0.5, 0.75, 0.95 and 0.99.

For the standard nonlinear equation with a« =1, the two soliton waves collide and
keep their own shapes moving away after the collision. This can be observed here when
« is close to 1. For smaller values of «, this property is loss and the waves do not even
cross. At the same time, some waves are created, with high oscillations corresponding to

fluctuations and suggesting the appearance of a decoherence phenomena that depends
on a.
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Example 5.4. In this last example, we consider the TENSE with a cubic-plus-quintic non-
linearity f(|y|*)p=2|¢|?¥+|¥|*y and V(x) =0. The initial data is built as the superpo-
sition of two Gaussian functions

o= e—s(x—2)2 +e—3(x-|—2)2'

The interval of computation is |—15,15[ and the final time is T =3. The time step is
T=2x1073 (for N=1500 points) and the spatial mesh size is equal to h=1.5x 102 (with
J =2x10° points). For the ABC, we consider sy =20.

The dynamics of the solution is plotted on Fig. 8 for various values of . While the two
waves clearly mixed for a close to 1 with many oscillations and then largely spread out,
they tend to form just one smooth wave after a short time, propagating without being
deformed. The support tends to be smaller when « decays.

a =0.25 a =0.25

t -10 0 t -10 0

Figure 8: Example 5.4: Evolution of |¢| for =0.25, 0.5, 0.75 and 0.95.

We point out here on the fact that the proposed ABCs are not exact, and therefore
lead to existing small reflections at the fictitious boundary while the wave strikes the
boundaries (see e.g. Figs. 6, 7 and 8).
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6 Conclusion

In this paper, we studied the computation of the time fractional nonlinear Schrédinger
equation (TFNSE) on unbounded domain. First, we generalized the construction of ap-
proximate nonlinear ABCs through the unified approach proposed in [47,48] to compute
the solution to the TENSE. In addition, we analyzed the stability of the reduced problem
with the approximate nonlinear ABCs and the convergence of the linearized finite dif-
ference scheme by using the discrete fractional-type Gronwall inequality. To speed-up
the computations, we used the fast evaluation of the fractional Caputo derivative given
in [20]. We presented some numerical examples to verify the performance of the pro-
posed numerical methods. The extension of the method to the two-dimensional TFNSE
on unbounded domain and its fast evaluation for high-order numerical schemes will be
discussed in a future work.
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