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Abstract. In this study, an N-body simulation code was developed for self-gravitating
systems with a limited first-order post-Newtonian approximation. The code was ap-
plied to a special case in which the system consists of one massive object and many
low-mass objects. Therefore, the behavior of stars around the massive black hole could
be analyzed. A graphics processing unit (GPU) was used to accelerate the code exe-
cution, and it could be accelerated by several tens of times compared to a single-core
CPU for N≃104 objects.
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1 Introduction

The formation of massive black holes is one of the most important problems in astro-
physics. It was recently reported that a supermassive black hole (SMBH) exists at the
center of the Milky Way [1, 2]. It has also been proposed that SMBHs, whose masses
are estimated to be in the range of 106−1010 M⊙, can exist in other galaxies, according
to the relation between the SMBH mass and the luminosity [3], or the SMBH mass and
bulge mass [4]. In dwarf elliptical galaxies, the relation between massive black holes and
nuclear stars has been discussed [5].

For globular clusters, the existence of massive black holes remains unclear. For ex-
ample, observations have indicated that the globular cluster NGC-224-G1 (or Mayall II)
orbiting M31 can possess a massive black hole [6, 7]. In another case, the existence of
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a massive black hole in M15 (or NGC 7078) has also been discussed [8, 9]. However,
definitive conclusions have not yet been reached.

Although several scenarios for the formation of SMBHs have been discussed [10], the
exact scenario remains to be clearly identified. For example, if the seeds of SMBHs were
stellar-mass black holes, there would be an insufficient amount of time for them to grow
into such a massive black hole. The scenario where galaxies and SMBHs evolve together
has also been discussed [11].

Gravity mainly affects the formation and evolution of astronomical objects. Regard-
ing dynamical evolution, N-body simulations have always been performed. When we
can see the effects of radiation or pressure of baryonic gas, we must consider the hydro-
dynamical evolution. In contrast, we consider only the gravitational interaction between
objects where we can apply N-body simulations, in which the interactions are described
by Newtonian gravity.

However, it is inadequate to describe the interaction of objects in neighboring regions
of SMBHs by Newtonian gravity alone. In Newtonian gravity, Bahcall and Wolf demon-
strated that when a globular cluster possesses a massive black hole, the density distribu-
tion peaks at the center of the cluster [12]. Although their work is quite important, when
we discuss the behavior of stars near a massive black hole, the effect of general relativ-
ity becomes important. Therefore, we should consider the effect of general relativity in
the neighboring regions of SMBHs. For the N-body simulation, a post-Newtonian (PN)
approach was proposed. The interaction of massive objects is extended by (v/c)n terms.
Then, the lowest-order term ((v/c)2) is added to the Newtonian interaction. This equa-
tion of motion for N-body systems is known as the EIH equation [13, 14]. The equations
of motion for N-body systems up to the second-order PN ((v/c)4) have also been derived
[15].

In this study, a numerical simulation code for PN N-body simulations was developed.
Here, we note a special case, i.e., we suppose one SMBH and many stars. The interaction
between the SMBH and stars are estimated by the PN approximation. Then, the inter-
action between stars is calculated by Newtonian gravity. In this case, the procedure of
the computation is reduced. The interactions are computed on a graphics processing unit
(GPU), which can process a large number of operations in parallel. Because the computa-
tion of complicated interactions is carried out on a GPU, the total computation time can
be reduced.

The paper is organized as follows. In Section 2, the equation of motion and conserved
quantities are described. In a generic case, because of the emission of gravitational waves,
the total energy of the system decreases. In the first-order PN (1PN) approximation, be-
cause gravitational waves are not emitted, the total energy is conserved. Here, we note
a special case, i.e., the system consists of one massive object and many low-mass stars.
In Section 3, the numerical simulation is described. Using a GPU, the simulation can be
accelerated. The elapsed time of the simulations are compared between cases of a central
processing unit (CPU) only and a CPU+GPU. In Section 4, the time evolution for simple
models is presented and the accuracy of the simulation is validated. Then, the time evo-
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lution between Newtonian and PN cases is compared. In Section 5, the conclusions of
this study are presented.

2 Equations of motion and conserved quantities

The equations of motion for N-body particles with the 1PN approximation were derived
nearly 100 years ago [13, 14]. These equations include the three-body interaction. There-
fore, when we consider N particles, the order of computation for the interaction becomes
O(N3). Because the computation of the interaction is computationally demanding, the
numerical simulation appears to be quite difficult.

Here, we assume that one object is considerably heavier than the other objects. Under
this assumption, the massive object only affects the relativistic correction. In other words,
we consider the interaction between the massive object and other objects up to a 1PN ap-
proximation. The interaction between the other objects are described only by Newtonian
gravity. By this assumption, the order of computation for the interaction decreases to
O(N2) [16].

Here, we label the massive object #1. Then, the mass of particle #1 is defined as M.
The subscripts of the other objects are i, j,k. The equation of motion for the massive object
can be described as follows.

a1=−∑
j

Gmjx1j

r3
1j

+
1

c2
[a1]BH+

1

c2
[a1]Cross+O

(

G2m3
j

Mc2r3

)

, (2.1)

where mj is the mass of object #j and x1j ≡ xj−x1,r1j ≡|x1j|. The sum over j excludes #1.
The first term of the right-hand side of Eq. (2.1) represents Newtonian gravity. The PN
terms in Eq. (2.1) can be described as follows.
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The sum over k excludes #1. n is the unit vector n1j = x1j/r1j.
The equation of motion for the low-mass stars can be described as follows.
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where
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where vij≡vj−vi.

The total energy and 3-momentum in the 1PN order are conserved. In the present
study, we evaluate the total energy during the time evolution.
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3 Numerical simulation

3.1 Implementation for GPU

For the acceleration of the numerical simulation, a GPU is used for heavy calculations.
For self-gravitating systems, the GRAvity piPE (GRAPE) system was developed [17]. The
GRAPE processor calculates the acceleration and gravitational potential for each particle
from the position and mass of particles. In the case of N particles, the calculation of the
acceleration and potential becomes O(N2). Unfortunately, the GRAPE system can only
be applied for Newtonian gravity. In contrast, because the GPU is programmable, we can
perform a generic computation using the GPU.

Computing platforms for the development of the GPU computation have been pro-
duced, e.g., NVIDIA CUDA [18] and OpenCL [19]. Although these environments are
required to describe the data transfer between the main memory and memory beside
GPU, it is difficult to describe the optimized code. Instead of these environments, a com-
mand is introduced for the computation on the GPU to the source code. Here, we have
applied the domain-specific compiler “Goose,” which was developed by K & F Comput-
ing Research [20]. The target loops to compute are specified on the GPU by the command.
The syntax of the commands on “Goose” is similar to OpenACC [21]. Although “Goose”
can be applied up to double loops, this compiler can implement the reduction command
for array variables (for example, [ai]BH) implicitly. Therefore, the computation of the ac-
celeration can be accelerated easily. In terms of three-body interactions, the loops of the
variables j and k expand to a significant number of threads and are executed on the GPU
simultaneously.

For acceleration, we should choose the terms where the computation is significantly
heavier than the input or output data transfer. In other words, when the procedure of
the computation and data transfer are O(N2) and O(N), respectively, it is easy to use the
GPU to accelerate it. In our case, we calculate the terms of the sum over j,k in Eq. (2.3)
and the terms of the sum over j in Eqs. (2.4) and (2.6) on the GPU. Then, to evaluate
the accuracy, the total energy is obtained by calculating the terms of the sum over i, j in
Eq. (2.7).
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3.2 Evaluation of acceleration

For the evaluation of acceleration, the numerical code is executed on a generic PC with a
GPU. The specifications of the PC are summarized in Table 1.

Table 1: Specifications of PC.

Instrument model/version/quantity

CPU Intel Core i7-3770K

RAM 32 GB

OS CentOS 6.9

kernel Version 2.6.32-642.11.1

gcc Version 4.4.7

GPU NVIDIA Tesla K20c

NVIDIA CUDA Version 4.2

Goose Version 1.3.3

Here, the number of particles N are varied in the range of [100,30000] and the elapsed
time is measured. Table 2 and Fig. 1 show the dependency of the number of particles for
the total elapsed time. We calculate 32 time steps of time evolution with the fourth-order
Runge-Kutta method [22], then calculate the total energy at both the start and end of the
computation.

Table 2: Dependency of the number of particles for the total elapsed time. Here, we take the average of 10
samples for each case.

#N tGPU [s] σtGPU [s] tCPU [s] σtCPU [s]

100 1.5392 0.1299 0.3479 0.0043

300 1.9651 0.1308 3.0501 0.0060

1000 1.941 0.1222 33.652 0.0881

3000 5.0517 0.1284 302.31 0.10062

10000 38.934 0.0100 3358.6 2.1313

30000 339.956 0.1391 30188 17.482

In the case of computation on the host CPU only, the elapsed time is almost propor-
tional to O(N2). In contrast, in the case of computation with the GPU, because multi-
ple threads are used, the increase in computation time is suppressed. However, when
N increases to 104, the loops of the three-body interactions expand to O(108) threads.
Therefore, the threads of the GPU seem saturated.

4 Time evolution of test model

In a previous study, we analyzed the effect of a central massive object on low-mass stars
with Newtonian gravity [23,24]. In the collisionless case, an explicit symplectic integrator
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Figure 1: Dependency of the number of the particles on the computation time. Because the dispersion is
quite small, we do not plot error bars. In the case of the host CPU only, the computation time appears to be
proportional to N2. In contrast, the computation time is suppressed by the computation on the GPU by a large
number of threads. When N increases to 104, the computation time increases because the threads of the GPU
become saturated.

conserves the total energy for a significant length of time in Newtonian self-gravitational
systems [25–27]. In contrast, although we can describe the Hamiltonian for this model,
we cannot apply the explicit symplectic integrator, because the Hamiltonian cannot be
divided into coordinate terms and momentum terms in the 1PN equations. Therefore, we
apply an alternative integrator. The terms of the 1PN appear to be complicated; therefore,
we avoid computing the time derivative of these terms.

In this study, we apply the fourth-order Runge-Kutta integration method. Unlike the
symplectic integrator, the Runge-Kutta method does not conserve the total energy in the
global timescale.

In the simulation, we set the constant c=G=1. Then, the total mass of low-mass stars
is set as

∑
i 6=1

mi=1. (4.1)

In this case, the Schwarzschild radius of the massive object becomes 2GM/c2 =2M. We
expect that the effect of general relativity appears only around the Schwarzschild radius
of the massive object.

The initial condition of the test model is given by a spherically symmetric distribution.
The low-mass stars are distributed in the region for 1< r < 10. The spatial distribution
is generated by a random number from linear congruential generators [22]. The total
number of low-mass stars is N=10000. Then, we assume that all the low-mass stars have
equal mass. In other words, the mass of the low-mass stars is given by m=1/N =10−4.
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Figure 2: Error of the total energy during time evolution. (a) ∆t=2−17, (b) ∆t=2−16, and (c) ∆t=2−15.

Then, the massive object M= 100m is set at the origin. The Schwarzschild radius of the
massive object becomes RSch = 0.02. The initial velocity of both the massive object and
low-mass stars is set to zero. In other words, we suppose a cold collapse of the system.

To avoid the dispersion of the interaction at the collision, we introduce Plummer soft-
ening to the inverse of the distance between stars.

1

r
→ 1√

r2+ε2
. (4.2)

In this study, we set the softening parameter ε = 10−3, which is shorter than the
Schwarzschild radius of the massive object.

The time step is set as ∆t= 2−17. Here, we calculate the time evolution until t= 10.
The error of the total energy reaches up to the 1PN order (Eq. (2.7)), as shown in Fig. 2.
Although the total energy of the system is conserved, because the Runge-Kutta method
includes the global error, the error of the total energy increases during the time evolution.
When we change the time step (∆t = 2−16,2−15), the error of the total energy is nearly
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Figure 3: Distance of the nearest low-mass binary stars. At t≃ 1, the low-mass stars collide with each other.
Then, the low-mass stars form binary systems.
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Figure 4: Distance between the massive object and nearest low-mass star. At t ≃ 17, one low-mass star
approaches the massive object. Then, the low-mass star is scattered.

unchanged. At t = 10, the error of the total energy increases to about 10−2. The origin
of the energy error can be considered as the accumulated error because of the long time
integration.

For analysis of the long duration, we simulate the system with ∆t=2−15 until t=100.
As is the global tendency, the stars fall to the center. During evolution, the low-mass stars
form binary systems of local clusters. Fig. 3 shows the distance of the nearest low-mass
binary stars. The low-mass stars scatter at t≃1. According to the effect of the scattering
by low-mass stars and the formation of binaries, the error of the total energy can oscillate.
Fig. 4 shows the distance between the massive object and nearest low-mass star. At t≃17,
one low-mass star is scattered by the massive object. Then, the error of the total energy
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Figure 5: Error of total energy during the time evolution for computation time. Here, we set ∆t= 2−15. At
t≃17, one low-mass star approaches the massive object. Then, a significant error appears in the total energy.
After this scattering, the simulation fails.

increases abruptly (Fig. 5). Because the simulation fails at the scattering of low-mass stars
around the massive object, we should use a more accurate integrator such as the Hermite
scheme for the time evolution in collisional systems.

5 Summary

In this study, an N-body simulation code was developed for a limited 1PN approxima-
tion. The simulation was accelerated by a GPU, where we could conduct realistic simula-
tions of globular clusters with a massive object such as an intermediate-mass black hole
(IMBH).

One of the critical problems in astrophysics is the conservation of total energy. Be-
cause the equation of motion in the 1PN approximation cannot be divided into spatial
terms and momentum terms, an explicit symplectic integrator cannot be applied. As
another method, the Hermite integrator was developed [28–30]. Although the Hermite
integrator is known as a high-accuracy method, the time-derivative of the acceleration is
required. Therefore, it is difficult to apply the Hermite method to the N-body simulation
code for the 1PN approximation. The time derivative of the accelerations is described in
Appendix 5. Because the acceleration includes three-body interactions, the time deriva-
tive of the accelerations becomes quite complicated.

In this study, a limited 1PN approximation is considered. This code can simulate the
evolution of several astronomical objects such as globular clusters with IMBHs, accretion
disks around black holes, and others. For example, the code could simulate the accretion
around Sgr A∗ [31, 32].

As one of the scenarios of SMBH formation, the merging of many stellar-mass black
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holes has been considered. For this scenario, we developed a generic 1PN approxima-
tion code with a GPU. In the generic 1PN approximation, the cost of the computation
becomes O(N3). In a previous study, Kupi et al. proposed a direct method for time
integration with the PN approximation [33]. Then, Brem et al. implemented the spin
effects and presented a step forward in higher-order terms [34]. In other studies using
the regularization method for the collision of stars, the higher-order PN approximation
was implemented [35–38].

We implemented the 1PN approximation for the full simulation. We consider that
the critical point could be the data transfer between the GPU and main memory and the
handling of shared memories In previous studies using Newtonian gravity, it has been
reported that a conspicuous difference in the performances appears according to how the
shared memories are handled [39,40]. Because “Goose” cannot be applied up to the triple
loop, the command in “Goose” cannot reduce the data transfer to O(N). The data trans-
fer can be reduced only to O(N2). For the handling of shared memories and reduction
of the data transfer, we require detailed coding for a generic 1PN approximation using a
CUDA C environment.

When we run this simulation, the formation process for SMBHs from many stellar-
mass black holes can be determined. By using a GPU with a very large number of threads,
the computation time is expected to reduce considerably compared to that in general-
purpose computers.
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Appendix: Time derivation of the acceleration

For the Hermite scheme, we require the time derivative of the acceleration for time evo-
lution. The time derivative of the acceleration for massive objects can be described as
follows:
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. (A.4)

The time derivative of the acceleration for low-mass stars can be described as follows:

∂

∂t
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r3
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j
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r3
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)

+
∂
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[ai]Cross , (A.5)
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(
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(
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(A.6)
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∂
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In these equations, the acceleration a1,ai has already been described in Eqs. (2.1) and
(2.4).
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