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Abstract

The electromagnetic wave propagation in the chiral medium is governed by Maxwell’s

equations together with the Drude-Born-Fedorov (constitutive) equations. The problem

is simplified to a two-dimensional scattering problem, and is formulated in a bounded

domain by introducing two pairs of transparent boundary conditions. An a posteriori error

estimate associated with the truncation of the nonlocal boundary operators is established.

Based on the a posteriori error control, a finite element adaptive strategy is presented for

computing the diffraction problem. The truncation parameter is determined through sharp

a posteriori error estimate. Numerical experiments are included to illustrate the robustness

and effectiveness of our error estimate and the proposed adaptive algorithm.

Mathematics subject classification: 35Q61, 65N15, 65N30, 78A45.
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ing.

1. Introduction

Consider a time-harmonic electromagnetic plane wave incident on a periodic chiral structure

in R3. The medium inside the structure is chiral and nonhomogeneous. In particular, two

homogeneous regions are separated by the periodic structure. In this paper, we restrict ourselves

to the special case, i.e., by assuming that the chiral structure is periodic in x1 direction and

invariant in x2 direction, the scattering problem may be simplified to a two-dimensional one.

The more general diffraction problem by chiral gratings in R3 will be discussed in a separate

work.

Recently, chiral materials have been studied intensively in the electromagnetic theory liter-

ature. In general, the electromagnetic fields inside the chiral medium are governed by Maxwell

equations and a set of constitutive equations known as the Drude-Born-Fedorov constitutive

equations, in which the electric and magnetic fields are coupled. The property of the chiral

media is completely characterized by the electric permittivity ε, the magnetic permittivity µ

and the chirality admittance β. On the other hand, periodic structures(grating) have received

considerable attention in the past several years because of important applications in integrat-

ed optics, optical lenses, antireflective structures, lasers, etc. For the model equations, the
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physical background and computational aspects, there exist lots of results in the literature for

the electromagnetic scattering problem in periodic and non-periodic chiral structures. we refer

to [3, 4, 15, 27, 30, 41] and the references therein. It should be noted that a good introduction

and review on the electromagnetic diffractive in chiral medias can be found in Lakhtakia [30]

and Lakhtakia, Varadan and Varadan [31]. Recently, thin chiral coatings and the low frequency

behavior of the scatting problems in chiral media are studied by Ammari and Nédélec [2] and

Ammari et al [5]. The existence and uniqueness of solutions to the scattering problem are es-

tablished for biperiodic chiral media in Ammari and Bao [1] and for nonperiodic chiral media in

Ammari and Nédélec [3]. The related work on the variational formulations and the numerical

analysis for the scattering problems in chiral environment can found in Ammari and Bao [1],

Zhang and Ma [43], and Zhang et al [42, 44]. Also see [6, 9, 10, 12, 13, 20, 22, 23, 25, 26] for other

related mathematical results and practical applications of Maxwell’s equation in general media.

A posteriori error estimates, which measure the actual discrete errors without knowledge

of the limit solutions, is computable quantities in terms of discrete solution. Ever since the

pioneering work of Babuška and Rheinboldt [8], the adaptive finite element methods based on

the a posteriori error estimates have become a class of important numerical tools for solving

many model equations, especially for those which have physical features of multiscale phe-

nomenon. We refer to [11, 17, 24, 33–35, 40] for numerical analysis and scientific computations.

For the convergence and the quasi-optimality of adaptive finite element methods, some typ-

ical works can be found in Dörfler [24], Verfürth [40], Monk, Nochetto, and Siebert [35, 36],

Binev, Dahmen and DeVore [16], Mekchay and Nochetto [32], Stevenson [39], Cascon, Kreuzer,

Nochetto, and Siebert [17] and Stevenson [39]. In particular, Chen and Wu [20] proposed a

new numerical approach with combinations of adaptive finite element method and perfectly

matched layer(PML) technique for a 1D grating problem. Based on this numerical tool, great

progress has been made in convergence analysis as well as algorithm design for a large class of

the scattering problems. We can refer to [11,14,18,19,21,28,29,45] and the references therein.

This approach is very attractive in the scattering problems, mainly because PML can be used

to deal with the difficulty in truncating the unbounded domain and the adaptive finite element

method can very efficiently capture the local singularities.

The purpose of this paper is to extend our previous work on 1D linear grating problem(cf.,

[46]) to 1D chiral grating problem. In our approach, the first step is to reduce the problem from

an infinite domain into a bounded domain by introducing nonlocal boundary operators, the so-

called DtN operators. Then the nonlocal boundary operators are approximately truncated by

taking sufficiently many terms of the corresponding infinite series expansions. A finite element

formulation with the truncation operators is established for solving the diffractive problem.

Finally, we obtain an a posteriori error estimate between the exact solution and finite element

solution. The a posteriori error estimate consists of two parts, finite element discretization

error and the truncation error of boundary operators. It is easy to see that the truncation error

is exponentially decaying when the parameter N with being dependent on the truncation is

increased. The adaptive finite element algorithm is also designed to determine the parameter N

and choose elements for refinement. The numerical examples are included to show the feasibility

and effectiveness of our adaptive algorithm. In the future, we hope that the algorithm can be

applied to solve other scientific problems defined on unbounded domain, even those problems

that could not be solved with the PML techniques can be solved with our algorithm.

The organization of this paper is as follows. In Section 2, we introduce some notation used

in this paper and give the variational formulation for the model problem with the transparent
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boundary condition. In Section 3 we introduce the truncation approximation of the nonlocal

boundary operator and the finite element discretization. A crucial a posteriori estimate is also

stated. Section 4, we derive the a posteriori error estimate which includes the finite element

discretization error and the truncation error. In Section 5 we describe our adaptive algorithm

and present several examples to illustrate the performance of our adaptive method.

2. The Variational Formulation

The electromagnetic fields are governed by the following time-harmonic Maxwell equation-

s(time dependence e−iωt):

∇×E− iωB= 0, (2.1)

∇×H+ iωD= 0, (2.2)

where E, H, D and B denote the electric field, the magnetic field, the electric and magnetic

displacement vectors in R3, respectively. In addition, E, H, D and B satisfy the following

Drude-Born-Fedorov constitutive equations:

D = ε(x)(E+ β(x)∇×E), (2.3)

B = µ(x)(H+ β(x)∇×H), (2.4)

where x = (x1, x2, x3), ε is electric permittivity, µ is the magnetic permeability, and β is the

chirality admittance. By eliminating D and B, the Maxwell equations may be rewritten as

∇×E = (γ(x))2β(x)E+ iωµ(x)
(γ(x)
k(x)

)2

H, (2.5)

∇×H = (γ(x))2β(x)H− iωε(x)
(γ(x)
k(x)

)2

E, (2.6)

where

k(x) = ω
√
ε(x)µ(x), (γ(x))2 =

(k(x))2

1− (k(x)β(x))2
.

Throughout, we always assume that (k(x)β(x))2 6= 1, x ∈ R3. In addition, it is assumed that

the structure is periodic in the x1 direction with period L and invariant in the x2 direction.

Therefore, we have

ε(x1 + nL, x3) = ε(x1, x3), µ(x1 + nL, x3) = µ(x1, x3), β(x1 + nL, x3) = β(x1, x3),

and E and H only depend on x1 and x3.

The problem geometry in one period L is defined as:

Ω =
{
(x1, x3) : 0 < x1 < L, b2 < x3 < b1

}
,

for some positive constants b2 and b1.

Fig. 2.1 shows the structure of the domain Ω, where s1 and s2 are two simple curves

imbedded in the region Ω. The space above the curve s1 and below the curve s2 is filled with

chiral and homogeneous medium , and the medium in the region Ω between s1 and s2 is chiral
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or achiral. Based on the characteristics of the medium, it is assumed that these exist positive

constants d1 and d2 such that

ε(x1, x3) = ε1, µ(x1, x3) = µ1, β(x1, x3) = 0 for x3 ≥ b1 − d1,

ε(x1, x3) = ε2, µ(x1, x3) = µ2, β(x1, x3) = 0 for x3 ≤ b2 + d2,

where ε1, ε2, µ1 and µ2 are positive constants.

Ω

s1

s2

Γ1

Γ2

b1

b2

b
′

1

b
′

2

0 L x1

x3

Fig. 2.1. Geometry of the grating problem.

As in [43], we also make the following general assumptions:

(1) ε(x), µ(x) and β(x) are all real valued L∞ functions, ε(x) ≥ ε0, µ(x) ≥ µ0 and β(x) ≥ 0,

where ε0 and µ0 are positive constants;

(2) d = 1− kβ ≥ d0 > 0, for some positive constant d0.

Note that the second assumption is essential in the following numerical analysis. Fortunately,

it appears to be common in the literature and justified since β is generally small. The first

assumption is a technical one.

Next, we will briefly introduce some notation. Based on these notation, we will introduce

the weak formulation of the scattering problem. Let (EI,HI) be the incoming plane waves that

are incident on Ω:

EI = s̃eiq̃.x, HI = p̃eiq̃.x, s̃ =
p̃× q̃

ωε1
, q̃ · q̃ = ω2ε1µ1, p̃ · q̃ = 0,

where q̃ = (α,−β1, 0)T = ω
√
ε1µ1(sin θ,− cos θ, 0)T is the incident wave vector, and θ is the

incidence angle satisfying 0 ≤ θ < π.

We are interested in quasi-periodic solutions, i.e., solutions (E,H) such that (Eα,Hα) =

e−iαx1(E,H) are periodic in the x1 direction of period L . According to the radiation condition

imposed on the scattering problem, we shall insist that the electromagnetic fields (E,H) is

composed of bounded outgoing plane wave, plus the incident wave (EI,HI) above the structure.

Define the boundaries

Γ1 =
{
(x1, x3) : 0 < x1 < L, x3 = b1

}
, Γ2 =

{
(x1, x3) : 0 < x1 < L, x3 = b2

}
.
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Let Ω∗ denote the component of the domain Ω between the curves s1 and s2. Introduce

Γ′
1 =

{
(x1, x3) : 0 < x1 < L, x3 = b′1

}
, Γ′

2 =
{
(x1, x3) : 0 < x1 < L, x3 = b′2

}
,

with b2 < b′2 < b′1 < b1 and |bj − b
′

j | ≤ dj , j=1,2, such that Ω∗ ⊆ {(x1, x3) : 0 < x1 < L, b′2 <

x3 < b′1} and

ε(x1, x3) = ε1, µ(x1, x3) = µ1, β(x1, x3) = 0 for x3 ≥ b′1,

ε(x1, x3) = ε2, µ(x1, x3) = µ2, β(x1, x3) = 0 for x3 ≤ b′2.

Define for j = 1, 2 the coefficients

βn
j (α) =

{
(k2j − (αn + α)2)1/2 if k2j ≥ (αn + α)2,

i((αn + α)2 − k2j )
1/2 if k2j < (αn + α)2,

(2.7)

where αn = 2πn/L for all n ∈ Z. Note that β0
1 = β by definition. For any quasi-periodic

function f ∈ H1/2(Γj), define the Dirichlet-to-Neumann(DtN) operator T (j) by

T (j)f(x1) =
∑

n∈Z

iβn
j f

(n)ei(αn+α)x1 , 0 < x1 < L, j = 1, 2, (2.8)

where

f (n) = L−1

∫ L

0

f(x)e−i(αn+α)x1dx1. (2.9)

Let E = (E1, E2, E)T, H = (H1, H2, H)T. It is easily obtained that E1, E2, H1 and H2 can

be expressed in terms of E and H . Then, two coupled equations for E and H can be achieved.

Denoting by φ the component E or H , it follows from the Fourier series expansion of φ and the

method of separation of variables that φ has the following Rayleigh expansion:

φ = φI +
∑

n∈Z

An
1 e

i(αn+α)x1+iβn
1
x3 , for x3 ≥ b1, (2.10)

φ =
∑

n∈Z

An
2 e

i(αn+α)x1−iβn
2
x3 , for x3 ≤ b2. (2.11)

Based on (2.10) and (2.11), we can readily derive the boundary condition on Γj for E and H .

Then the scattering problem can be simplified to the following problem:

−∇ · ( 1
µ
∇E) + iω∇ · (β∇H)− iωγ2βH − γ2

µ
E = 0, in Ω,

−∇ · (1
ε
∇H)− iω∇ · (β∇E) + iωγ2βE − γ2

ε
H = 0, in Ω,

(
T (1) − ∂

∂n

)
E = 2iβ1EI ,

(
T (1) − ∂

∂n

)
H = 2iβ1HI , on Γ1,

(
T (2) − ∂

∂n

)
E = 0,

(
T (2) − ∂

∂n

)
H = 0, on Γ2,

(2.12)

where EI = s̃3e
iαx1−iβ1b1 and HI = p̃3e

iαx1−iβ1b1 .

Introduce the following space which includes all the quasi-periodic functions:

X(Ω) =
{
w ∈ H1(Ω) : w(0, x3) = e−iαLw(L, x3)

}
.
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Let u = (E,H)T, v = (p, q)T and e = (s, t)T. Introduce the following sesquilinear form

A(e, v) =

∫

Ω

1

µ
∇s · ∇p+

∫

Ω

1

ε
∇t · ∇q − iω

∫

Ω

β∇t · ∇p+ iω

∫

Ω

β∇s · ∇q

−
∫

Ω

γ2

µ
s · p−

∫

Ω

γ2

ε
t · q − iω

∫

Ω

γ2βt · p+ iω

∫

Ω

γ2βs · q

−
2∑

j=1

1

µj

∫

Γj

T (j)s · p−
2∑

j=1

1

εj

∫

Γj

T (j)t · q, (2.13)

〈fI, v〉 = − 1

µ1

∫

Γ1

2iβ1EIpdx1 −
1

ε1

∫

Γ1

2iβ1HIqdx1. (2.14)

A weak formulation of the scattering problem is as follows: Giving an incident plane wave

(EI , HI), find u ∈ X(Ω)×X(Ω) such that

A(u, v) = 〈fI, v〉, ∀v ∈ X(Ω)×X(Ω). (2.15)

See Zhang and Ma [43] for the proof of existence and uniqueness of the solution to (2.15).

Throughout this paper, we assume that the variational problem has a unique solution for any

frequency ω. The general theory in Babuška and Aziz [7] implies that there exists a constant

γ > 0 such that the following inf-sup condition holds:

sup
06=v∈X(Ω)×X(Ω)

|A(e, v)|
‖v‖1

≥ γ‖e‖1, ∀e ∈ X(Ω)×X(Ω). (2.16)

To simply the notation, ‖ · ‖H1(Ω)×H1(Ω) and ‖ · ‖L2(Ω)×L2(Ω) will be written as ‖ · ‖1 and ‖ · ‖0,
respectively. And it can be shown that

‖u‖1 ≤ C0

(
‖EI‖L2(Γ1)

+ ‖HI‖L2(Γ1)

)
. (2.17)

3. The Discrete Problem

To design a practicable algorithm, we do a truncation approximation to the nonlocal bound-

ary operator T (j)(j = 1, 2), then the finite element formulation is presented by using new trun-

cated operators. After introducing some notation, we will give the main conclusion in this

paper.

Let Mh be a regular triangulation of the domain Ω. Every triangle T ∈ Mh is considered

as closed. To deal with the quasi-periodic boundary condition, we require that if (0, z) is a

node on the left boundary, then (L, z) must be a node on the right boundary, and vice versa.

Let Vh ⊂ X(Ω) denote a conforming linear finite element space, that is,

Vh :=
{
qh ∈ C(Ω) : qh|T ∈ P1(T ), ∀T ∈ Mh,

qh(0, x3) = e−iαLqh(L, x3) for b2 < x3 < b1

}
,

where P1(T ) is the set of polynomials of degrees ≤ 1. The finite element approximation to the

problem (2.15) reads as follows: Find uh = (Eh, Hh)
T ∈ Vh × Vh such that

A(uh, vh) = 〈fI, vh〉, ∀vh = (ph, qh)
T ∈ Vh × Vh. (3.1)
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In practice, it is impossible that the non local operators T (j) in (2.8) is computed from the

infinite series. Thus we need truncate the boundary operators by taking sufficiently many terms

of the corresponding expansions so as to obtain our reliable and easily manipulated algorithm.

Denote by nα := αL
2π . For the quasic-periodic function f , the truncation operator T (j,Nj) is

defined as

T (j,Nj)f(x1) =
∑

|n+nα|≤Nj

iβn
j f

(n)
α ei(αn+α)x1 , j = 1, 2. (3.2)

Now, we define the truncated finite element formulation for solving (2.15): Find uNh = (EN
h , H

N
h )T

∈ Vh × Vh such that

AN (uNh , vh) = 〈fI, vh〉, ∀vh ∈ Vh × Vh, (3.3)

where the sesquilinear form

AN (e, v) =

∫

Ω

1

µ
∇s · ∇p+

∫

Ω

1

ε
∇t · ∇q − iω

∫

Ω

β∇t · ∇p+ iω

∫

Ω

β∇s · ∇q

−
∫

Ω

γ2

µ
s · p−

∫

Ω

γ2

ε
t · q − iω

∫

Ω

γ2βt · p+ iω

∫

Ω

γ2βs · q

−
2∑

j=1

1

µj

∫

Γj

T (j,Nj)s · p−
2∑

j=1

1

εj

∫

Γj

T (j,Nj)t · q. (3.4)

Note that for sufficiently large Nj and sufficiently small h, the existence and uniqueness

of solution of the problem (3.3) may be obtained by combing the argument of Schatz [37]

with the general theory in [7]. In this paper, the discrete problem (3.3) is assumed to have a

unique solution uNh ∈ Vh × Vh. Also note that on the quasi-periodic boundary conditions, the

quasi-periodic basis functions are not used in our implementation. In order to assemble the

stiffness matrix for the quasi-periodic boundary condition, we assemble the system using the

pure Neumann boundary condition first, then eliminate the degrees of freedom on the right (or

left) side of the domain using the quasi-periodic boundary condition.

For any T ∈ Mh, denote by hT its diameter. Introduce the residuals

R
(1)
T := −∇ · ( 1

µ
∇EN

h ) + iω∇ · (β∇HN
h )− iωγ2βHN

h − γ2

µ
EN

h , (3.5a)

R
(2)
T := −∇ · (1

ε
∇HN

h )− iω∇ · (β∇EN
h ) + iωγ2βEN

h − γ2

ε
HN

h . (3.5b)

For j = 1, 2, let Bj
h denotes the set of all the edges that lie on Γj , and Bh denotes the set

of all the edges except Bj
h in Ω. For any F ∈ Bh or F ∈ Bj

h, hF stands for its length. For

any interior edge F ∈ Bh which is the common edge of T1 and T2 ∈ Mh, we define the jump

residual across F as

J
(1)
F = µ−1(∇EN

h |T1
−∇EN

h |T2
) · nF , (3.6)

J
(2)
F = ε−1(∇HN

h |T1
−∇HN

h |T2
) · nF , (3.7)

K
(1)
F = iωβ(∇EN

h |T1
−∇EN

h |T2
) · nF , (3.8)

K
(2)
F = −iωβ(∇HN

h |T1
−∇HN

h |T2
) · nF . (3.9)
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Define Γleft = {(x1, x3) : x1 = 0, b2 < x3 < b1} and Γright = {(x1, x3) : x1 = L, b2 < x3 <

b1}. If F = Γleft

⋂
∂T for some element T ∈ Mh and F ′ be a corresponding edge on Γright

which also belongs to some element T ′, then we define the jump residual as

J
(1)
F = µ−1

(
∂EN

h

∂x1
|T1

− e−iαL ∂E
N
h

∂x1
|T ′

1

)
, J

(2)
F = ε−1

(
∂HN

h

∂x1
|T1

− e−iαL ∂H
N
h

∂x1
|T ′

1

)
,

K
(1)
F = iωβ

(
∂EN

h

∂x1
|T1

− e−iαL ∂E
N
h

∂x1
|T ′

1

)
, K

(2)
F = −iωβ

(
∂HN

h

∂x1
|T1

− e−iαL ∂H
N
h

∂x1
|T ′

1

)
,

J
(1)
F ′ = µ−1

(
eiαL

∂EN
h

∂x1
|T1

− ∂EN
h

∂x1
|T ′

1

)
, J

(2)
F ′ = ε−1

(
eiαL

∂HN
h

∂x1
|T1

− ∂HN
h

∂x1
|T ′

1

)
,

K
(1)
F ′ = iωβ

(
eiαL

∂EN
h

∂x1
|T1

− ∂EN
h

∂x1
|T ′

1

)
, K

(2)
F ′ = −iωβ

(
eiαL

∂HN
h

∂x1
|T1

− ∂HN
h

∂x1
|T ′

1

)
. (3.10)

For any F ∈ B1
h and F ′ ∈ B2

h, define the jump residual as follows:

J
(1)
F = 2µ−1

1

(
∂EN

h

∂x3
(x1, b1)− T (1,N1)EN

h (x1, b1) + 2iβ1EI

)
,

J
(2)
F = 2ε−1

1

(
∂HN

h

∂x3
(x1, b1)− T (1,N1)HN

h (x1, b1) + 2iβ1HI

)
,

J
(1)
F ′ = 2µ−1

2

(
∂EN

h

∂x3
(x1, b2)− T (2,N2)EN

h (x1, b2)

)
,

J
(2)
F ′ = 2ε−1

2

(
∂HN

h

∂x3
(x1, b2)− T (2,N2)HN

h (x1, b2)

)
,

K
(1)
F = 0, K

(2)
F = 0, K

(1)
F ′ = 0, K

(2)
F ′ = 0.

(3.11)

For any T ∈ Mh, denote by ηT the local error estimator, which is defined by:

ηT =hT

(
‖R(1)

T ‖2L2(T ) + ‖R(2)
T ‖2L2(T )

)1/2

(3.12)

+
(1
2

∑

F⊂∂T

hF
(
‖J (1)

F ‖2L2(F ) + ‖J (2)
F ‖2L2(F ) + ‖K(1)

F ‖2L2(F ) + ‖K(2)
F ‖2L2(F )

))1/2

.

The main theorem of this paper is the following:

Theorem 3.1. Let u and uNh denote the solutions of (2.15) and (3.3), respectively. Then there

exist two integers Nj0, j = 1, 2 independent of h and satisfying (2πNj0/L)
2 > k2j , such that for

Nj ≥ Nj0 the following a posteriori error estimate holds:

‖u− uNh ‖1 ≤ C̃

(( ∑

T∈Mh

η2T

) 1

2

+

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

)
,

where the constant C̃ is independent of h, N1 and N2.

The first and second term on the right hand side of the above estimate are often called the

finite element discretization error and truncation error of the DtN operators. We notice that the

truncation error is exponentially decaying with respect to Nj and the distances from Γj (j =

1, 2) to the grating.
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4. A Posteriori Error Analysis

In this section we prove the posteriori error estimate in Theorem 3.1.

Define the error ξ := u − uNh . Let w = (ϕ, ψ)T and ξ = (ξE , ξH)T. It is obvious that

ξE = E − EN
h and ξH = H −HN

h . Introduce the dual problem to the original problem (2.15):

Find w ∈ X(Ω)×X(Ω) such that

A(v, w) = (v, ξ) ∀v ∈ X(Ω)×X(Ω), (4.1)

After a series of complex calculations, we conclude that w is the weak solution of the following

problem

−∇ · ( 1
µ
∇ϕ) + iω∇ · (β∇ψ) − γ2

µ
ϕ− iωγ2βψ = ξE , in Ω, (4.2)

−∇ · (1
ε
∇ψ)− iω∇ · (β∇ϕ) − γ2

ε
ψ + iωγ2βϕ = ξH , in Ω, (4.3)

∂ϕ

∂n
− T (1,∗)ϕ = 0,

∂ψ

∂n
− T (1,∗)ψ = 0, on Γ1, (4.4)

∂ϕ

∂n
− T (2,∗)ϕ = 0,

∂ψ

∂n
− T (2,∗)ψ = 0, on Γ2, (4.5)

where the dual operators take the following form:

T (j,∗)s = −
∑

n∈Z

i βn
j s

(n)ei(αn+α)x1 , j = 1, 2.

Just as discussed for the dual problem in [9], the existence of solutions for (4.2)-(4.5) can be

obtained from the Fredholm theory and the related proof of [7]. Here we assume this problem

has a unique (weak) solution. Then it can be shown that w satisfies

‖w‖1 ≤ C0 ‖ξ‖0 . (4.6)

Note that, unlike the duality argument for a priori error estimates, the assumption of the H2

regularity of w can be removed.

4.1. Error Representation Formulae

In this subsection, we describe several relations on the error ξ, which is the beginning for

the a posteriori error analysis.

Lemma 4.1. Let u, uNh , and w be the solutions to the problems (2.15), (3.3) and (4.1), respec-

tively. Then

‖ξ‖21 ≤ C
(
Re

(
A(ξ, ξ) +

2∑

j=1

( 1

µj

∫

Γj

(T (j) − T (j,Nj))ξEξE

+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHξH
))

+ ‖ξ‖20
)
, (4.7)

‖ξ‖20 = A(ξ, w) +

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEϕ+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHψ

)
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−
2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEϕ+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHψ

)
, (4.8)

A(ξ, v) +

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEp+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHq

)

= 〈fI, v − vh〉 −AN (uNh , v − vh) +
2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))Ep

+
1

εj

∫

Γj

(T (j) − T (j,Nj))Hq

)
. (4.9)

Proof. By the definition of the sesquilinear form A, we have

A(ξ, ξ) +

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEξE +
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHξH

)

+

2∑

j=1

(
1

µj

∫

Γj

T (j,Nj)ξEξE +
1

εj

∫

Γj

T (j,Nj)ξHξH

)

=

∫

Ω

(
1

µ
|∇ξE |2 +

1

ε
|∇ξH |2

)
−
∫

Ω

(
γ2

µ
|ξE |2 +

γ2

ε
|ξH |2

)

+ iω

∫

Ω

β
(
∇ξE · ∇ξH −∇ξH · ∇ξE

)
+ iω

∫

Ω

γ2β
(
ξEξH − ξHξE

)
. (4.10)

Further, from the definitions of T (j,Nj) and βn
j , we can obtain

Re
( 2∑

j=1

( 1

µj

∫

Γj

T (j,Nj)ξEξE +
1

εj

∫

Γj

T (j,Nj)ξHξH
))

(4.11)

=− L

2∑

j=1

∑

|n+nα|≤Nj

Im(βn
j )
( 1

µj
|ξ(n)E |2 + 1

εj
|ξ(n)H |2

)
≤ 0.

Using the young inequality, we have

Re
(
iω

∫

Ω

β
(
∇ξE · ∇ξH −∇ξH · ∇ξE

))
= 2ω

∫

Ω

Im(β∇ξH · ∇ξE)

≥−
∫

Ω

2kβ√
ε
√
µ
|∇ξE | · |∇ξH | ≥ −

∫

Ω

(kβ
µ
|∇ξE |2 +

kβ

ε
|∇ξH |2

)
. (4.12)

Similar to the deduction of the above inequality, we can find that

Re
(
iω

∫

Ω

γ2β
(
ξEξH − ξHξE

))

=2ω

∫

Ω

γ2β Im(ξHξE) ≥ −
∫

Ω

ωγ2β(|ξE |2 + |ξH |2). (4.13)

Clearly by taking the real parts in the identity of (4.10), together with (4.11)-(4.13), we arrive

at

Re
(
A(ξ, ξ) +

2∑

j=1

( 1

µj

∫

Γj

(T (j) − T (j,Nj))ξEξE +
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHξH
))

≥
∫

Ω

(
1− kβ

µ
|∇ξE |2 +

1− kβ

ε
|∇ξH |2

)
−
∫

Ω

γ2
(
(
1

µ
+ ωβ)|ξE |2 + (

1

ε
+ ωβ)|ξH |2

)
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This implies the desired estimate (4.7) upon using the restriction of ε(x) and µ(x) and the fact

that 1− kβ ≥ d0(> 0). Moreover, it is easy to see that (4.8) follows by taking v = ξ in (4.1).

It remains to prove (4.9). By a similar argument as for (4.7) in Ref. [46], we have

A(ξ, v) = A(u − uNh , v − vh) +A(u − uNh , vh) = 〈fI , v − vh〉 −AN (uNh , v − vh)

+
(
AN (uNh , v − vh)−A(uNh , v − vh)

)
+
(
AN (uNh , vh)− A(uNh , vh)

)

=〈fI , v − vh〉 −AN (uNh , v − vh) +
(
AN (uNh , v)−A(uNh , v)

)

=〈fI , v − vh〉 −AN (uNh , v − vh)

−
2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEp+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHq

)

+

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))Ep+
1

εj

∫

Γj

(T (j) − T (j,Nj))Hq

)
,

which yields (4.9). This completes the proof of the lemma. �

4.2. Proof of Theorem 3.1

In this subsection, we shall derive the a posteriori error estimation. This will be done by

employing two important lemmas proved in the next two subsections.

Lemma 4.2. There exist integers Nj1 independent of h and satisfying (2πNj1/L)
2 > k2j , j =

1, 2, such that for any Nj ≥ Nj1 and v ∈ X(Ω)×X(Ω) we have

∣∣∣∣A(ξ, v) +
2∑

j=1

( 1

µj

∫

Γj

(T (j) − T (j,Nj))ξEp+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHq
)∣∣∣∣

≤C1

(( ∑

T∈Mh

η2T

)1/2

+

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

)
‖v‖1 ,

where C1 is a constant independent of h and Nj.

Lemma 4.3. For the solution w of (4.1), there exist integers Nj2 independent of h and satis-

fying (2πNj2/L)
2 > k2j , j = 1, 2, such that for Nj ≥ Nj2, we have the following estimate:

∣∣∣∣
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEϕ+
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHψ

∣∣∣∣ ≤ C2N
−2
j ‖ξ‖21,

where C2 is a constant independent of h and Nj.

Now we are in the position to prove Theorem 3.1. By (4.7) and Lemma 4.2, the following

estimate can be obtained

‖ξ‖21 ≤C1

(( ∑

T∈Mh

η2T

)1/2

+

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

)
‖ξ‖1 + C3 ‖ξ‖20 .

It remains to estimate ‖ξ‖0. By (4.8), (4.6), Lemma 4.2 and Lemma 4.3, we know that

‖ξ‖20 ≤C1

(( ∑

T∈Mh

η2T

)1/2

+
2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

)
C0 ‖ξ‖0 + C2(N

−2
1 +N−2

2 )‖ξ‖21,
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Then it follows from the above two estimates that

‖ξ‖21 ≤C1(1 + C0C3)

(( ∑

T∈Mh

η2T

)1/2

+

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

)
‖ξ‖1

+ C2C3(N
−2
1 +N−2

2 )‖ξ‖21.

Choose integer Nj3 such that

C2C3N
−2
j3 ≤ 1

4
, j = 1, 2.

By taking

Nj0 = max(Nj1, Nj2, Nj3), C̃ = 2C1(1 + C0C3), (4.14)

the proof of Theorem 3.1 is complete. �

4.3. Proof of Lemma 4.2

We need the following lemma used in deriving the truncation error (cf. [9]).

Lemma 4.4. Let u = (E,H)T be the solution to (2.15) and u(n) = (E(n), H(n))T be defined in

(2.9). Suppose that (αn + α)2 ≥ k2j . Then

| f (n)(bj) |≤| f (n)(b′j) | e−|bj−b′j |
√

(αn+α)2−k2

j , for j = 1, 2,

where f denotes E or H.

we recall the following trace property(cf. [20]).

Lemma 4.5. For any p ∈ X(Ω), we have

‖p‖H1/2(Γj) ≤ Ĉ‖p‖H1(Ω),

with Ĉ =
√
1 + (b1 − b2)−1 and j = 1, 2. Here if p(x1, bj) =

∑
n∈Z p

(n)(bj)e
i(αn+α)x1 on Γj,

‖p‖H1/2(Γj) =
(
L
∑

n∈Z

(
1 + |αn + α|2

)1/2|p(n)(bj)|2
)1/2

.

Next we turn to the estimate of Lemma 4.2. Denote by

J
1 := 〈fI, v − vh〉 −AN (uNh , v − vh),

J
2 :=

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))Ep+
1

εj

∫

Γj

(T (j) − T (j,Nj))Hq

)
.

Then from (4.9), we have

A(ξ, ξ) +

2∑

j=1

(
1

µj

∫

Γj

(T (j) − T (j,Nj))ξEξE +
1

εj

∫

Γj

(T (j) − T (j,Nj))ξHξH

)

=:J1 + J
2.
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From the definition of the sesquilinear form (3.4), J1 is rewritten as

J
1 =−

∑

T∈Mh

(∫

T

( 1
µ
∇EN

h · ∇(p− ph)−
γ2

µ
EN

h (p− ph)− iωβ∇HN
h · ∇(p− ph)

− iωγ2βHN
h (p− ph)

)
−

2∑

j=1

∑

F⊂∂T
⋂

Γj

1

µj

∫

F

T (j,Nj)EN
h (p− ph)

)

−
∑

T∈Mh

(∫

T

(1
ε
∇HN

h · ∇(q − qh)−
γ2

ε
HN

h (q − qh) + iωβ∇EN
h · ∇(q − qh)

+ iωγ2βEN
h (q − qh)

)
−

2∑

j=1

∑

F⊂∂T
⋂

Γj

1

εj

∫

F

T (j,Nj)HN
h (q − qh)

)

−
∑

T∈Mh

∑

F⊂∂T
⋂

Γ1

(
1

µ1

∫

F

2iβ1EI(p− ph) +
1

ε1

∫

F

2iβ1HI(q − qh)

)
.

Integration by parts yields

J
1 =−

∑

T∈Mh

(∫

T

(
−∇ · ( 1

µ
∇EN

h ) + iω∇ · (β∇HN
h )− iωγ2βHN

h − γ2

µ
EN

h

)

× (p− ph
)
+

∑

F⊂∂T

(∫

F

1

µ
∇EN

h · n(p− ph)− iω

∫

F

β∇HN
h · n(p− ph)

))

−
∑

T∈Mh

(∫

T

(
−∇ · (1

ε
∇HN

h )− iω∇ · (β∇EN
h ) + iωγ2βEN

h − γ2

ε
HN

h

)

×
(
q − qh

)
+

∑

F⊂∂T

(∫

F

1

ε
∇HN

h · n(q − qh) + iω

∫

F

β∇EN
h · n(q − qh)

))

+
∑

T∈Mh

( ∑

F⊂∂T
⋂

Γ1

(
1

µ1

∫

F

(T (1,N1)EN
h − 2iβ1EI)(p− ph)

+
1

ε1

∫

F

(T (1,N1)HN
h − 2iβ1HI)(q − qh)

)

+
∑

F⊂∂T
⋂

Γ2

(
1

µ2

∫

F

T (2,N2)EN
h (p− ph) +

1

ε2

∫

F

T (2,N2)HN
h (q − qh)

))
.

Now we take ph = Πhp ∈ Vh and qh = Πhq ∈ Vh. Here Πh is the Scott-Zhang interpolation

operator in [38] which satisfies the following interpolation estimates:

‖s−Πhs‖L2(T ) ≤ ChT ‖∇s‖L2(T̃ ), ‖s−Πhs‖L2(e) ≤ Ch1/2e ‖∇s‖L2(ẽ),

where T̃ and ẽ are the union of all the elements in Mh having nonempty intersection with

the element T and the edge e, respectively. By using the interpolation estimates and standard
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argument in the a posteriori error analysis, we obtain

|J1| ≤C
∑

T∈Mh

(
hT

(
‖R(1)

T ‖L2(T )|p|H1(T̃ ) + ‖R(2)
T ‖L2(T )|q|H1(T̃ )

)
+

∑

F⊂∂T

h
1/2
F

(
‖J (1)

F ‖L2(F )|p|H1(F̃ )

+ ‖J (2)
F ‖L2(F )|q|H1(F̃ ) + ‖K(1)

F ‖L2(F )|p|H1(F̃ ) + ‖K(2)
F ‖L2(F )|q|H1(F̃ )

))

≤C
( ∑

T∈Mh

η2T

)1/2(
|p|2H1(Ω) + |q|2H1(Ω)

)1/2 ≤ C

( ∑

T∈Mh

η2T

)1/2

‖v‖1. (4.15)

It remains to estimate J2. Using an analogous analysis to that presented in [46], here we

omit their derivation and just give their final result. For Nj ≥ Nj1 we have

2∑

j=1

1

µj

∫

Γj

(T (j) − T (j,Nj))Ep ≤ C

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j ‖E‖H1(Ω) · ‖p‖H1(Ω),

2∑

j=1

1

εj

∫

Γj

(T (j) − T (j,Nj))Hq ≤ C
2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j ‖H‖H1(Ω) · ‖q‖H1(Ω).

Further, it follows from the above two estimates, (2.16) and (2.17) that

|J2| ≤ C

2∑

j=1

e−|bj−b′j |
√

(2πNj/L)2−k2

j

(
‖EI‖L2(Ω) + ‖HI‖L2(Ω)

)
· ‖v‖1. (4.16)

Thus, this proof is completed by combing (4.15) and (4.16). �

4.4. Proof of Lemma 4.3

Here we mention that Lemma 4.3 may be viewed as generalization of our relevant result

in [46]. However, there are also some differences in results and techniques because the model

of this article is somewhat more complicated. In the following subsection, we prove only in the

case when j = 1, because the proof of the case when j = 2 is almost the same.

Based on Lemma 4.5 and Cauchy-Schwarz inequality, we easily obtain that
∣∣∣∣
1

µ1

∫

Γ1

(T (1) − T (1,N1))ξEϕ+
1

ε1

∫

Γ1

(T (1) − T (1,N1))ξHψ

∣∣∣∣

≤C max
|n+nα|>N1

(|αn + α||βn
1 |3)−1/2

((
L

∑

|n+nα|>N1

|αn + α||ξ(n)E (b1)|2
)1/2

×
(
L

∑

|n+nα|>N1

|βn
1 |5|ϕ(n)(b1)|2

)1/2
+
(
L

∑

|n+nα|>N1

|αn + α||ξ(n)H (b1)|2
)1/2

×
(
L

∑

|n+nα|>N1

|βn
1 |5|ψ(n)(b1)|2

)1/2)

≤CN−2
1

(
‖ξE‖H1(Ω)

(
L

∑

|n+nα|>N1

|βn
1 |5|ϕ(n)(b1)|2

)1/2

+ ‖ξH‖H1(Ω)

(
L

∑

|n+nα|>N1

|βn
1 |5|ψ(n)(b1)|2

)1/2)

≤CN−2
1 ‖ξ‖H1(Ω)

(
L

∑

|n+nα|>N1

|βn
1 |5

(
|ϕ(n)(b1)|2 + |ψ(n)(b1)|2

))1/2

. (4.17)
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Next, to estimate the term with ϕ(n)(b1) and ψ
(n)(b1) in (4.17) we consider the dual problem

(4.2)–(4.5) in the following domain near Γ1:

Ω̃1 =
{
(x1, x3) : 0 < x1 < L, b′1 < x3 < b1

}
.

By plugging the series expansion of ϕ and ψ into (4.2)-(4.5), the following boundary value

problem can be obtained:





(ϕ(n))′′(x3)− |βn
1 |2ϕ(n)(x3) = −ξ(n)E (x3) in (b′1, b1),

(ϕ(n))′(b1) + |βn
1 |ϕ(n)(b1) = 0,

ϕ(n)(b′1) = ϕ(n)(b′1),

(4.18)

and





(ψ(n))′′(x3)− |βn
1 |2ψ(n)(x3) = −ξ(n)H (x3) in (b′1, b1),

(ψ(n))′(b1) + |βn
1 |ψ(n)(b1) = 0,

ψ(n)(b′1) = ψ(n)(b′1),

(4.19)

where n is required to satisfy the inequality that |n+ nα| > N1.

It follows from the general theory of ordinary differential equation and similar argument as

in [46] that

|ϕ(n)(b1)| ≤
1

2|βn
1 |

(∫ b1

b′
1

(
e|β

n
1
|(s−b1) − e|β

n
1
|(2b′

1
−s−b1)

)
· |ξ(n)E (s)|ds

)

+ e−d|βn
1
||ϕ(n)(b′1)|

≤ (1− e−d|βn
1
|)2

2|βn
1 |2

‖ξ(n)E ‖L∞([b′
1
,b1]) + e−d|βn

1
||ϕ(n)(b′1)|

≤ 1

2|βn
1 |2

‖ξ(n)E ‖L∞([b′
1
,b1]) + e−d|βn

1
||ϕ(n)(b′1)|,

where d := b1 − b′1. For any s ∈ (b′1, b1), It is easily deduced that

|ξ(n)E (s)|2 =
1

b1 − s

∫ s

b1

(
(b1 − t)|ξ(n)E (t)|2

)′
dt

≤ 1

b1 − s

∫ b1

b′
1

|ξ(n)E (t)|2dt+ 2

∫ b1

b′
1

|ξ(n)E (t)||(ξ(n)E (t))′|dt

Further, we get

‖ξ(n)E ‖2L∞([b′
1
,b1])

≤ 2

d
‖ξ(n)E ‖2L2([b′

1
,b1])

+ 2‖ξ(n)E ‖L2([b′
1
,b1])‖(ξ

(n)
E )′‖L2([b′

1
,b1]). (4.20)

By a similar argument as for (4.20), we have

‖ξ(n)H ‖2L∞([b′
1
,b1])

≤ 2

d
‖ξ(n)H ‖2L2([b′

1
,b1])

+ 2‖ξ(n)H ‖L2([b′
1
,b1])‖(ξ

(n)
H )′‖L2([b′

1
,b1]).
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By virtue of the Young inequality, we have

L
∑

|n+nα|>N1

|βn
1 |5

(
|ϕ(n)(b1)|2 + |ψ(n)(b1)|2

)

≤CL
∑

|n+nα|>N1

(
|βn

1 |
(
‖ξ(n)E ‖2L∞([b′

1
,b1])

+ ‖ξ(n)H ‖2L∞([b′
1
,b1])

)

+ |βn
1 |5e−2d|βn

1
|
(
|ϕ(n)(b′1)|2 + |ψ(n)(b′1)|2

))

≤CL
∑

|n+nα|>N1

((
(d|βn

1 |)−1 + 1
)
|βn

1 |2
(
‖ξ(n)E ‖2L2([b′

1
,b1])

+ ‖ξ(n)H ‖2L2([b′
1
,b1])

)

+ ‖(ξ(n)E )′‖2L2([b′
1
,b1])

+ ‖(ξ(n)H )′‖2L2([b′
1
,b1])

)

+ CL max
|n+nα|>N1

(
|βn

1 |4e−2d|βn
1
|
) ∑

|n+nα|>N1

|βn
1 |
(
|ϕ(n)(b′1)|2 + |ψ(n)(b′1)|2

)

:=T1 + T2.

Note that

|βn
1 | ≤ |αn + α| ≤ (1 + |αn + α|2)1/2, N1 ≤ C|βn

1 |, for |n+ nα| > N1

and from the definition of ‖.‖H1(Ω), we get

T1 ≤ C
(
(N1d)

−1 + 1
)
‖ξ‖21.

On the other hand, it follows from similar techniques used in the same reference [46] that

T2 ≤Cd−4L max
|n+nα|>N1

(
|2dβn

1 |4e−2d|βn
1
|
)(

‖ϕ‖2H1/2(Γ′

1
) + ‖ψ‖2H1/2(Γ′

1
)

)

≤Cd−4 ‖w‖21 ≤ Cd−4 ‖ξ‖20 .

Therefore,

L
∑

|n+nα|>N1

|βn
1 |5

(
|ϕ(n)(b1)|2 + |ψ(n)(b1)|2

)
≤ C

(
1 + (N1d)

−1 + d−4
)
‖ξ‖21. (4.21)

By inserting (4.21) into (4.17) and setting

C2 = C
(
1 + (N1d)

−1/2 + d−2
)
, (4.22)

we complete the proof of Lemma 4.3. �

5. Implementation and Numerical Examples

Based on the a posteriori error estimate from Theorem 3.1, we use the PDF toolbox of

MATLAB to implement the adaptive DtN finite element method given in Ref. [46]. In the

following, two examples are from [43] and presented to demonstrate the competitiveness of our

algorithm.

Example 5.1. Consider the chiral grating whose surface has corners, as shown in Fig. 5.1(a).

Assume that plane waves

EI = eiαx1−iβ1x3 , HI = 0



An Adaptive FEM for the Wave Scattering 861

0 0.5 1.5 2
−1

−0.5

0

0.7

1

x
1

x
3

ε
2

 
ε β

ε
1

(a)
0 0.5 1

−0.5

−0.3

−0.1

0

0.3

0.5

x
1

x
3

ε
0

ε
3

ε
1

β
1 ε

2
β

2

(b)

Fig. 5.1. (a): Geometry of the domain in Example 5.1; (b): Geometry of the domain in Example 5.2.

is incidence on the structure with L = 2 and θ = π/4. The parameters are taken as follows:

ω = π, β = 0.1, ε1 = 1, ε2 = 1, ε = 2.25, b1 = 1, b2 = −1, b′1 = 0.7, b′2 = −0.5, N1=20

and N2 = 12. The mesh plot and the amplitude of the electric field and magnetic field after

9 adaptive iterations are shown in Fig. 5.2(a) and Fig. 5.3 when the grating efficiency is

stabilized. It is observed that our algorithm has the ability to capture the singularities of the

problem. And it is easy to reach the conclusion that although there is a big difference in the

meshes, the surface plots of the amplitude of the numerical solution is almost the same for our

adaptive DtN finite element method and the PML finite element method(cf., [43]). Fig. 5.4(a)

shows the curve of logDoFh versus logǫh, where DoFh is the number of nodal points of the mesh

Mh. It implies that decay of the a posteriori error estimate for the adaptive mesh refinements

is O(DoF
−1/2
h ). It also shows the advantage of using adaptive mesh refinements. Fig. 5.4(b)
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Fig. 5.2. (a): An adaptively refined mesh with 5329 elements for Example 5.1; (b): An adaptively

refined mesh with 4470 elements for Example 5.2.
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shows the grating efficiency of the reflected and transmitted waves as well as the total grating

efficiency as a function of the number of nodal points, it is observed that the efficiencies are

convergence for our adaptive algorithm.
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Fig. 5.3. The surface plot of the amplitude of the associated numerical solution on the mesh in Fig.

5.2(a) for Example 5.1. (a): the electric field; (b): the magnetic field.
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Fig. 5.4. Quasi-optimality of the adaptive mesh refinements (a) and grating efficiency versus the number

of nodal points (b) in Example 5.1.

Example 5.2. This example concerns a chiral grating with two sharp angles, indicated in Fig.

5.1(b). The incident plane waves are

EI = 4/5eiαx1−iβ1x3 , HI = 3/5eiαx1−iβ1x3

with θ = π/6. The parameters are chosen as ω = 2.5, β1 = 0.2, β2 = 0.1, ε0 = 1, ε1 = 2.56,

ε2 = 4.84, ε3 = 1, b1 = 0.5, b2 = −0.5, b′1 = 0.3, b′2 = −0.3, N1=15 and N2 = 15. Fig.

5.2(b) and Fig. 5.5 show the adaptively refined meshes and amplitude of the electric field and

magnetic field after 11 adaptive iterations when the grating efficiency is stabilized. Just the

same as Example 5.1, similar conclusions can be obtained: our example shows the ability of

our algorithm to capture the singularities of the problem by using the local grid refinement.

Fig. 5.6(a) shows the curve of logDoFh versus logǫh. It indicates that the meshes and the
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Fig. 5.5. The surface plot of the amplitude of the associated numerical solution on the mesh in Fig.

5.2(b) for Example 5.2. (a): the electric field; (b): the magnetic field.

10
2

10
3

10
4

10
−1

10
0

10
1

Number of nodal points

A
 p

o
s
te

ri
o

r 
e

rr
o

r 
e

s
ti
m

a
te

s

 

 
adaptive refinement
a line with slope−1/2
uniform refinement

(a)
0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

1.2

Number of nodal point

E
ff
ic

ie
n

c
y

total efficiency

efficiency of transmitted mode

efficiency of reflected mode

(b)

Fig. 5.6. Quasi-optimality of the adaptive mesh refinements (a) and grating efficiency versus the number

of nodal points (b) in Example 5.2.

associated numerical complexity are quasi-optimal: ǫh = O(DoF
−1/2
h ) is valid asymptotically

for our adaptive algorithm, but invalid for uniform refinement. The grating efficiency of the

reflected and transmitted waves as well as the total grating efficiency are displayed in Fig.

5.6(b).
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[3] H. Ammari, J. Nédélec, et al., Time-harmonic electromagnetic fields in chiral media, Modern

Mathematical Methods in Diffraction Theory and its Applications in Engineering, 1 (1997), 74-

202.
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[34] P. Monk and E. Süli, The adaptive computation of far-field patterns by a posteriori error estimation

of linear functionals, SIAM. J. Numer. Anal., 36 (1998), 251-274.

[35] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM,

SIAM. J. Numer. Anal., 38 (2000), 466-488.

[36] P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element methods,

SIAM Rev., 44 (2002), 631-658.

[37] A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms,

Math. Comput., 28 (1974), 959-962.

[38] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary

conditions, Math. Comput., 54 (1990), 483-493.

[39] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math.,

7 (2007), 245-269.

[40] R. Verfürth, A Review of a Posterior Error Estimation and Adaptive Mesh Refinement Techniques,

Teubner, Stuttgart, 1996.

[41] S. Yueh and J. Kong, Analysis of diffraction from chiral gratings, J. Electro. Appl., 5 (1991),

701-714.

[42] D. Zhang, Y. Guo, C. Gong, and G. Wang, Numerical analysis for the scattering by obstacles in

a homogeneous chiral environment, Adv. Comput. Math., 36 (2012), 3-20.

[43] D. Zhang and F. Ma, A finite element method with perfectly matched absorbing layers for the

wave scattering by a periodic chiral structure, J. Comput. Math., 25 (2007), 458-472.

[44] D. Zhang, F. Ma, and H. Dong, A finite element method with rectangular perfectly matched layers

for the scattering from cavities, J. Comput. Math., 27 (2009), 812-834.

[45] W. Zheng, Z. Chen, and L. Wang, An adaptive finite element method for the h-ψ formulation of

time-dependent eddy current problems, Numer. Math., 103 (2006), 667-689.

[46] Z. Wang, G. Bao, J. Li, P. Li and H. Wu, Adaptive finite element method for the diffractive

grating problem with the transparent boundary condition, SIAM. J. Numer. Anal., 53 (2015),

1585-1607.


