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1 Introduction

Fractional differential equations can be used to describe many phenomena in a num-

ber of fields. For examples in physics, polymer rheology, chemistry, electrodynamics of

complex medium, regular variation in thermodynamics, control theory, signal and image

processing, biophysics, and so forth. There are many papers dealing with the existence

and uniqueness results of boundary value problems for nonlinear fractional differential

equations [1–5]. Meanwhile, boundary value problems with integral boundary value

conditions of nonlinear fractional differential equations have aroused considerable atten-

tion. Boundary value problems with integral boundary value conditions have various
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applications in population dynamics,chemical engineering, etc. For some recent devel-

opment on the integral boundary conditions, see the texts [6–9] and the references cited

therein.

Recently, in [10] Bai and Lü used classical fixed point theorems to prove the multiple

positive solutions for the following nonlinear fractional differential equation







Dαu(t)+ f (t,u(t))=0, 0< t<1,

u(0)=u(1)=0,

where 1<α≤2, Dα is the Riemann-Liouville fractional derivative of order α and

f ∈C([0,1]×[0,∞),[0,∞)).

In [11], Xu et al. investigated the existence of positive solutions for the following

fractional boundary value problem







Dαu(t)+ f (t,u(t))=0, 0< t<1,

u(0)=u′(0)=u(1)=u′(1)=0,

where 2< α≤ 3, Dα is a fractional derivative in the sense of Riemann-Liouville and f ∈
C([0,1]×[0,∞),[0,∞)). The existence, multiplicity, uniqueness of positive solutions are

established by using some fixed point theorems.

In [12], Cabada and Wang used Guo–Krasnoselskii fixed point theorem to show the

existence of positive solutions for a class of nonlinear boundary value problem with in-

tegral boundary conditions as







cDαu(t)+ f (t,u(t))=0, 0< t<1,

u(0)=u′′(0)=0, u(1)=λ
∫ 1

0
u(s)ds,

where 2 < α < 3,0 < λ < 2, cDα is the Caputo fractional derivative of order α, and f ∈
C([0,1]×[0,∞),[0,∞)).

Motivated by the results of [10–12], we consider the existence and uniqueness results

for the following Caputo fractional differential equations with integral boundary value

condition


























cDαu(t)+ f (t,u(t))=0, 0< t<1, n<α<n+1,

u(0)=u′(0)= ···=u(n−2)(0)=u(n)(0)=0,

u(1)=λ
∫ 1

0
u(s)ds, 0<λ<n,

(1.1)
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where n ≥ 2 (n ∈ N), cDα is the standard Caputo fractional derivative of order α, and

f∈C([0,1]×R,R) is a given function. The contraction mapping principle, Krasnoselskii’s

fixed point theorem, Leray-Schauder degree theory and Schauder fixed point theorem are

applied to prove the sufficient conditions of existence and uniqueness. Our main results

partly improves and extends the associated results of [12]. Four examples illustrating our

main results are included.

2 Preliminaries

For the convenience of the reader, we will demonstrate and study some necessary defini-

tions and theorems which can been founded in [13–18].

Definition 2.1. ([13,14]) For a function g: [0,∞)→R, the Caputo fractional derivative of order

α>0 is given as

cDαg(t)=
1

Γ(n−α)

∫ t

0
(t−s)n−α−1g(n)(s)ds,

provided the previous integral exists. where n=[α]+1, [α] denotes the integer part of α.

Definition 2.2. ([15,16]) For a function g: (0,∞)→R, the Riemann-Liouville fractional integral

of order α>0 is the integral

Iαg(t)=
1

Γ(α)

∫ t

0
(t−s)α−1g(s)ds,

provided that the integral of the right–hand side of the previous equation exists.

Lemma 2.1. ([15]) Let α>0, then the fractional differential equation cDαu(t)=0 has a unique

solution given as

u(t)=
[α]

∑
j=0

u(j)(0)

Γ(j+1)
tj.

Lemma 2.2. ([15]) Let α>0, then the integral and derivative of the previous have the composite

property as

Iα{cDαu(t)}=u(t)−
[α]

∑
j=0

u(j)(0)

Γ(j+1)
tj.

To obtain the solution of the boundary problem (1.1), we establish the following frac-

tional differential equation with integral boundary value condition


























cDαu(t)+y(t)=0, 0< t<1, n<α<n+1,

u(0)=u′(0)= ···=u(n−2)(0)=u(n)(0)=0,

u(1)=λ
∫ 1

0
u(s)ds, 0<λ<n,

(2.1)



Existence and Uniqueness Results for Caputo Fractional Differential Equations 59

from which, we have the following lemma :

Lemma 2.3. For any y(t)∈C[0,1], n≥2 (n∈N), 0<λ<n, then problem (2.1) has a unique

solution given by :

u(t)=
∫ 1

0
G(t,s)y(s)ds,

where

G(t,s)=



















ntn−1(1−s)α−1(α−λ+λs)−(n−λ)α(t−s)α−1

(n−λ)Γ(α+1)
, 0≤ s≤ t≤1,

ntn−1(1−s)α−1(α−λ+λs)

(n−λ)Γ(α+1)
, 0≤ t≤ s≤1.

(2.2)

Proof. We may apply Lemma 2.2 to reduce problem (2.1) to an equivalent integral equa-

tion :

u(t)=−Iαy(t)+
n

∑
j=0

u(j)(0)

Γ(j+1)
tj =−

∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+

n

∑
j=0

u(j)(0)

Γ(j+1)
tj.

Since u(0)=u′(0)= ···=u(n−2)(0)=u(n)(0)=0, we deduce that

u(t)=−
∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+

u(n−1)(0)

Γ(n)
tn−1. (2.3)

Using the integral boundary condition u(1)=λ
∫ 1

0 u(s)ds, we find that

u(n−1)(0)=Γ(n)

(

∫ 1

0

(1−s)α−1y(s)

Γ(α)
ds+λ

∫ 1

0
u(s)ds

)

. (2.4)

In view of (2.3) and (2.4), yields

u(t)=−
∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+tn−1

∫ 1

0

(1−s)α−1y(s)

Γ(α)
ds+λtn−1

∫ 1

0
u(s)ds. (2.5)

Now we integrate the previous equality from 0 to 1 on both sides on t, yields

∫ 1

0
u(t)dt=−

∫ 1

0

∫ t

0

(t−s)α−1y(s)

Γ(α)
dsdt+

∫ 1

0

∫ 1

0

tn−1(1−s)α−1y(s)

Γ(α)
dsdt

+
∫ 1

0
λtn−1

∫ 1

0
u(s)dsdt

=−
∫ 1

0

(1−s)α−1y(s)

αΓ(α)
ds+

1

n

∫ 1

0

(1−s)α−1y(s)

Γ(α)
ds+

λ

n

∫ 1

0
u(t)dt.
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Therefore, we have
∫ 1

0
u(t)dt=− n

n−λ

∫ 1

0

(1−s)αy(s)

Γ(α+1)
ds+

1

n−λ

∫ 1

0

(1−s)α−1y(s)

Γ(α)
ds. (2.6)

Substituting (2.6) into (2.5), we have

u(t)=−
∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+

∫ 1

0

tn−1(1−s)α−1y(s)

Γ(α)
ds

− nλ

n−λ

∫ 1

0

tn−1(1−s)αy(s)

Γ(α+1)
ds+

λ

n−λ

∫ 1

0

tn−1(1−s)α−1y(s)

Γ(α)
ds

=−
∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+

∫ 1

0

ntn−1(1−s)α−1(α−λ+λs)y(s)

(n−λ)Γ(α+1)
ds

=−
∫ t

0

ntn−1(1−s)α−1(α−λ+λs)−(n−λ)α(t−s)α−1

(n−λ)Γ(α+1)
y(s)ds

+
∫ 1

0

ntn−1(1−s)α−1(α−λ+λs)

(n−λ)Γ(α+1)
y(s)ds

=
∫ 1

0
G(t,s)y(s)ds.

The proof of Lemma 2.3 is completed.

Now, we present the following lemma, which will play major in the proofs of our

main results.

Lemma 2.4. (Arzelà-Ascoli [17]) Let D⊂X be a compact set with a sequence {xn}⊂D being

uniformly bounded and equicontinuous, then the sequence has a uniformly convergent subse-

quence.

Lemma 2.5. ([18]) Let X be a Banach space with Ω⊂ X being open and bounded, 0∈ Ω. let

T : Ω→X be a completely continuous operator such that

‖Tu‖≤‖u‖, ∀u∈∂Ω.

Then T has a fixed point in Ω.

Lemma 2.6. (Krasnoselskii’s fixed point theorem [18]) Let X be a Banach space with M⊂X

being closed convex and nonempty. If the operator A and B satisfy the following conditions :

(a) Ax+By∈M, wherever x,y∈M;

(b) A is compact and continuous ;

(c) B is a contraction mapping.

Then there exists z∈M such that z=Az+Bz.
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3 Main results

In this section, we investigate the existence and uniqueness results of positive solutions

for boundary value problem (1.1). First, we renew some notions. Let E = C([0,1],R)
denote the set of all continuous functions from [0,1] into R. Then E is a Banach space

endowed with the norm defined by

‖u‖= sup
t∈[0,1]

|u(t)|.

Define the operator F: E→E as

(Fu)(t)=
∫ 1

0
G(t,s) f (s,u(s))ds

=−
∫ t

0

(t−s)α−1y(s)

Γ(α)
ds+

∫ 1

0

tn−1(1−s)α−1y(s)

Γ(α)
ds

− nλ

n−λ

∫ 1

0

tn−1(1−s)αy(s)

Γ(α+1)
ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1y(s)

Γ(α)
ds, t∈ [0,1]. (3.1)

It follows from Lemma 2.3 that the fixed points of the operator F coincide with the so-

lutions of fractional differential equation (1.1). Next, we will prove that the operator F:

E→E is completely continuous.

Lemma 3.1. The operator F: E→E defined by (3.1) is completely continuous.

Proof. By continuity of functions f and G(t,s), the operator F is continuous. Let Ω⊂ E

be bounded. Then for any t∈ [0,1] and u∈Ω, there exists a positive constant K1>0 such

that| f (t,u)|≤K1. From which, we can deduce that

|(Fu)(t)|≤
∫ t

0

(t−s)α−1

Γ(α)
| f (s,u(s))|ds+

∫ 1

0

tn−1(1−s)α−1

Γ(α)
| f (s,u(s))|ds

+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)
| f (s,u(s))|ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)
| f (s,u(s))|ds

≤
(

tα

Γ(α+1)
+

tn−1

Γ(α+1)
+

nλ

n−λ
· tn−1

αΓ(α+1)
+

λ

n−λ
· tn−1

Γ(α+1)

)

K1
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≤
(

1

Γ(α+1)
+

1

Γ(α+1)
+

nλ

n−λ
· 1

αΓ(α+1)
+

λ

n−λ
· 1

Γ(α+1)

)

K1

=
2nα+nλ−αλ

(n−λ)αΓ(α+1)
K1=: K2,

which implies that ‖(Fu)(t)‖≤K2. Analogously, for the derivative, we obtain that

∣

∣(Fu)′(t)
∣

∣=

∣

∣

∣

∣

−
∫ t

0

(t−s)α−2

Γ(α−1)
f (s,u(s))ds

+
∫ 1

0

n(n−1)tn−2(1−s)α−1(α−λ+λs)

(n−λ)Γ(α+1)
f (s,u(s))ds

∣

∣

∣

∣

≤
∫ t

0

(t−s)α−2

Γ(α−1)
| f (s,u(s))|ds

+
∫ 1

0

n(n−1)tn−2(1−s)α−1(α−λ+λs)

(n−λ)Γ(α+1)
| f (s,u(s))|ds

≤
(

1

Γ(α−1)

∫ t

0
(t−s)α−2ds+

n(n−1)α

(n−λ)Γ(α+1)

∫ 1

0
(1−s)α−1ds

)

K1

≤
(

1

Γ(α)
+

n(n−1)

(n−λ)Γ(α+1)

)

K1=: K3.

Therefore, for all 0≤ t1< t2≤1, one can deduce that

|(Fu)(t2)−(Fu)(t1)|=
∣

∣

∣

∣

∫ t2

t1

(Fu)′(s)ds

∣

∣

∣

∣

≤
∫ t2

t1

∣

∣(Fu)′(s)
∣

∣ds≤K3(t2−t1),

which implies that the operator F is equicontinuous on [0,1]. Thus, by Lemma 2.4, the

operator F: E→E defined by (3.1) is completely continuous.

Next we consider the following existence results.

Theorem 3.1. Assume f ∈C([0,1]×R,R) and lim
u→0

f (t,u)/u= 0. Then problem (1.1) has at

least one solution on [0,1].

Proof. From lim
u→0

f (t,u)/u=0, there exist positive constants ε>0 and δ>0 such that

| f (t,u)|≤ ε|u|, for any 0< |u|<δ, (3.2)

where ε satisfies

max
t∈[0,1]

{

tα+tn−1

Γ(α+1)
+

(α+n)λtn−1

(n−λ)αΓ(α+1)

}

ε≤1. (3.3)
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Define Ωδ = {u∈E : |u|<δ}, taking u0 ∈ ∂Ωδ, i.e., u0 ∈E, and |u0|= δ. According to (3.1),

(3.2) and (3.3), we can take

|(Fu0)(t)|≤ max
t∈[0,1]

{

tα

Γ(α+1)
+

tn−1

Γ(α+1)
+

nλ

n−λ
· tn−1

αΓ(α+1)
+

λ

n−λ
· tn−1

Γ(α+1)

}

ε|u0|

≤ max
t∈[0,1]

{

tα+tn−1

Γ(α+1)
+

(α+n)λtn−1

(n−λ)αΓ(α+1)

}

ε|u0|

≤|u0|.

By virtue of Lemma 3.1, we know that F is completely continuous. It follows from above

that all conditions of Lemma 2.5 hold. Therefore, the boundary value problem (1.1) has

at least one solution on [0,1].

Theorem 3.2. Suppose f ∈ C([0,1]×R,R). Moreover, there exist two positive real constants

L,µ such that the following conditions hold :

(H1) ‖ f (t,u)− f (t,v)‖≤ L‖u−v‖, ∀ t∈ [0,1],u,v∈E;

(H2) 2L
2nα+nλ−αλ

(n−λ)αΓ(α+1)
≤µ<1.

Then the boundary problem (1.1) has a unique solution on [0,1].

Proof. First, we show that F : Br →Br. Define L0= sup
t∈[0,1]

‖ f (t,0)‖ and select

r≥ L0

1−µ
· 2nα+nλ−αλ

(n−λ)αΓ(α+1)
.

Define a closed ball in E as Br ={u∈E :‖u‖≤ r}. For u∈Br, we have

‖(Fu)(t)‖≤
∫ t

0

(t−s)α−1

Γ(α)
‖ f (s,u(s))‖ds+

∫ 1

0

tn−1(1−s)α−1

Γ(α)
‖ f (s,u(s))‖ds

+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)
‖ f (s,u(s))‖ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)
‖ f (s,u(s))‖ds

≤
∫ t

0

(t−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,0)‖+‖ f (s,0)‖
)

ds

+
∫ 1

0

tn−1(1−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,0)‖+‖ f (s,0)‖
)

ds
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+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)

(

‖ f (s,u(s))− f (s,0)‖+‖ f (s,0)‖
)

ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,0)‖+‖ f (s,0)‖
)

ds

≤(Lr+L0)

(

tα

Γ(α+1)
+

tn−1

Γ(α+1)
+

nλ

n−λ
· tn−1

αΓ(α+1)
+

λ

n−λ
· tn−1

Γ(α+1)

)

≤(Lr+L0)

(

1

Γ(α+1)
+

1

Γ(α+1)
+

nλ

n−λ
· 1

αΓ(α+1)
+

λ

n−λ
· 1

Γ(α+1)

)

=(Lr+L0)
2nα+nλ−αλ

(n−λ)αΓ(α+1)

≤r,

which implies that F : Br →Br. On the other hand, for all u,v∈E,t∈ [0,1], we have

‖(Fu)(t)−(Fv)(t)‖≤
∫ t

0

(t−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,v(s))‖
)

ds

+
∫ 1

0

tn−1(1−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,v(s))‖
)

ds

+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)

(

‖ f (s,u(s))− f (s,v(s))‖
)

ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)

(

‖ f (s,u(s))− f (s,v(s))‖
)

ds

≤L‖u−v‖
(

tα

Γ(α+1)
+

tn−1

Γ(α+1)
+

nλ

n−λ
· tn−1

αΓ(α+1)
+

λ

n−λ
· tn−1

Γ(α+1)

)

≤L

(

1

Γ(α+1)
+

1

Γ(α+1)
+

nλ

n−λ
· 1

αΓ(α+1)
+

λ

n−λ
· 1

Γ(α+1)

)

‖u−v‖

=L
2nα+nλ−αλ

(n−λ)αΓ(α+1)
‖u−v‖

<
1

2
‖u−v‖,

which implies that F is a contraction operator. Therefore, thank to the contraction map-

ping principle, the boundary value problem (1.1) has a unique solution on [0,1]. This

completes the proof.
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Theorem 3.3. Let f ∈C([0,1]×R,R) satisfies the following conditions :

(I1) ‖ f (t,u)− f (t,v)‖≤ L‖u−v‖, ∀ t∈ [0,1],u,v∈E;

(I2) ‖ f (t,u)‖≤ ϕ(t), ∀ t∈ [0,1],u∈E,and ϕ∈L1([0,1],R+),

where

L
nα+nλ

(n−λ)αΓ(α+1)
<1.

Then the boundary problem (1.1) has at least one solution on [0,1].

Proof. Let

r≥‖ϕ‖L1

2nα+nλ−αλ

(n−λ)αΓ(α+1)
,

and define a closed ball in E as Br = {u∈E :‖u‖≤ r}. Now, we define the operators T1

and T2 on Br as

(T1u)(t)=−
∫ t

0

(t−s)α−1

Γ(α)
f (s,u(s))ds, (3.4)

(T2u)(t)=
∫ 1

0

tn−1(1−s)α−1

Γ(α)
f (s,u(s))ds− nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)
f (s,u(s))ds

+
λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)
f (s,u(s))ds. (3.5)

For every u,v∈Br, from (3.4) and (3.5), one can obtain that

‖(T1u)(t)+(T2u)(t)‖≤‖ϕ‖L1

2nα+nλ−αλ

(n−λ)αΓ(α+1)
≤ r,

which implies T1+T2∈Br. From the proof of Theorem 3.2, we can take T2 is a contraction

operator. Since f is continuous, T1 is also continuous. In addition, for arbitrary u∈Br, we

find

‖T1u‖≤ tα

Γ(α+1)
‖ϕ‖L1 ≤ 1

Γ(α+1)
‖ϕ‖L1 ,

by using (I2). Thus, T1 is uniformly bounded on Br. Next, we prove the compactness of

the operator T1. Let S= [0,1]×Br , and define fmax = sup
(t,u)∈S

‖ f (t,u)‖. For any t1,t2 ∈ [0,1],

one can get

‖(T1u)(t2)−(T1u)(t1)‖=
∥

∥

∥

∥

∫ t2

0

(t2−s)α−1

Γ(α)
f (s,u(s))ds−

∫ t1

0

(t1−s)α−1

Γ(α)
f (s,u(s))ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t1

0

f (s,u(s))

Γ(α)

(

(t2−s)α−1−(t1−s)α−1
)

ds−
∫ t2

t1

(t2−s)α−1

Γ(α)
f (s,u(s))ds

∥

∥

∥

∥
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≤ fmax

Γ(α+1)
|2(t2−t1)

α+t1
α−t2

α|,

which is independent of u. We can obtain that T1 is equicontinuous. Note that f maps

bounded subsets into relatively compact subsets, we can get that T1(Ebs)(t) is relatively

compact in E for all t, where Ebs ⊂ E is bounded. Hence, T1(·) is relatively compact on

Br. By the means of Arzelà-Ascoli theorem, T1 is compact on Br, Consequently, in view

of Lemma 2.6, we conclude that the nonlinear boundary value problem (1.1) has at least

one solution on [0,1].

Theorem 3.4. Assume that f ∈C([0,1]×R,R). Moreover, there exist real constant η satisfying

0≤η<
1

ω
, for ω=

2nα+nλ−αλ

(n−λ)αΓ(α+1)
.

Let constant M>0 such that | f (t,u)|≤ η‖u‖+M, for each t∈ [0,1],u∈R. Then the boundary

problem (1.1) has at least one solution on [0,1].

Proof. Let

r=
Mω

1−ηω
+1,

and define a open ball in E as

Br =

{

u∈E : max
t∈[0,1]

|u|≤ r

}

.

Then, we only need to show that mapping Fu : Br →E satisfies

u 6=ρFu, ∀u∈∂Br, ρ∈ [0,1] . (3.6)

Let H(ρ,u) = ρFu,u ∈ E,ρ ∈ [0,1]. Then, it is easily show that hρ(u) = u−H(ρ,u) = u−
ρFu is completely continuous by Lemma 3.1. If (3.6) holds, according to the homotopy

invariance of topological degree in Leray-Schauder degree theory, we deduce that

deg(hρ,Br,0)=deg(I−ρFu,Br,0)=deg(h1,Br,0)=deg(h0,Br,0)

=deg(I,Br,0)=1 6=0, 0∈Br ,

where I denotes the unit operator. We can get that there exists u ∈ Br such as h1(u) =
u−ρFu=0 by using the nonzero property of the Leray-Schauder degree.

Next, we prove (3.6). Suppose that u= ρFu for some ρ∈ [0,1]and any t∈ [0,1]. Then,

we have

|u(t)|=|ρFu(t)|≤
∫ t

0

(t−s)α−1

Γ(α)
| f (s,u(s))|ds+

∫ 1

0

tn−1(1−s)α−1

Γ(α)
| f (s,u(s))|ds
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+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)
| f (s,u(s))|ds+

λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)
| f (s,u(s))|ds

≤(η‖u‖+M)

(

∫ t

0

(t−s)α−1

Γ(α)
ds+

∫ 1

0

tn−1(1−s)α−1

Γ(α)
ds

+
nλ

n−λ

∫ 1

0

tn−1(1−s)α

Γ(α+1)
ds+

λ

n−λ

∫ 1

0

tn−1(1−s)α−1

Γ(α)
ds

)

≤(η‖u‖+M)

(

tα

Γ(α+1)
+

tn−1

Γ(α+1)
+

nλ

n−λ
· tn−1

αΓ(α+1)
+

λ

n−λ
· tn−1

Γ(α+1)

)

≤(η‖u‖+M)

(

1

Γ(α+1)
+

1

Γ(α+1)
+

nλ

n−λ
· 1

αΓ(α+1)
+

λ

n−λ
· 1

Γ(α+1)

)

=(η‖u‖+M)
2nα+nλ−αλ

(n−λ)αΓ(α+1)
=(η‖u‖+M)ω.

Straightforward computation gives

‖u‖≤ Mω

1−ηω
,

where ‖u‖= sup
t∈[0,1]

|u(t)|. Note that

r=
Mω

1−ηω
+1.

So (3.6) holds. This completes the proof.

4 Examples

In this section, we present several examples to illustrate our theoretical results.

Example 4.1. Consider the following problem of fractional differential equations with

integral boundary conditions










cD 5/2 u(t)+t(sin u−u)+ 3
√

u2+1−1=0, 0< t<1,

u(0)=u′′(0)=0, u(1)=
3

2

∫ 1

0
u(s)ds,

(4.1)

from (4.1), we have α = 5/2, λ = 3/2, f (t,u) = t(sin u−u)+ 3
√

u2+1−1. Also as n = 2,

2<α<3 and 0<λ<2. By straightforward calculation we get that lim
u→0

f (t,u)/u=0. Then,

in virtue of Theorem 3.1, the boundary value problem (4.1) has at least one solution on

[0,1].
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Example 4.2. Consider the following problem of fractional differential equations with

integral boundary conditions















cD 7/2 u(t)+
‖u‖

(t+2)(1+‖u‖) =0, 0< t<1,

u(0)=u′(0)=u′′′(0)=0, u(1)=2
∫ 1

0
u(s)ds,

(4.2)

where α=7/2, λ=2,

f (t,u)=
‖u‖

(t+2)(1+‖u‖) ,

as n=3, 3<α<4, 0<λ<3. One can easily obtain that

‖ f (t,u)− f (t,v)‖≤ 1

2
‖u−v‖.

When we choose L=1/2, a simple calculation gives

2L
6α+3λ−αλ

(3−λ)αΓ(α+1)
≈0.491266<1.

Obviously, the conditions (H1) and (H2) of Theorem 3.2 are satisfied, the boundary value

problem (4.2) has a unique solution on [0,1].

Example 4.3. Consider the following problem of fractional differential equations with

integral boundary conditions















cD 19/4 u(t)+
‖u‖

(t+3)(1+‖u‖) =0, 0< t<1,

u(0)=u′(0)=u′′(0)=u(4)(0)=0, u(1)=
10

3

∫ 1

0
u(s)ds,

(4.3)

in this case, α=19/4,λ=10/3,

f (t,u)=
‖u‖

(t+3)(1+‖u‖) ,

as n=4, 4<α<5, 0<λ<4. We can obtain that

‖ f (t,u)− f (t,v)‖≤ 1

3
‖u−v‖.

When we choose L=
1

3
, by standard calculation, we have

L
8α+4λ−αλ

(4−λ)αΓ(α+1)
≈0.047431<1.
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Moreover

‖ f (t,u)‖≤ ϕ(t)=
1

t+3
∈L1

(

[0,1],R+
)

.

Clearly, all the assumptions of Theorem 3.3 are satisfied, the boundary problem (4.3) has

at least one solution on[0,1].

Example 4.4. Consider the following problem of fractional differential equations with

integral boundary conditions















cD 23/4 u(t)+
‖u‖

(t+4)(1+‖u‖) =0, 0< t<1,

u(0)=u′(0)=u′′(0)=u(4)(0)=0, u(1)=4
∫ 1

0
u(s)ds,

(4.4)

according to (4.4), we have α=15/4, λ=2, as n=3, 3<α<4, 0<λ<3,

f (t,u)=
‖u‖

(t+4)(1+‖u‖) .

We can obtain that

ω=
2nα+nλ−αλ

(n−λ)αΓ(α+1)
≈0.337630

by straightforward calculation. Then, it is easy to see that there exists infinitely many

positive constant M, such that

| f (t,u)|≤ ‖u‖
4

+M≤ ‖u‖
ω

+M, ∀t∈ [0,1],u∈R.

Thus, it follows from Theorem 3.4 that the boundary value problem (4.4) has at least one

solution on [0,1].
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