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Abstract. This paper is concerned with the exact solutions of Khokhlov-Zabolotskaya
(KZ) equation with general perturbation. With the help of appropriate transformations
and assumptions, the wave theory of Hopf equation is applied to get partial exact
solutions. In addition, some examples and numerical simulations are presented to
illustrate our analytical results.
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1 Introduction

The canonical equation for weakly nonlinear and weakly diffracting waves is the Khokhlov-

Zabolotskaya (KZ) equation [1], which can be written in the general form

(ut+αuux)x+
1

2
uyy=0, (1.1)

where u=u(x,y,t) is typically a measure of the wave disturbance, x is a spatial variable

measured in a frame moving with the wave, y is a transverse spatial variable, and t is a

time-like variable. Then constant α is a quadratic nonlinearity parameter. It is well known

that (1.1) provides an accurate description of the evolution of many systems including

those corresponding to acoustic waves in air and water, shallow water waves, acoustic

and magnetosonic waves in in nonlinear medium without dispersion or absorption. The

study of numerous approximations to the KZ equation in (1.1) has a prominent history
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concerning the symbiotic interaction of mathematical model and scientific computing to

gain insight in the topic.

Actually, for nonlinear optics, Alfvén waves in magnetohydrodynamics, and shear

waves in an isotropic nonlinear solid, the quadratic nonlinearity coefficient α is small or

vanishing altogether, (1.1) reduces to

ut+
1

2
uyy≈0.

However, if the initial wavefront is curved, near the focal region nonlinear effects will

become noticeable. Consequently, Zabolotskaya [2] derived the explicit form of the ex-

tension of (1.1) for the case of shear waves propagating in a nonlinear solid in the undis-

turbed state. Due to the net effect of perturbation analysis, the uux term in (1.1) is replaced

by the cubic term. (1.1) enjoys a new version

(ut+αu2ux)x+
1

2
uyy=0.

which was investigated by Kluwick-Cox [3] and Cramer-Webb [4]. Afterwards, a series of

extension systems with weakly relaxing, weakly dissipative, and weakly dispersive were

developed, one can refer to [5–9] and the latest result [10]. In this paper, we consider a

perturbed acoustic wave equation with general nonlinear term and mixed derivative,

(

ut+ f (u)(ux+γuy)
)

x
+θuyy+

1

2
△⊥u=0, (1.2)

where f (u)=1+un, which is an arbitrary function of u. γ and θ are real constants, γ de-

cides the propagation direction on xOy plane, and △⊥ denotes the transverse Laplacian

in Cartesian coordinates. Our goal is to present a simple and direct method of finding

partial exact solutions of KZ type equations with the help of the Hopf equation, which is

available to classical KZ equation (1.1).

The rest of this paper is organized as follows. In Section 2, some elementary defini-

tions of Hopf equation have been presented and the implicit solutions of generalized KZ

equation are given by mathematical analysis. In Section 3, some examples and relevant

numerical simulations are shown at the end of the paper.

2 Outline of the derivation

Here we first recall the solution of Hopf equation. As the special case of Burgers model

[11], the general Hopf equation enjoys the following form:

ut+ f̃ (u)ux =0. (2.1)
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By the hodograph transformation x = x(u,t), we have ux = x−1
u and ut =−xtx

−1
u . Hopf

equation can be rewritten to xt− f̃ (u)=0, which implies the solution

x− f̃ (u)t=F(u),

where F(u) is an arbitrary function.

In what follows we return to the KZ equation (1.2). In order to seek for the exact

solution, we assume that

u(x,t,z)=α(T)U(X,T), X= x+ky+ϕ(t,z), T=T(t), (2.2)

where arbitrary number N of transverse spatial coordinates z=(z1,. . .,zN), △⊥=
∂2

∂z2
1

+. . .+

∂2

∂z2
N

, k is an arbitrary non-zero constant. By a computation with respect to the derivatives,

we have

ut=αTTtU+α(UTTt+UX ϕt), ux=αUX, uy=αkUX, uyy=αk2UXX,

△⊥u=α(UXX(∇ϕ)2+UX△⊥ϕ). (2.3)

Substituting (2.3) into (1.2), we have

[

UTTt+

(

TtαT/α+
1

2
△⊥ϕ

)

U+(ϕt+(1+αnUn)(1+γk)+k2θ+
1

2
(∇ϕ)2)UX

]

X

=0,

(2.4)

where subscripts denote derivatives with respect to corresponding variables. If we as-

sume that

Tt=αn, ϕt+
1

2
(∇ϕ)2+1+γk+k2θ=qαn, △⊥ϕ=2αn(m−αT/α), (2.5)

where q and m are some constants, then Eq. (2.4) transforms to the equation

(UT+mU+((1+γk)Un+q)UX)X =0. (2.6)

The term with q can be excluded by means of the additional replacement

ϕ=ψ(t,z)+qT(t), (2.7)

then

ϕt=ψt+qTt. (2.8)

Substituting (2.8) into ϕt+
1
2(∇ϕ)2+1+γk+θk2 =qαn, we get

ψt+
1

2
(∇ψ)2+1+γk+θk2 =0,



50 Q. H. Shi and S. Q. Chang / J. Partial Diff. Eq., 31 (2018), pp. 47-55

then

ψ(t,z)=
1

2

N

∑
p=1

z2
p

t−tp
−(1+γk+θk2)t, (2.9)

where tp, p=1,.. . ,N, are integration constants. Hence Eq. (2.6) transforms to the general

Hopf equation

(UT+mU+(1+γk)UnUX)X =0. (2.10)

To obtain T(t) in (2.2), substituting (2.7) and (2.9) into △⊥ϕ=2αn(m−αT/α) gives

αn−1αT+
1

2

N

∑
p=1

1

t−tp
=mαn.

Introducing y=αn, we arrive at the Bernoulli equation

y′+
1

2

N

∑
p=1

1

t−tp
ny=nmy2,

which can be solved by a standard method to give

y=Tt =Ce−nmT(t)
N

∏
p=1

|t−tp|−n/2, (2.11)

where C is an integration constant. If m=0 then

Tt =C
N

∏
p=1

|t−tp|−n/2. (2.12)

Therefore, we have reduced finding T(t) to integration of the function in the right side of

Eqs. (2.11) or (2.12) while α(t)=(Tt)1/n.

As a result of the above calculations, the variables in (2.2) can be considered as known

and it remains to find the solution of the general Hopf Eq. (2.10). Integration with respect

to X gives at once

UT+mU+(1+γk)UnUX =h(T),

where h(T) is an arbitrary function to be determined from the initial conditions. Consider

the linear differential equation

UT+mU=h(T),
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with the initial U0(X) at t=0. Then

U=(U0(X)+H(T))e−mT,

where H(T)=
∫ T

0 emτh(τ)dτ. The characteristic curve is determined by the equation

dX

dT
=(1+γk)Un =(1+γk)(U0+H(T))ne−nmT

=(1+γk)
n

∑
j=0

C
j
nU

n−j
0 H j(T)e−nmT.

Integrating this from 0 to T, we have

X=X0+(1+γk)
n

∑
j=0

C
j
nU

n−j
0

∫ T

0
H j(τ)e−nmτdτ. (2.13)

Let the initial distribution U(X) at T = 0 be given by the function U0 = F−1(X0). Then

exclusion of X0 and U0 from (2.13) gives the final result:

X=F(UemT−H(T))+(1+γk)
n

∑
j=0

C
j
n(UemT−H(T))n−j

∫ T

0
H j(τ)e−nmτdτ.

This equation determines implicitly u as a function of x, z, t through variables

X= x+ky+qT(t)+
1

2

N

∑
p=1

z2
p

t−tp
−(1+γk+θk2)t,

T=T(t), u=α(T)U(X,T), (2.14)

in terms of two arbitrary functions F(U) and H(T) which have to be found from the

initial conditions.

Remark 2.1. In fact (2.14) is a special solution of Eq. (1.2), because the assumptions in

(2.5) lead to the loss of partial solutions.

3 Examples

Example 3.1. We consider the spherical generalized KZ equation

(

ut+(1+u)(ux+uy)
)

x
−uyy+

1

2
uzz =0. (3.1)

Choose N = 1, k= 1, γ= 1, q=m= 0, t1 = t2 = 0. Then we have Tt = t−
1
2 , T = 2

√
t, X =

x+y+ z2

2t −t, U=
√

tu. Hence Eq. (3.1) has a solution

x+y+
z2

2t
−t−2tu=F−1(

√
tu),
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or

u=
1√

t
F

(

x+y+
z2

2t
−t−2tu

)

. (3.2)

Example 3.2. We consider the generalized KZ equation

(

ut+(1+u2)(ux+uy)
)

x
−uyy+

1

2
(uzz+uww)=0. (3.3)

Choose N = 2, k = 1, γ = 1, q = m = 0, t1 = t2 = 0. Then we have Tt =
1
t2 , T =− 1

t , X =

x+y+ z2+w2

2t −t, U= tu. Hence Eq. (3.3) has a solution

x+y+
z2+w2

2t
−t+u=F−1(tu),

or

u=
1

t
F

(

x+y+
z2+w2

2t
−t+u

)

. (3.4)

We notice that the tp means that we consider sound pulse focused in some transverse

directions and defocused in the other directions. To the best of our knowledge, the exact

solution of the generalized KZ equation have not been consider earlier and we shall apply

here our approach of this kind. Therefore, we want to find the solution of Eq. (3.3)

propagation of a nonlinear sound pulse that is defocused in z direction and focused in w

direction. To this end, we take in the above formulas N = 2, k= 1, q=m= 0, t1 < 0, t2 >

0, h(T)=0. It yields

α(T)=T1/2
t =

(

1

(t+|t1|)(t2−t)

)1/2

.

We also know

T(t)=
1

t2+|t1|
(

ln(t+|t1|)−ln(t2−t)
)

,

where the integration constant is chosen in such a way that T(0) = 0. We assume here

that 0≤ t≤ t2. The self-similar variable has now the form

X= x+y+
1

2

(

z2

t+|t1|
− w2

t2−t

)

−t.

The variable u(x,y,z,w,t) is expressed in terms of U(X,T) as

u(x,y,z,w,t)=α(T)U(X,T)=

(

1

(t+|t1|)(t2−t)

)1/2

U(X,T),
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where U obeys general Hopf equation

UT+2U2UX =0. (3.5)

We assume that at t= 0 the distribution of u0(x,y,z,w) depends on a single self-similar

variable

u0(x,y,z,w)=
1

√

|t1|t2

F

(

x+y+
1

2

(

z2

|t1|
−w2

t2

)

−t

)

. (3.6)

Then the solution of Eq. (3.5) can be written as X−2U2T = F−1(U), or returning to the

original variables,

x+y+
1

2

(

z2

t+|t1|
− w2

t2−t

)

−t−2(t+|t1|)(t2−t)

×
(

1

t2+|t1|
(ln(t+|t1|)−ln(t2−t))

)

u2=F−1(
√

(t+|t1|)(t2−t)u). (3.7)

The formula determines implicitly u as a function of space coordinates at any moment of

time t in the interval 0≤t≤t2 . It is worth noticing that this restriction makes it impossible

to take the limit t1= t2=0 and to reproduce the solution (3.4).

In what follows, we present some numerical simulations to demonstrate our analyti-

cal results (3.7). Here we suppose the initial distribution is as follows:

u0=(x,y,z,w)=
1

1+
(

x+y+ 1
2(z

2−w2)
)2

. (3.8)

The profiles of the pulse along the xOy plane and the x-axis are shown in Fig. 1 and Fig.

2 for t=0.3 and 0.7 , respectively.

(a) (b)

Figure 1: Profile of the pulse u(x,y,z,t) for the moment of time t=0.3: (a)along xOy plane; (b) along x-axis.
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(a) (b)

Figure 2: Profile of the pulse u(x,y,z,t) for the moment of time t=0.7: (a)along xOy plane; (b) along x-axis.

Remark 3.1. In the present numerical simulation, we have drawn the traveling wave 3-D

solutions surfaces and corresponding 2-D solution graphs for the obtained exact solu-

tions of Eq. (3.3). We should stress that all these effects are relevant for finite time t∼ tp

important for practical applications. In the study of asymptotical long-time behavior

for t ≫ tp we can put all tp equal to zero, then the wave fronts become asymptotically

paraboloidal.
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