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Abstract. This paper presents major improvements in the efficiency of the so-called
Radical-Like Polymerization (RLP) algorithm proposed in ”Polymer chain generation
for coarse-grained models using radical-like polymerization” [J. Chem. Phys. 128
(2008)]. Three enhancements are detailed in this paper: (1) the capture radius of a
radical is enlarged to increase the probability of finding a neighboring monomer; (2)
between each growth step, equilibration is now performed with increasing the relax-
ation time depending on the actual chain size; (3) the RLP algorithm is now fully paral-
lelized and proposed as a “fix” within the “Lammps” molecular dynamics simulation
suite.
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Program Summary

Program title: Fix rlp

Nature of problem: Implementing special fix file in parallelized LAMMPS code in order to create
polymer system with the so-called Radical-Like Polymerization (RLP) algorithm proposed
in [1] for coarse-grained models.

Software licence: GPL 2.0 GNU’s GPL
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CiCP scientific software URL: http://michel.perez.net.free.fr/fix rlp.zip.

Distribution format: .zip

Programming language(s): C++/MPI

Computer platform: Should run on any architecture providing a C++ compiler

Operating system: Linux or any other OS with C++ compiler and MPI library.

Compilers: C++ compiler

RAM: Depends on system size and how many CPUs are used

External routines/libraries: LAMMPS (http://lammps.sandia.gov/),
FFTW (http://www.fftw.org/)

Running time: Seconds to weeks, depending on system size, speed of CPU and how many CPUs
are used.

Restrictions: The code is based on a former version of LAMMPS.

Additional Comments: With the Fix rlp LAMMPS program, you will find in the .zip detailed
explanations in the“fix rlp.txt” file, a “README.txt” file for the installation and a complete
example of homopolymer generation with RLP algorithm in the form of a Lammps input
file.

1 Introduction

Coarse-grained molecular dynamics is a well-adapted tool for studying the mechanical
behavior of polymers [1, 2]. It is widely used for studying various mechanical prop-
erties (elastic constants [3, 4], strain hardening [5], failure [6, 7], etc.) for various poly-
mer structures (linear chains [8, 9], cross-linked chains [10], branched polymers [11, 12],
co-polymers [13, 14], gels [15]). To create these structures, several methods have been
developed. Equilibration of fully independent self-avoiding chains [16] is a rather sim-
ple method but requires equilibration times that are not tractable with long chains. The
classical ”push-off” method generates self equilibrated chains by Monte-Carlo scheme
(random-walk). However, long equilibration times are required to relax overlapping par-
ticles [8]. This method has been improved by introducing soft potentials [17, 18]. The
equilibration stage can itself be accelerated via the double-bringing method [17, 19–21]
or by reducing the weak interaction cut-off at the beginning of this stage [22]. They are
compatible with most creation methods since they act only on equilibration, yet they
don’t accelerate polymer creation stage. Another method to accelerate the equilibration
via a hybrid MD/continuum model was proposed in two versions by Kroger [23] and
by Senda et al. [24], but is limited to rather short chains. Other kinds of methods pro-
pose simultaneous chain growth and equilibration. Subramanian recently submitted an
original method where polymer chains are progressively extended by adding additional
beads between two existing structural units [12, 25]. Fast algorithms, based on indepen-
dent generation of chains and application of ”slow push-off” potential (see e.g. [11]) lead
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to rather fast equilibration times, but used soft potentials are quite far from physics of
polymerization.

The Radical-Like Polymerization (RLP) algorithm originally proposed by Gao [26]
and later developed by Perez et al. [27] establishes a physical framework (based on the
radical polymerization), where chain are partially relaxed simultaneously while polymer-
ization is in progress. This method has been used successfully for generating different
polymer morphologies (linear [18, 28–30], branched [31], co-polymers [13, 32, 33]).

However the RLP algorithm was written on a in-house serial program, which hinders
both its diffusion and efficiency. The aim of this paper is therefore to propose a paral-
lelized and optimized version of the RLP algorithm in the form of a Lammps ”fix” [34],
which can readily be used by a larger community. This paper (i) recalls the basis of the
Coarse Grained Molecular Dynamics (CGMD) model, (ii) details the improved RLP algo-
rithm, (iii) documents its use within the Lammps framework and, (iv) demonstrates the
efficiency gain brought by this new algorithm.

2 Coarse grained molecular dynamics model

The RLP algorithm is well suited for molecular dynamics models, in which atoms can
move freely in space. It is used here on a CGMD model widely found in the literature [8].
In this model, units interact with each other through two potentials: one representing
weak interactions and the other covalent bonds. A truncated Lennard-Jones potential is
used for the weak interactions:

ULJ(r)=

{

4ǫ

[

(
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r

)12−
(

σ

r

)6
]

, r≤ rLJ
c ,

0, r> rLJ
c ,

(2.1)

where ǫ=1 and σ=1 are the Lennard-Jones parameters and rLJ
c =2.5σ the cut-off radius.

Covalent bonds are represented at the beginning of the RLP by an harmonic potential
(Eq. (2.2)) and at the end by a finite extensible nonlinear elastic potential (FENE) (Eq. (2.3))

Uharm(r)=K(r−r0)
2, (2.2)

where K=100ǫ/σ
2 is the harmonic bond stiffness and r0=1.12ǫ the bond length, chosen

to be the same as the Lennard-Jones one
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where k is the FENE bond stiffness and R0 the maximum extent of the bond. The second
term is a Lennard Jones potential with a cutoff rFENE

c with ǫ=1 and σ=1. Here, classical
values are used to avoid high frequency modes and chain crossing. k=30ǫ/σ

2 , R0=1.5σ

and rFENE
c =21/6

σ. Units are expressed as a function of ǫ and σ. For a parameter X, results
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are expressed as X∗ with x= x∗σ, T =T∗
ǫ/kb , P= P∗

ǫ/σ
3 and t= t∗

√
m/ǫσ

2 = t∗τ. The
time step is dt= 5×10−3

τ. Calculations are made with the software Lammps of Sandia
labs [34].

3 Radical like polymerization algorithm

In this section, we briefly recall the basis of the original RLP algorithm published in
Ref. [27]. New features of the algorithm are emphasized and written in bold characters.

• Liquid preparation: Polymerization takes place in a Lennard-Jones liquid consti-
tuted of Nmonom liquid beads. For the sake of polymerization efficiency, the total
number of liquid bead exceed by around 25% the total number of beads that are
meant to polymerize. For example, to prepare a melt of M=500 chains of N=200
units, i.e. 100000 units, the liquid is composed of Nmonom=128000 monomers.

• Nucleation: M radicals are chosen randomly among the units to create M chains.
Each unit has the same probability p=M/Nmonom to become a radical.

• Propagation: (i) Each radical selects a monomer bead to bond within a neighboring
sphere of radius R∗

neigh. In the original RLP algorithm, the capture radius R∗
neigh was

set to 1.5: the maximum bond length for the FENE potential. In order to improve

the efficiency of the algorithm (i.e. to increase the number of selectable neigh-

bors), the capture radius is now set to 2.5. However, as this change is not com-

patible with FENE potential, the created bond is of harmonic type (see Eq. (2.2)).
The harmonic bond is later changed to a FENE bond in the finalization step. This
neighbor becomes radical and the previous radical becomes part of the chain. Then,
(ii) the system is allowed to relax during tbG = 1.5τ within NPT ensemble (Nose-
Hoover thermostat and pressostat) at T∗= 2 and P∗= 0.5. Another improvement

consisted in increasing the relaxation time between each growth step as chains

grow, with a power law: tbG = N(t)1.4dt, where N(t) is the actual chain length

during polymerization. This adaptive relaxation time account the non-linear evo-
lution of the reptation time with chain length [35].

• Termination: Stages (i) and (ii) of the Propagation stage are repeated until all chains
reach their desired length N.

• Finalization: Remaining monomers are removed. Then, in order to transform all

harmonic bonds into FENE bonds, the system is equilibrated 5×102
τ within

NPT ensemble (Nose-Hoover thermostat and pressostat) at T∗= 2 and P∗= 0.5,

quenched at 0K and the positions of all atoms are set to minimize the energy

(conjugate gradient). The system is finally equilibrated during teqτ within NPT
ensemble (Nose-Hoover thermostat and pressostat) at T∗ = 2 and P∗ = 0.5. The
equilibration duration depends on the chain length, as showed in Table 1.
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4 Software installation and numerical examples

4.1 Integration of the Fix rlp program in LAMMPS

In order to use this patch code, you need to copy the two files “fix rlp.cpp” and “fix rlp.h”
to the \src folder of LAMMPS and then compile them as you compile LAMMPS (see
detailed instructions in the “README.txt” file). You will get an executable file (here
lammps.exe) and you can run the job LAMMPS script (here test.txt), like this:

mpirun −np 8 ./ lammps . exe < t e s t . t x t

The “fix rlp” command is based on the “fix bond/create” from Lammps. It presents
the following form (see detailed in the “fix rlp.txt” file):

fix ID groupID rlp Nevery lontype radtype intype Rneigh bondtype lmax keyword values

• ID = function instance identifier

• groupID = identifier of the group on which the function apply

• Nevery = attempt bond creation every this many steps

• lontype = type of the units which do not belong to a chain

• radtype = type of the radical units and chains ends at the end of run

• intype = type of the units which belonged to a chain and are not radicals

• Rneigh = two atoms separated by less than Rneigh can bond (distance units)

• bondtype = type of created bonds

• lmax = maximal size of a molecule, radicals included

The optional keywords and their values are:

• maxbound bmax. bmax is the maximal number of bonds of type bondtype an atom
can have

• prob proba seed. Create a bond with probability proba using seed for random number
generation.

Below, an example of homopolymer generation with RLP algorithm, a LAMMPS input
script file, starting with a initial structure file “Polymer2000.dat” that you can find in the
.zip file:
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#### STEP 1 : Creat ion of monomer bath
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Simulat ion box
dimension 3
u n i t s l j
boundary p p p
atom s ty le bond

# loading of the atom box cre ate d as id e
read data Polymer2000 . dat
mass ∗ 1 . 0

p a i r s t y l e l j /cut 2 . 5
p a i r c o e f f ∗ ∗ 1 . 0 1 . 0 2 . 5

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−− Output
the rmo s ty le custom step temp e t o t a l press
thermo 100

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Melting
v e l o c i t y a l l c r e a t e 2 123456789 d i s t gaussian
f i x f i x m e l t a l l npt temp 2 . 0 2 . 0 100 i s o 0 . 5 0 . 5 100
run 100000

p r i n t ”monomer bath cre ate d ”

#### STEP 2 : Creat ion of r a d i c a l s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−− Rad ica ls a c t i v a t i o n
l a b e l l o o p r a d i c a l
v a r i a b l e M equal 50
v a r i a b l e k loop 1 ${M}
v a r i a b l e krad equal ${k}∗35
s e t atom ${krad} type 2
s e t atom ${krad} mol ${k}
next k
jump t e s t . t x t l o o p r a d i c a l

p r i n t ” r a d i c a l s cre ate d ”

#### STEP 3 : Radical−Like Polymerizat ion
#−−−−−−−−−−−−−−−−−−−−−−−−−−− Var iable s s e t t i n g
#number of t imestep between two growing s te ps
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v a r i a b l e runstep equal 300
#maximal number of growing s te ps
v a r i a b l e numberofcycles equal 50
#maximal lenght of a polymer
v a r i a b l e N equal 10

#−−−−−−−−−−−−−−−−−−−−−−−−−− Bond s e t t i n g
s pe c ia l bond s fene e x t r a 5
bond s ty le harmonic
bond coeff 1 100 1 . 1 2

p r i n t ”RLP environnement cre ate d ”

#−−−−−−−−−−−−−−−−−−−−−−−−−−− RLP
f i x f i x r l p a l l r l p ${ runstep} 1 2 3 2 1 ${N} prob 0 . 5 12345
v a r i a b l e runrlp equal ${ runstep}∗${numberofcycles }
run ${ runrlp}

p r i n t ”RLP f i n i s h e d ”

#### STEP 4 : d e l e t e lone rs
group delete monomer type 1
delete atoms group delete monomer
unfix f i x r l p
run 100000

p r i n t ” lone rs erased ”

#### STEP 5 : Harmonic to Fene
min s ty le cg
minimize 1e−4 1e−4 10000 10000
bond s ty le fene
bond coeff 1 30 1 . 5 1 1
run 5000000

4.2 Characterization of generated melts

The Flory characteristic ratio Cn(n), which is an important measure of the conformation
and rigidity of individual chains, is defined as

Cn(n)=

〈

r2(n)
〉

n〈l2〉 , (4.1)
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where l is the bond length.
〈

r2(n)
〉

is the mean square internal distance, defined as

〈

r2(n)
〉

=
M

∑
i=1

∑
N i−n
j=1 (ri

j−ri
j+n)

2/(Ni−n)

M
, (4.2)

where ri
j is the position of jth unit of the ith chain and Ni the ith chain length, and

〈

l2
〉

=
〈

r2(1)
〉

.
In order to confirm that the melt is properly equilibrated, the characteristic ratio Cn(n)

is measured and compared to a target function which is an average from conformations
of brute-force equilibrated melt from 5×105

τ to 106
τ for the system of 200 chains of 500

units. Cn(n) of four samples of different chain lengths are represented on Fig. 1 after
stabilization and compared to the target function. We observe that all systems are well
equilibrated with this procedure. We can notice a sizable deformation of the characteristic
ratio of the chain of N = 500 for n> 100, which is due to poor statistic for large n. Note
that the final equilibration duration is reduced compared to the reference of Auhl et al.,
e.g. teq =2.6×106

τ for N=350 versus teq =105
τ for N=500 in our case, see Table 1.

The topology of the melt was also characterized by calculating the average contour
length,

〈

Lpp

〉

, the entanglement length, Ne, and the average number of interior kinks,
〈Z〉 using the Z1 code [36]. The entanglement length Ne was estimated by the classical

S-coil formula, Ne =(N−1)
〈

r2(N)
〉

/
〈

Lpp

〉2
. In Table 2, the values of

〈

Lpp

〉

and
√

〈L2
pp〉,

〈Z〉 and Ne are reported for N = 500 after teq = 105
τ and compared to the brute force
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Figure 1: The characteristic ratio Cn(n) for different chain lengths obtained with the updated RLP method and
compared to the brute-force equilibrated melt (target function). The error bars of the target function have been
added for n=50, 100, 200, 300, 400 and 499.
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Table 1: Final equilibration stage duration for different chain lengths.

Chain length N 10 50 200 500

teq (units of τ) <2×103 2.5×103 2.5×104 105

Table 2: Chain topology: average contour length,
〈

Lpp
〉

and
√

〈

L2
pp

〉

, entanglement length, Ne, and average

number of interior kinks, 〈Z〉 for N=500 after teq=105
τ and for the brute force equilibrated melt.

〈

Lpp
〉

√

〈L2
pp〉 Ne 〈Z〉

brute-force equilibrated melt 69.45 71.00 93.99 8.38

teq=105
τ for N=500 68.65 70.13 95.33 8.36

equilibrated melt. The agreement is satisfactory for all investigated variables, proving
the correct equilibration of the N=500 system for teq =105

τ.

4.3 Effect of capture radius

To obtain an estimation of the improvement due to the capture radius set in the propaga-
tion stage, capture radii R∗

neigh of 1.5, 2 and 2.5 have been tested. R∗
neigh=1.5 corresponds

to the cutoff value of the FENE bond, which is the value used in the original RLP pa-
per [27]. R∗

neigh=2.5 corresponds to the cutoff radius of the Lennard-Jones pair potential.

A melt is prepared as described above. The chain length N is set to 200 and the number
of chains M to 500. All simulations have been made on the same 32 processors. They
include the nucleation, propagation and termination stages. Simulation times are pre-
sented in Table 3.

Table 3: Effect of capture radius on simulation duration of RLP process (nucleation-propagation-termination).
Simulations are performed on 32 processors.

R∗
neigh 1.5 2 2.5

t(s) 477 386 359

As expected, increasing R∗
neigh leads to a simulation time drop, due to an improve-

ment in the propagation stage efficiency. It can be noticed that this improvement is more
important between 1.5 and 2 than between 2 and 2.5.

The RLP completion ratio (total polymerized units over NM) is represented as a func-
tion of time on Fig. 2. In a first stage, polymerization ratio is proportional with time
(constant rate polymerization reaction). In a second stage, polymerization ratio reaches a
plateau, the last few units to polymerize are the longest to capture. Whereas capture ra-
dius has a limited effect during the first stage, is has a strong impact on the second stage,
facilitating the capture of new monomers when they start to be “rare” in the melt. Note
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Figure 2: RLP process completion ratio as a function of capture radius R∗
neigh=1.5, 2 and 2.5. A larger capture

radius decrease the total generation time.

that going to higher values than 2.5 would imply an increase of the Lennard-Jones cut-off
radius, used by Lammps to calculate the neighbor list, which would lead to unnecessary
additional computational time.

4.4 Effect of increasing relaxation time during polymerization

In order to optimize global simulation time for complete polymerization and equilibra-
tion, a non-constant, and increasing, relaxation time between each growth step (tbG) has
been introduced. In order to test this improvement, two simulations are compared for
a system of M = 500 chains of N = 200 monomers: (1) a polymerization with constant
tbG =1.5τ relaxation time between each growth step (corresponding a total of 4.5×102

τ)
followed by an equilibration of 104

τ (like the original RLP algorithm); (2) a polymeriza-
tion with increasing relaxation time between each growth step tbG=N(t)1.4dt, where N(t)
is the actual size of the polymer chain during polymerization (corresponding a total of
1.5×103

τ followed by an equilibration of 8.5×103
τ).

In Fig. 3, the characteristic ratio Cn(n) of the two simulations are compared with the
target function. It can be clearly seen that increasing the relaxation time tbG during poly-
merization leads to a better equilibration compared to a constant one, for the same total
simulation time including polymerization and equilibration.

4.5 Parallelisation efficiency

The original RLP algorithm was written as a in-house serial MD code. In order to improve
(i) its ease of use and (ii) its computational efficiency, it has been adapted as a “fix” to the
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Figure 3: Effect of increasing relaxation time during polymerization: comparison between polymerization with
constant (tbG=1.5τ) and increasing relaxation time (tbG=N(t)1.4dt where dt=5×10−3

τ) during polymerization.
The upper curve is the brute-force equilibrated melt (target function). The increasing relaxation time clearly
leads to a better equilibration.

Lammps MD suite. One of the best feature of Lammps is its parallelization efficiency,
which is almost linear. The parallelization efficiency of the RLP process implemented
as a Lammps fix is tested on a sample of 500 chains of 200 units on 1, 2, 4, 8, 16, 32, 64
and 124 processors. A liquid containing Nmonom=128000 monomers is created and the
nucleation, propagation and termination phases are simulated with R∗

neigh =2.5. Results

are shown Fig. 4. They are compared to the ideal time improvement where the simulation
time is divided by a factor 2 when the number of processors is doubled. We can notice
the simulation time is close to the optimal time up to 32 processors, proving thus that the
RLP algorithm is efficiently parallelized.

5 Conclusion

The radical-like polymerization algorithm described in the original article of Perez et
al. [27] has been extensively improved. Propagation step efficiency has been improved
by enlarging the capture radius of radicals up to R∗

neigh = 2.5. RLP algorithm is now

available as a Lammps “fix” that can be readily used by the whole Lammps community.
The parallelization efficiency of RLP algorithm is almost linear, leaving the paralleliza-
tion capability of Lammps intact. In this paper, only linear homopolymers are designed.
Nonetheless the RLP algorithm can be used for poly-dispersed chains, branched poly-
mers, or even block co-polymers.
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Figure 4: Benchmark of initialization and propagation stages. Simulation time as a function of the processors
number. The dotted line represent an ideally parallelized algorithm.
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