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Abstract. This paper continues the senior author’s previous investigation of the slow-
ly rotating Timoshenko beam in a horizontal plane whose movement is controlled by
the angular acceleration of the disk of the driving motor into which the beam is rigidly
clamped. It was shown before that this system preserves the total energy. We consider
the problem of stability of the system after introducing a particular type of damping.
We show that the energy of only part of the system vanishes. We illustrate obtained
solution with the critical case of the infinite value of the damping coefficient.
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1 Introduction

The stability of rotating beams has been the subject of several investigations during the
last two decades. The majority of publications concentrated on Euler beam model, e.g., [1,
7, 8]. Various stability problems were in the scope of considerations in those papers.
Adding damping operator to clamped–free Euler beam with shear force control model
in [1] caused L2–stability of the system. In paper [7] by J. Valverde and D. Garcia Vallejo
additional effects of Coriolis forces are observed, and their influence on stability of the
beam rotating with a critical angular velocity is investigated. In [8], N. Lesaffre, J. J. Sinou
and F. Thouverez presented the stability analysis of a system composed of rotating beams
on a flexible, circular fixed ring, using Routh-Hurwitz criterion.

Timoshenko beam model is a generalization of Euler beam model, taking into account
additional rotation of a cross–section area. Again, many authors considered different sta-
bility aspects for this generalized object. In [9], M. Sabuncu and K. Evran considered
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rotating asymmetric cross–section Timoshenko beam, for which the effects of the shear
coefficient, the beam length, coupling due to the center of flexure distance from the cen-
troid and rotation on the stability are considered. In [10], S. S. Rao and R. S. Gupta in-
vestigated the rotating twisted and tapered Timoshenko beam and studied the effects on
the stability of the system of twist, offset, speed of rotation and variation of depth and
breadth taper ratios.

Since 1999, W. Krabs and G. Sklyar considered different controllability and stabiliz-
ability aspects of a special, undamped model of a rotating Timoshenko beam clamped
to the motor disk in [3–6]. In [3], authors solved the problem of transferring the beam
from a position of rest into another given position of rest within a given time. In [5], they
showed how to choose a feedback control allowing to stabilize the system in a preas-
signed position of a rest. In [6], W. Krabs, G. Sklyar and J. Woźniak obtained conditions
of exact controllability under the assumption that the physical parameter γ appearing in
the model equation is rational.

In this paper, following the works [3–6], we consider the problem of stability of a
slowly rotating Timoshenko beam with damping. We present different cases of a partic-
ular damping model. After a careful analysis, we show that in all considered cases, the
resulting system is unstable.

The structure of the work is as follows. After Introduction, Section 2 reviews the
fundamental definitions used by the transfer function method. Next, in Section 3, we in-
troduce rotating Timoshenko beam model and analyze its stability after adding damping.
In conclusions, the summary of the obtained results is given, together with the possible
directions for further research.

2 Transfer function method

In this section we introduce fundamental definitions from [1,2] and explain transfer func-
tion method. We present them for self-containment of the work.

Laplace transform is an integral operator, which transforms a function f (t) with a real
argument (t≥0) to a function F(s) with complex argument s.

Definition 2.1. Let f : [0,∞)→X (X-separable Hilbert space) have property that eβt f (t)∈
L1([0,∞);X) for some real β. We call these Laplace-transformable functions and we define
their Laplace transform F(s) by

F(s)=
∫ ∞

0
e−st f (t)dt

for s∈C+
β :={s∈C|Re(s)≥β}. Other notation of Laplace transform is L{ f (t)} or f̂ (s). In

this paper we use notation f̂ (s).
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We will consider time-invariant infinite-dimensional linear systems of the form

ż(t)=Az(t)+Bu(t), t≥0, z(0)= z0, (2.1a)
y(t)=Cz(t), (2.1b)

where z(t)∈ Z is the state, u(t)∈U is the input, and y(t)∈Y is the output, Z, U, Y are
suitable linear vector spaces, A, B, C are linear operators.

Transfer function defined below gives us a description of the answer of the system
under impulse control.

Definition 2.2 (see [2]). Consider the state linear system (2.1) with zero initial state. If
there exists a real α such that ŷ(s)=G(s)û(s) for Re(s)> α, where û(s) and ŷ(s) are the
Laplace transforms of u and y, respectively, and G(s) is a L(U,Y)-valued function of a
complex variable defined for Re(s)>α, then we call G(s) the transfer function of (2.1).

Transfer function method is one of methods of analysis of controllability and stability
in control theory. In the simplest case of system of ordinary differential equations we can
find Laplace transform of y and u, that is ŷ and û respectively and find transfer function
as G(s)= ŷ(s)/û(s). In this case, it is a quotient of two polynomials.

One can easily extend this method from ordinary differential equations to partial d-
ifferential equations. Remind that the result of taking Laplace transforms of a partial
differential equation is an ordinary differential equation. It is important to remember
that in this case we also need to take Laplace transform of boundary conditions.

Main properties of a transfer function is location of poles and existence of zeros.
In ordinary differential equations, zeroes (i.e., roots of the numerator) inform us about
controllability–if a transfer function has a zero, then there exists a control subspace which
has no influence on the system. Poles (i.e., roots of the denominator), on the other hand,
inform us about stability–if they are all located on the left-half plane, then the system is
stable. We can extend the transfer function based analysis for partial differential equa-
tions in a similar way, an extensive survey of this method can be found in [1].

It is worth to mention that there are many possible different definitions of stabili-
ty of systems of differential equations (and responding methods of considerations) in
literature–see for example [2, 11, 12]. Here we use the following notion of stability.

Definition 2.3 (see [1]). If a system maps every input u in L2(0,∞) to an output y in
L2(0,∞) and

sup
u ̸=0

∥y∥2

∥u∥2
<∞,

the system is stable.

In this work we will check stability using theorem from [1].
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Theorem 2.1. A linear system is stable if and only if its transfer function G belongs to

H∞ =
{

G :C+
0 →C

∣∣∣G analytic and sup
Re(s)>0

|G(s)|<∞
}

with norm
∥G∥∞ = sup

Re(s)>0
|G(s)|.

In this case, we say that G is a stable transfer function.

From this moment, instead of systems of the form (2.1), we will consider linear sys-
tems of second order,

z̈(t)+Bż(t)+Az(t)=Cu(t), t≥0, z(0)= z0, ż(0)= z1,
y(t)=Dz(t).

Theorem 2.1 is also true for such systems (see [1]).

3 Rotating Timoshenko beam with damping

We consider a model from [4] of the rotation of a Timoshenko beam in a horizontal plane
whose left end is rigidly clamped into the disk of a driving motor. Let r be the radius
of the disk and let θ = θ(t) be the rotation angle as a function of the time t≥ 0. If w(x,t)
denotes the deflection of the center line of the beam at the location x ∈ [0,1] (the length
of beam is assumed to be 1) and the time t≥0, and ξ(x,t)–the rotation angle of the cross
section area at x and t and if we assume the rotation to be slow, w and ξ are governed by
two partial differential equations

ẅ(x,t)−K
ρ
(w′′(x,t)+ξ ′(x,t))=−θ̈(t)(r+x),

ξ̈(x,t)− EAc

ρ
ξ ′′(x,t)+ K

I (w
′(x,t)+ξ(x,t))= θ̈(t),

(3.1)

for x∈(0,1) and t>0, where ẇ=wt, w′=wx, ξ̇=ξt and ξ ′=ξx, K–shear modulus, ρ–linear
density, E–Young’s modulus, I–moment of inertia, Ac–cross section area.

The beam at x=0 is clamped to motor disk and at x=1 energy preservation law holds,
from that we have boundary conditions

w(0,t)= ξ(0,t)=0,
w′(1,t)+ξ(1,t)=0,
ξ ′(1,t)=0,

(3.2)
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Figure 1: Deflections of the rotating beam.

for t>0. We denote u(t) := θ̈(t) and for simplicity we want to normalize the units, thus
we will assume EAc/K=1 and use an appropriate change of variables (cf. [4]) so that we
may assume that

K
ρ
=

EAc

ρ
=

K
I
=1.

Following [3, 4], we will consider operator equation of the form(
ẅ
ξ̈

)
+A

(
w
ξ

)
=

(
−r−x

1

)
u(t),

where A : D(A)→L2((0,1),R2) is a linear operator defined by

A
(

y
z

)
=

(
−y′′−z′

−z′′+y′+z

)
(3.3)

for (
y
z

)
∈D(A),

where

D(A)=

{(
y
z

)
∈H2((0,1),R2)

∣∣∣∣ y(0)= z(0)=0
y′(1)+z(1)= z′(1)=0

}
.†

Now we want to consider a rotating Timoshenko beam with damping. Again, follow-
ing [4], we want to analyze a new equation of the form(

ẅ
ξ̈

)
+B

(
ẇ
ξ̇

)
+A

(
w
ξ

)
=

(
−r−x

1

)
u(t), (3.4)

where B :D(B)→L2((0,1),R2) is a symmetric linear operator with D(A)⊆D(B). One can
introduce damping operator B in a many ways. In [1] the authors considered a problem

†Here H2((0,1),R2) denotes a Sobolev space of generalized functions
(

y
z

)
: (0,1)→R2, twice (weakly)

differentiable, with second derivative in L2((0,1),R2).
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of stability of damped Euler-Bernoulli vibrating beam, modeled by

∂2w
∂t2 +EI

∂4w
∂x4 +Cd I

∂5w
∂x4∂t

=0

with appropriate boundary control, where E, I are some physical constants, Cd-damping
coefficient. We can rewrite it in the form similar to (3.4), i.e.,

ẅ+Bẇ+Aw=0,

where

A=EI
∂4

∂x4 , B=Cd I
∂4

∂x4 .

We will use a similar damping operator, that is

B
(

y
z

)
=

(
−µ2y′′

0

)
, (3.5)

where D(B)=D(A). We assume the beam to be in the position of rest (with no control)
at t=0, which leads to initial conditions of the form

w(x,0)= ẇ(x,0)= ξ(x,0)= ξ̇(x,0)=0. (3.6)

Our main problem is to analyze stability of rotating Timoshenko beam with damping.
We use transfer function method and determine location of poles. To use this method
we need to choose observation; we will observe a behavior of the beam at its free end (at
x=1), we take any nontrivial linear combination of

y(t)= aw(1,t)+bξ(1,t)+cw′(1,t)+dξ ′(1,t), (3.7)

with arbitrary a,b,c,d∈R; a2+b2+c2+d2>0. The main result of the paper is:

Theorem 3.1. For any value of a damping constant 0≤µ≤∞ the system{
ẅ(x,t)−µ2ẇ′′(x,t)−w′′(x,t)−ξ ′(x,t)=−u(t)(r+x),
ξ̈(x,t)−ξ ′′(x,t)+w′(x,t)+ξ(x,t)=u(t),

is unstable.

In order to prove this we consider 3 cases: 1) µ=0; 2) µ>0; 3) µ=∞.



742 J. Woźniak and M. Firkowski / Adv. Appl. Math. Mech., 7 (2015), pp. 736-753

3.1 µ=0

In this section we consider the trivial case with µ=0, that is we assume that no damping
occurs, and show how to use transfer function method to analyze stability. In the pro-
cess we use different considerations than authors of [3], but we get similar results. They
considered a problem of finding eigenvalues of operator A from (3.3), obtaining approxi-
mated values from some trigonometric equation. We use the transfer function method to
find equivalent trigonometric equation and approximate its roots.

Let µ=0, then Eqs. (3.4)-(3.5) become{
ẅ(x,t)−w′′(x,t)−ξ ′(x,t)=−u(t)(r+x),
ξ̈(x,t)−ξ ′′(x,t)+w′(x,t)+ξ(x,t)=u(t),

(3.8)

for x∈ (0,1) and t>0 with boundary conditions (3.2) and initial conditions (3.6).

Theorem 3.2. System (3.8) is unstable.

First we prove:

Lemma 3.1. Transfer function G1(s) is of the form Gn
1 (s)/Gd

1(s), where Gn
1 (s) is a numerator

of this transfer function, Gd
1(s) is a denominator, and

Gd
1(s)=

1
2

(
cosh(

√
s
√

s−i)cosh(
√

s
√

s+i)

+
s√

s−i
√

s+i
sinh(

√
s
√

s−i)sinh(
√

s
√

s+i)+1
)

.

Proof. We take Laplace transform of (3.8) under assumptions (3.2) and (3.6), and obtain a
system of ordinary differential equations with parameter s, of the form{

ŵ′′(x,s)= s2ŵ(x,s)− ξ̂ ′(x,s)+û(s)(r+x),
ξ̂ ′′(x,s)=(s2+1)ξ̂(x,s)+ŵ′(x,s)−û(s),

(3.9)

with conditions 
ŵ(0,s)= ξ̂(0,s)=0,

ŵ′(1,s)+ ξ̂(1,s)=0,

ξ̂ ′(1,s)=0.

(3.10)

In order to solve system (3.9)-(3.10) we introduce a standard change of variables,
z1= ŵ,
z2= ξ̂,
z3= ŵ′,
z4= ξ̂ ′,

(3.11)
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and put system (3.9) into first-order form,

d
dx


z1
z2
z3
z4

=


0 0 1 0
0 0 0 1
s2 0 0 −1
0 s2+1 1 0


︸ ︷︷ ︸

A1(s)


z1
z2
z3
z4

+


0
0

r+x
−1

û(s). (3.12)

The matrix exponential of A1(s) with respect to x is given by

eA1(s)x =


a11(x,s) a12(x,s) a13(x,s) a14(x,s)
a21(x,s) a22(x,s) a23(x,s) a24(x,s)
a31(x,s) a32(x,s) a33(x,s) a34(x,s)
a41(x,s) a42(x,s) a43(x,s) a44(x,s)

,

where

a11(x,s)=
1
2
(cosh(

√
s
√

s−ix)+cosh(
√

s
√

s+ix)), (3.13a)

a12(x,s)=
i

2s

(
− (s+i)

√
s−i√

s
sinh(

√
s
√

s−ix)+
(s−i)

√
s+i√

s
sinh(

√
s
√

s+ix)
)

, (3.13b)

a13(x,s)=
1
2s

(√s−i√
s

sinh(
√

s
√

s−ix)+
√

s+i√
s

sinh(
√

s
√

s+ix)
)

, (3.13c)

a14(x,s)=
i

2s
(−cosh(

√
s
√

s−ix)+cosh(
√

s
√

s+ix)), (3.13d)

a21(x,s)=
si

2
√

s

( 1√
s−i

sinh(
√

s
√

s−ix)− 1√
s+i

sinh(
√

s
√

s+ix)
)

, (3.13e)

a22(x,s)=
1
2s
((s+i)cosh(

√
s
√

s−ix)+(s−i)cosh(
√

s
√

s+ix)), (3.13f)

a23(x,s)=
i

2s
(cosh(

√
s
√

s−ix)−cosh(
√

s
√

s+ix)), (3.13g)

a24(x,s)=
1

2
√

s

( 1√
s−i

sinh(
√

s
√

s−ix)+
1√
s+i

sinh(
√

s
√

s+ix)
)

, (3.13h)

a31(x,s)=
s
2

(√s−i√
s

sinh(
√

s
√

s−ix)+
√

s+i√
s

sinh(
√

s
√

s+ix)
)

, (3.13i)

a32(x,s)=
i(s+i)(s−i)

2s
(−cosh(

√
s
√

s−ix)+cosh(
√

s
√

s+ix)), (3.13j)

a33(x,s)=
1
2

( s−i
s

cosh(
√

s
√

s−ix)+
s+i

s
cosh(

√
s
√

s+ix)
)

, (3.13k)

a34(x,s)=
i

2
√

s
(−

√
s−isinh(

√
s
√

s−ix)+
√

s+isinh(
√

s
√

s+ix)), (3.13l)



744 J. Woźniak and M. Firkowski / Adv. Appl. Math. Mech., 7 (2015), pp. 736-753

a41(x,s)=
si
4
(cosh(

√
s
√

s−ix)−cosh(
√

s
√

s+ix)), (3.13m)

a42(x,s)=
1

2
√

s
((s+i)

√
s−isinh(

√
s
√

s−ix)+(s−i)
√

s+isinh(
√

s
√

s+ix)), (3.13n)

a43(x,s)=
i

2
√

s
(
√

s−isinh(
√

s
√

s−ix)−
√

s+isinh(
√

s
√

s+ix)), (3.13o)

a44(x,s)=
1
2
(cosh(

√
s
√

s−ix)+cosh(
√

s
√

s+ix)). (3.13p)

General solution of system (3.12), for initial conditions z1(0,s)=0, z2(0,s)=0, z3(0,s)=γ(s)
and z4(0,s)=δ(s), is given by

z1
z2
z3
z4

= eA1(s)x


0
0

γ(s)
δ(s)

+∫ x

0
eA1(s)ζ


0
0

r+x−ζ
−1

û(s)dζ, (3.14)

where γ(s), δ(s) are unknown functions. Let x=1, then we have
z1(1,s)
z2(1,s)
z3(1,s)
z4(1,s)

= eA1(s)


0
0

γ(s)
δ(s)

+∫ 1

0
eA1(s)ζ


0
0

r+1−ζ
−1

û(s)dζ. (3.15)

Furthermore, we remember about

z2(1,s)+z3(1,s)=0 and z4(1,s)=0. (3.16)

Thus, we obtain

(a23(1,s)+a33(1,s))γ(s)+(a24(1,s)+a34(1,s))δ(s)

+û(s)
∫ 1

0
(a23(ζ,s)+a33(ζ,s))(r+1−ζ)−(a24(ζ,s)+a34(ζ,s))dζ︸ ︷︷ ︸

I1(s)

=0,

a43(1,s)γ(s)+a44(1,s)δ(s)+û(s)
∫ 1

0
a43(ζ,s)(r+1−ζ)−a44(ζ,s)dζ︸ ︷︷ ︸

I2(s)

=0.

And after small conversion[
a23(1,s)+a33(1,s) a24(1,s)+a34(1,s)

a43(1,s) a44(1,s)

]
︸ ︷︷ ︸

B1(s)

[
γ(s)
δ(s)

]
=

[
−û(s)I1(s)
−û(s)I2(s)

]
,
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we can determine

γ(s)=
−I1(s)a44(1,s)+ I2(s)(a24(1,s)+a34(1,s))

detB1(s)
û(s),

δ(s)=
−I2(s)(a23(1,s)+a33(1,s))+ I1(s)a43(1,s)

detB1(s)
û(s).

Remind that we observe the beam at its free end, that is as observation we take nontriv-
ial linear combination (3.7), thus output ŷ(s) reads ŷ(s) = aŵ(1,s)+bξ̂(1,s)+cŵ′(1,s)+
dξ̂ ′(1,s)=az1(1,s)+bz2(1,s)+cz3(1,s)+dz4(1,s). Hence, we can obtain formula for z1(1,s)
as

z1(1,s)= a13(1,s)γ(s)+a14(1,s)δ(s)+û(s)
∫ 1

0
a13(ζ,s)(r+1−ζ)−a14(ζ,s)dζ,

and for z2(1,s), z3(1,s), z4(1,s) analogously. It is easy to see that for any such choice of ob-
servation, transfer function G1(s) is a fraction, where denominator is equal to det(B1(s)).
Moreover, using (3.13) one can calculate

det(B1)=
1
2

(
cosh(

√
s
√

s−i)cosh(
√

s
√

s+i)

+
s√

s−i
√

s+i
sinh(

√
s
√

s−i)sinh(
√

s
√

s+i)+1
)

, (3.17)

which finishes the proof of Lemma 3.1.

Now we proceed with the proof of Theorem 3.2.
Proof of Theorem 3.2. We will assume that nominator and denominator of transfer function
do not cancel, which can be guaranteed provided that r is non-singular radius (see [5,6]).

Let s= it, then determination of nonzero poles of G1(s) is equivalent to solving

cos(
√

t2−t)cos(
√

t2+t)− t√
t2−1

sin(
√

t2−t)sin(
√

t2+t)+1=0. (3.18)

Observe that all zeroes of (3.18) are real, therefore all zeros of det(B1)=0 (poles of G1(s))
are on the imaginary axis Re s=0. For sufficiently large t we have

t≈ 2k+1
2

π,

and

s≈ i
2k+1

2
π.

Using Theorem 2.1 we can say that system (3.8) is unstable, which finishes the proof. �
The result which we received is similar to results of [3] (see Lemma 2.2 therein), al-

though a different notion of stability is consider there.
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3.2 µ>0

This section is devoted to the main problem of this paper, i.e., to analyzing stability of
Timoshenko beam with nonzero damping which was introduced by (3.5).

Let µ>0, Eqs. (3.4)-(3.5) take form{
ẅ(x,t)−µ2ẇ′′(x,t)−w′′(x,t)−ξ ′(x,t)=−u(t)(r+x),
ξ̈(x,t)−ξ ′′(x,t)+w′(x,t)+ξ(x,t)=u(t),

(3.19)

for x∈ (0,1) and t>0 with boundary conditions (3.2) and initial conditions (3.6).

Theorem 3.3. System (3.19) is unstable.

To prove it we need the following.

Lemma 3.2. Transfer function G2(s) is of the form Gn
2 (s)/Gd

2(s), where Gn
2 (s) is a numerator

of this transfer function, Gd
2(s) is a denominator. For sufficiently large |s|, Gd

2(s) can be approxi-
mated by

Gd
2(s)≈cosh

(√s
µ

)
cosh(s)+

1

µs
5
2

sinh
(√s

µ

)
sinh(s).

Proof. After taking Laplace transform of (3.19) under assumptions (3.2) and (3.6), we ob-
tain  ŵ′′(x,s)=

s2

1+µ2s
ŵ(x,s)− 1

1+µ2s
ξ̂ ′(x,s)+

1
1+µ2s

û(s)(r+x),

ξ̂ ′′(x,s)=(s2+1)ξ̂(x,s)+ŵ′(x,s)−û(s),

with conditions (3.10) like previously. Again we change variables as
v1= ŵ,
v2= ξ̂,
v3= ŵ′,
v4= ξ̂ ′,

and put system (3.19) into first-order form as before, that is

d
dx


v1
v2
v3
v4

=


0 0 1 0
0 0 0 1
s2

1+µ2s
0 0 − 1

1+µ2s
0 s2+1 1 0


︸ ︷︷ ︸

A2(s)


v1
v2
v3
v4

+


0
0

r+x
1+µ2s
−1

û(s). (3.20)
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Denote matrix exponential of A2(s) as

eA2(s)x =


b11(x,s) b12(x,s) b13(x,s) b14(x,s)
b21(x,s) b22(x,s) b23(x,s) b24(x,s)
b31(x,s) b32(x,s) b33(x,s) b34(x,s)
b41(x,s) b42(x,s) b43(x,s) b44(x,s)

.

Detailed formulas for bij’s are very complicated and will be omitted as long as possible.
Doing steps (3.14)-(3.16) as previous, we obtain

(
b23(1,s)+b33(1,s)

)
γ(s)+

(
b24(1,s)+b34(1,s)

)
δ(s)

+û(s)
∫ 1

0

(
b23(ζ,s)+b33(ζ,s)

) r+1−ζ

1+µ2s
−
(
b24(ζ,s)+b34(ζ,s)

)
dζ︸ ︷︷ ︸

I3(s)

=0,

b43(1,s)γ(s)+b44(1,s)δ(s)+û(s)
∫ 1

0
b43(ζ,s)

r+1−ζ

1+µ2s
−b44(ζ,s)dζ︸ ︷︷ ︸

I4(s)

=0,

and after small conversion we get[
b23(1,s)+b33(1,s) b24(1,s)+b34(1,s)

b43(1,s) b44(1,s)

]
︸ ︷︷ ︸

B2(s)

[
γ(s)
δ(s)

]
=

[
−û(s)I3(s)
−û(s)I4(s)

]
.

Again we observe the beam at its free end, that is y(t) = aw(1,t)+bξ(1,t)+cw′(1,t)+
dξ ′(1,t), thus denominator of transfer function G2(s) of system (3.19) can be written as

det(B2)=σ3+σ4cosh(σ1)cosh(σ2)+σ5sinh(σ1)sinh(σ2),

where 

σ1(s)=

√
s
√

µ2+s(2+sµ2)−
√
−4+(1+s2)2µ4√

2+2sµ2
,

σ2(s)=

√
s
√

µ2+s(2+sµ2)+
√
−4+(1+s2)2µ4√

2+2sµ2
,

σ3(s)=
−2+µ4+s2µ4

−4+(1+s2)2µ4 ,

σ4(s)=
−2+s2µ4+s4µ4

−4+(1+s2)2µ4 ,

σ5(s)=
−4s+2µ2−2s2µ2+2sµ4+2s3µ4

(−4+(1+s2)2µ4)
√

4sµ2+4s2+4s3µ2+4
.
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Note that for µ = 0 our results coincide with those from previous section, namely E-
q. (3.17). As we can see, analyzing det(B2(s)) is nontrivial, we will use asymptotic be-
havior method from [4]. Then for sufficiently large s we obtain

σ1(s)=
1
µ

√
s− 1

2µ3
1√

s +φ1

(1
s

)
,

σ2(s)= s+
1
2

1
s
+φ2

( 1
s2

)
,

σ3(s)=
1
s2 +

(
−1− 2

µ4

) 1
s4 +

(
1+

8
µ4

) 1
s6 +φ3

( 1
s7

)
,

σ4(s)=1+
(
−2+

1
µ2

) 1
s2 +

(
3+

2
µ4 −

2
µ2

) 1
s4 +φ4

( 1
s5

)
,

σ5(s)=
1
µ

1

s
5
2
− 3

2µ3
1

s
7
2
− 3(3+4µ4)

8µ5
1

s
9
2
+φ5

( 1
s5

)
,

where each φi(·) is an analytic function in a neighbourhood of 0 with

lim
|s|→∞

φi

(
1
s

)
=0.

It follows that 

σ̃1(s)∼
1
µ

√
s,

σ̃2(s)∼ s,
σ̃3(s)∼0 as |s|→∞,
σ̃4(s)∼1,

σ̃5(s)∼
1

µs
5
2

.

And we obtain an approximate expression

cosh
(√s

µ

)
cosh(s)+

1

µs
5
2

sinh
(√s

µ

)
sinh(s),

which finishes the proof of Lemma 3.2.

Now we go back to the proof of Theorem 3.3.

Proof of Theorem 3.3. Instead of equation det(B2(s))=0 we consider an approximate equa-
tion, in the form

cosh
(√s

µ

)
cosh(s)+

1

µs
5
2

sinh
(√s

µ

)
sinh(s)≈0. (3.21)
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After small calculations we can rewrite it approximately as

(1+e−2
√

s
µ )(1+e2s)≈0.

Solution of (3.21) consist of two families, {s1
k}∞

k=k0
and {s2

k}∞
k=k0

, where

s1
k ≈

πi
2
(2k+1), s2

k ≈−µ2
(π

2
+kπ

)2
as k→∞.

Using Theorem 2.1 we obtain that system (3.19) is unstable. �

Corollary 3.1. First family of poles {s1
k} in (3.19) is (approximately) the same like in undamped

Timoshenko beam equation, while second family of poles {s2
k} is (approximately) the same like in

heat flow equation. Adding damping operator

B
(

y
z

)
=

(
−µ2y′′

0

)
causes a phenomenon of a heat generation type.

3.3 µ=∞

Now we consider limit case µ=∞. Remind that for any µ>0, we have{
ẅ(x,t)−µ2ẇ′′(x,t)−w′′(x,t)−ξ ′(x,t)=−u(t)(r+x),
ξ̈(x,t)−ξ ′′(x,t)+w′(x,t)+ξ(x,t)=u(t),

for x∈ (0,1) and t>0 with boundary conditions (3.2) and initial conditions (3.6).
Dividing first of these equations by µ2 and passing with µ→∞, we obtain{

ẇ′′(x,t)=0,
ξ̈(x,t)−ξ ′′(x,t)+w′(x,t)+ξ(x,t)=u(t),

(3.22)

for x∈ (0,1) and t>0 with boundary conditions (3.2) and initial conditions

w(x,0)= ξ(x,0)= ξ̇(x,0)=0. (3.23)

Theorem 3.4. System (3.22) is unstable.

We prove the following lemma.

Lemma 3.3. Transfer function G3(s) is of the form Gn
3 (s)/Gd

3(s), where Gn
3 (s) is a numerator

of this transfer function, Gd
3(s) is a denominator. For sufficiently large |s|, Gd

3(s) can be approxi-
mated by

Gd
3(s)≈cosh(s).
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Proof. After taking Laplace transform of (3.22) under assumptions (3.2) and (3.23), we
obtain {

sŵ′′(x,s)=0,

ξ̂ ′′(x,s)=(s2+1)ξ̂(x,s)+ŵ′(x,s)−û(s),

with conditions (3.10) like previously. We change variables as before in (3.11),
q1= ŵ,
q2= ξ̂,
q3= ŵ′,
q4= ξ̂ ′,

and put differential equations into first-order form

d
dx


q1
q2
q3
q4

=


0 0 1 0
0 0 0 1
0 0 0 0
0 s2+1 1 0


︸ ︷︷ ︸

A3(s)


q1
q2
q3
q4

+


0
0
0
−1

û(s). (3.24)

The matrix exponential of A3(s) is given by

eA3(s)x =



1 0 x 0

0 cosh(
√

s2+1x)
cosh(

√
s2+1x)−1

s2+1
sinh(

√
s2+1x)√

s2+1
0 0 1 0

0
√

s2+1sinh(
√

s2+1x)
sinh(

√
s2+1x)√

s2+1
cosh(

√
s2+1x)


.

Doing steps similar to (3.14)-(3.16), we obtain

s2+cosh(
√

s2+1)
s2+1

γ(s)+
sinh(

√
s2+1)√

s2+1
δ(s)=0,

sinh(
√

s2+1)√
s2+1

γ(s)+cosh(
√

s2+1)δ(s)+û(s)
∫ 1

0
cosh(

√
s2+1ζ)dζ︸ ︷︷ ︸

I5(s)

=0.

After small conversion we get
s2+cosh(

√
s2+1)

s2+1
sinh(

√
s2+1)√

s2+1
sinh(

√
s2+1)√

s2+1
cosh(

√
s2+1)


︸ ︷︷ ︸

B3(s)

[
γ(s)
δ(s)

]
=

[
0

−û(s)I5(s)

]
.
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Hence, denominator of transfer function G3(s) of system (3.24) is of the form

Gd
3(s)=det(B3(s))=

s2cosh(
√

s2+1)+1
s2+1

. (3.25)

For sufficiently large |s|, formula (3.25) can be approximated by

cosh(s),

which finishes the proof of Lemma 3.3.

Now we proceed with the proof of Theorem 3.4.

Proof of Theorem 3.4. We consider an approximate equation, in the form

cosh(s)≈0. (3.26)

Solution of (3.26) is

s≈ πi
2
(2k+1).

So, we complete the proof. �
Observe that all poles of G3(s) lie on imaginary axis. From Theorem 2.1, we can say

that system (3.22) is unstable. Furthermore, comparing this with previous result we see
that family {s2

k} escapes to −∞+0i.

4 Conclusions

We analyzed stability of a slowly rotating Timoshenko beam in a horizontal plane, rigidly
clamped to the motor disk, observed at the right end. After taking into account the special
damping, the only part of the energy of the system vanishes. In the limit case of infinite
unrealistic damping we observe the same behaviour.

In this work we assumed that the damping operator had the special form, namely

B
(

y
z

)
=

(
−µ2y′′

0

)
.

In the sequel we consider a more general damping operator of the form

B
(

y
z

)
=

(
−µ2y′′

ν2z

)
.
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Nomenclature

A = operator of movement
Ac = cross section area
B = damping operator
E = Young’s modulus
f̂ (s) = Laplace transform
I = moment of inertia
K = shear modulus
ξ(x,t) = rotation angle of cross section area
G(s) = transfer function
ρ = linear density
θ(t) = rotation angle
t = time
u(t) = input (control)
w(x,t) = deflection of the center line
x = coordinate along the beam
y(t) = output
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