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Abstract. Many engineering structures exhibit frequency dependent characteris-
tics and analyses of these structures lead to frequency dependent eigenvalue prob-
lems. This paper presents a novel perturbative iteration (PI) algorithm which can
be used to effectively and efficiently solve frequency dependent eigenvalue prob-
lems of general frequency dependent systems. Mathematical formulations of the
proposed method are developed and based on these formulations, a computer al-
gorithm is devised. Extensive numerical case examples are given to demonstrate
the practicality of the proposed method. When all modes are included, the method
is exact and when only a subset of modes are used, very accurate results are ob-
tained.
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1 Introduction

Frequency dependent systems are those whose system characteristics change with ex-
ternally applied stimulating frequency. Many natural practical systems are found to be
substantially frequency dependent. These include mechanical engine mounts [1], ro-
tor systems [2], viscoelastic and composite structures [3, 4], human pelvis systems [5],
electrical inductances [6], magnetic modulation systems [7] etc. When such systems
are to be analyzed and identified to establish their dynamic characteristics, frequency
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dependent eigenvalue problems are often encountered which need to be solved. A
frequency depenedent eigenvalue problem can be defined as

A(λ)φ = λB(λ)φ, (1.1)

where A and B are system matrices which can be complex in general but symmetric
and which are functions of eigenvalue (frequency) λ while its conventional counter-
part is written as

Aφ = λBφ. (1.2)

Eigenvalue problem is a major branch of applied mathematics and has found wide
range of applications [8]. Clasical eigenvalue problems are involved in many engi-
neering disciplines and development of effective and efficient eigensolution methods
has remained to be very active during the last few decades. To establish a complete
set of eigenvalues and eigenvectors, various algorithms have been developed such as
Jocobi method [9], QR method [10] and the more general QZ method [11]. While in
the case where only few of the eigenvalues and eigenvectors are of interest, inverse
iteration method [12] has been developed and can be effectively employed.

For large practical engineering systems, Lanczos method [13] was probably the
first method which was successfully applied to solve large scale eigenvalue problems.
Lanczos introduced a recursive algorithm based on a Krylov sequence to determine a
subset of eigensolutions. Based on similar concept, Arnoldi [14] presented an effective
method for large eigenvalue problems. Based on the formulation of an orthogonal
set of vectors, an effective algorithm called Ritz method was developed as discussed
in [15]. Alongside with these methods, subspace iteration technique, which has been
proven to be very efficient and effective, especially for large practical systems, was
introduced [16–18]. Nevertheless, these methods were initially developed for un-
damped systems, when system damping is considered and hence the eigenvalue prob-
lem becomes complex in nature, these methods need to be further extended. Com-
plex Lanczos method was discussed intensely in engineering science in 1980’s [19,20].
Arnoldi’s method was further developed by Saad [21] to tackle eigenvalue problems
of damped systems. A generalized Ritz algorithm for quadratic eigenproblems was
presented by Zheng et al. [22].

For conventional eigenvalue problems, extensive research has been conducted and
many effective and efficient methods have been developed to date to solve them as
the literature review above has indicated. However, frequency dependent eigenvalue
problem has not been properly investigated despite its practical importance and there
has yet to exist an effective eigensolution method to address this type of eigenvalue
problems. This paper seeks to develop a novel perturbative iteration (PI) algorithm
which can be used to effectively and efficiently solve frequency dependent eigenvalue
problems of general frequency dependent systems. Mathematical formulations of the
proposed method are developed and based on these formulations, a numerical algo-
rithm is devised. Extensive numerical case examples are given to demonstrate the
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practicality of the proposed method. In the case where all modes are included, the
method is exact and the iteration always converges to exact solution. In the case where
only a subset of modes are used, very accurate results are obtained. Tremendous com-
putational efficiency is manifested through these case examples.

2 Formulation of problem and conventional solution

Many physical systems involve frequency dependent system parameters, leading to
frequency depenedent eigenvalue problems described by Eq. (1.1), which need to be
solved to determine their dynamic characteristics. One typical such system is a struc-
ture with viscoelastic damping material. Viscoelastic materials are widely and increas-
ingly used to increase structural damping for vibration control applications. Both
Young’s modulus E = E(ω) and loss factor η = η(ω) of a viscoelastic material are
functions of frequency. Such frequency dependency can be seen from the reduced
frequency monogram of 3M vicoelastic material ISD 112 of Fig. 1. Structural models
with such viscoelastic damping layers will be used as examples to validate the pro-
posed methods in later discussions.

Once the frequency dependent eigenvalue problem is formulated whose mathe-
matical formula is repeated here

A(λ)φ = λB(λ)φ. (2.1)

What one seeks to do is to find a suitable method to solve all the eigenvalues and
corresponding eigenvectors of interest which satisfy Eq. (2.1). Though there has not
been any discussion in the open literature regarding how such problem can be solved,
one simple and straightforward method will be to apply conventional eigensolution
method in an iterative manner. To compute the eigenvalue and the associated eigen-
vector of rth mode, following algorithm can be used

1. Initialize: λ = λ0, A = A(λ0) and B = B(λ0);

2. For k = 1, 2, 3, · · · ,
3. Solve Aφ = λBφ ⇒ λ

(k)
r , φ

(k)
r ;

4. If |λ − λ
(k)
r |/|λ(k)

r | ≤ ε ⇒ Stop;

5. Update λ = λ
(k)
r , A = A(λ) and B = B(λ).

where λ0 is the initial guess of the eigenvalue of rth mode of interest and ε is the
required computational accuracy. As the iteration continues, the estimated λ

(k)
r and

φ
(k)
r will converge to their exact solutions λr and φr. For different mode, this iteration

process will have to be repeated ab initio.
During the iteration, each eigensolution required is a conventional eigenvalue

problem since both A and B are constant. However, in order solve just one eigenvalue
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Figure 1: Reduced frequency nomogram for ISD-112.

and its corresponding eigenvector, repeated full eigensolutions are required until re-
quired accuracy is met. Such an approach is theoretically feasible but practically pro-
hibitive since the computational cost involved is tremendous even though one might
argue that some form of optimization can be done to minimize the computational bur-
den to some extent.

3 Perturbative iteration (Pi) algorithm

The proposed Perturbative Iteration (PI) algorithm seeks to minimize the computa-
tional cost involved by performing the costly eigensolution once and only on a com-
panion reference system formed at some pre-selected frequency value λ = λ0. Sub-
sequently, the eigevalues and eigenvectors of this companion reference system are
used together with the perturbation matrices which are the difference between the ac-
tual system matrices and those of the companion reference system to derive the true
eigenvalues and eigenvectors of interest of the frequency dependent system.

Let the companion reference system be defined as the system corresponding to a
known pre-selected frequency λ = λ0

A0 = A(λ0), B0 = B(λ0). (3.1)

The eigenvalue problem of this companion system thus becomes

A0φ = λB0φ. (3.2)

Let us assume here all the eigenvalues λr, r = 1, 2, · · · , N and eigenvectors φr, r =
1, 2, · · · , N of (3.2) are solved using conventional eigensolution techniques mentioned
and the effect of incomplete modes on the accuracy of the proposed algorithm will be
discussed later. Define further the perturbation matrices as the difference between the
actual system matrices and those of the companion reference system as

∆A(λ) = A(λ)− A0, ∆B(λ) = B(λ)− B0, (3.3)
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where ∆A(λ) and ∆B(λ) are known functions of λ. With these definitions, the eigen-
value problem of the frequency dependent system becomes

[A0 + ∆A(λ)]φ = λ[B0 + ∆B(λ)]φ. (3.4)

After some re-arrangement, (3.4) can be further written as

[A0 − λB0]φ = [−∆A(λ) + λ∆B(λ)]φ. (3.5)

Upon solving for φ, one has

φ = [A0 − λB0]
−1[−∆A(λ) + λ∆B(λ)]φ. (3.6)

From spectral decomposition, the inverse matrix [A0 − λB0]−1 can be computed using
the known eigenvalues and eigenvectors of the companion reference system as

[A0 − λB0]
−1 =

N

∑
i=1

φiφ
T
i

λi − λ
. (3.7)

Upon substitution of (3.7), (3.6) becomes

φ =
N

∑
i=1

φiφ
T
i

λi − λ
[−∆A(λ) + λ∆B(λ)]φ. (3.8)

Eq. (3.8) is a general relationship in which N is the order of the system, for rth mode
of interest, one has

φr =
N

∑
i=1

φiφ
T
i

λi − λr
[−∆A(λr) + λr∆B(λr)]φr. (3.9)

To avoid numerical difficulty when λr is too close to λr, especially at the starting point
of the iteration process, as will be shown later, some modification to (3.9) becomes
necessary. Re-write (3.9) to become

φr =
N

∑
i=1;i ̸=r

φiφ
T
i

λi − λr
[−∆A(λr) + λr∆B(λr)]φr

+
φrφ

T
r

λr − λr
[−∆A(λr) + λr∆B(λr)]φr. (3.10)

The second term on the right hand side of (3.9) can be further simplified, recall (3.5)
and in the case of rth mode, (3.5) can be written as

[A0 − λrB0]φr = [−∆A(λr) + λr∆B(λr)]φr. (3.11)
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Using the relationship of (3.11), the second term on the right hand side of (3.9) can be
written as

φrφ
T
r

λr − λr
[−∆A(λr) + λr∆B(λr)]φr =

φrφ
T
r

λr − λr
[A0 − λrB0]φr

=
φrφ

T
r

λr − λr
[A0 − λrB0 + λrB0 − λrB0]φr

=
φrφ

T
r

λr − λr
[A0 − λrB0]φr +

φrφ
T
r

λr − λr
(λr − λr)B0φr. (3.12)

From the definition of eigenvalue problem of the companion reference system of (3.2),
one can conclude that

φrφ
T
r

λr − λr
[A0 − λrB0]φr = 0 (∵ φT

r [A0 − λrB0] = 0). (3.13)

Hence, (3.12) can be re-written as

φrφ
T
r

λr − λr
[−∆A(λr) + λr∆B(λr)]φr = φrφ

T
r B0φr. (3.14)

Substituting (3.14) into (3.10), one has

φr =
N

∑
i=1;i ̸=r

φiφ
T
i

λi − λr
[−∆A(λr) + λr∆B(λr)]φr +φrφ

T
r B0φr. (3.15)

In Eq. (3.15), λr and φr are the eigenvalue and its associated eigenvector which need
to be solved while other terms involved are all known. It will be shown that a simple
iterative algorithm which is called Perturbative Iteration (PI) can be developed based
on (3.15) as discussed below

φ
(k+1)
r =

N

∑
i=1;i ̸=r

φiφ
T
i

λi − λ
(k)
r

[−∆A(λ
(k)
r ) + λ

(k)
r ∆B(λ(k)

r )]φ
(k)
r +φrφ

T
r B0φ

(k)
r , (3.16a)

λ
(k+1)
r =

{φ
(k+1)
r }T[A0 + ∆A(λ

(k)
r )]{φ

(k+1)
r }

{φ
(k+1)
r }T[B0 + ∆B(λ(k)

r )]{φ
(k+1)
r }

. (3.16b)

Normalize φ
(k+1)
r with respect to B (mass normalization in structural dynamics)

φ
(k+1)
r =

φ
(k+1)
r√

{φ
(k+1)
r }T[B0 + ∆B(λ(k)

r )]{φ
(k+1)
r }

. (3.17)

The complete algorithm can be summarized as:

1. Formulating A(λ), B(λ) and selecting suitable value λ = λ0;
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2. Solving companion system A0φ = λB0φ ⇒ λr and φr;

3. Initializing λ
(0)
r = λr and φ

(0)
r = φr;

4. For k = 1, 2, 3, · · · ;

5. Computing

φ
(k+1)
r =

N

∑
i=1;i ̸=r

φiφ
T
i

λi − λ
(k)
r

[−∆A(λ
(k)
r ) + λ

(k)
r ∆B(λ(k)

r )]φ
(k)
r +φrφ

T
r B0φ

(k)
r ;

6. Computing

λ
(k+1)
r =

{φ
(k+1)
r }T[A0 + ∆A(λ

(k)
r )]{φ

(k+1)
r }

{φ
(k+1)
r }T[B0 + ∆B(λ(k)

r )]{φ
(k+1)
r }

;

7. Normalizing

φ
(k+1)
r =

φ
(k+1)
r√

{φ
(k+1)
r }T[B0 + ∆B(λ(k)

r )]{φ
(k+1)
r }

;

8. If |λ(k+1)
r − λ

(k)
r |/|λ(k+1)

r | ≤ ε ⇒ Stop.

The converged eigenvalue λ
(k+1)
r and eigenvector φ

(k+1)
r , will approach to their true

counterparts λr and φr. Other modes of interest can be similarly computed. As com-
pared with the conventional iterative full eigensolution based method which is com-
putationally prohibitive, the proposed PI algorithm is computationally extremely ef-
ficient since it only requires simple matrix-vector multiplications and as a result, only
a tiny fraction of additional computational effort is required for each mode of interest
after the initial eigensolution of the companion reference system, as will be sown later
in numerical case examples. Throughout the PI process, there is no matrix multiplica-
tion or matrix inverse operations involved and the sparsity of the system matrices, if
any, is preserved and can be taken into consideration to further improve the efficiency
of the method.

4 Application case examples

To assess the computational performance of the proposed PI algorithm, an undamped
vibration problem of a mass-spring model shown in Fig. 2 was first examined.

The value for the spring elements k3 shown in Fig. 2 was assumed to be frequency
dependent and it is assumed to be modeled as

k3 = 3000000 + 200000λ0.0875N/m. (4.1)
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Figure 2: A mass-spring vibration model used as numerical example with m1 = 1.0kg, m2 = 0.2kg, m3 =
0.1kg, k1 = 1.0 × 106N/m, k2 = 2.0 × 106N/m.

Upon deriving the equations of motion and putting them in matrix form, a 10 × 10
mass matrix B which is diagonal and a stiffness matrix A of the same dimension,
which is frequency dependent, can be established. Let the companion reference sys-
tem be

B0 = B and A0 = A(λ)|λ=0 = A(0).

Solving the eigenvalue problem of the companion reference system, the 10 eigenvalues
are shown in Table 1.

Conventional iterative eigensolution method can be used to solve the eigenvalues
and eigenvectors of the frequency dependent system with tight error control ε = 10−8

and the eigenvalues are computed as shown in Table 2.
Based on the theoretical development of the Perturbative Iteration method dis-

cussed in Section 3, a computer code has been written to perform the iterations to
compute the eigenvalues and eigenvectors of the frequency dependent system. For
the first 4 modes, the iterations based on the proposed PI algorithm produce numeri-
cally exact results both for eigenvalues and eigenvectors. The iteration results for the
eigenvalues are shown Fig. 3.

As can be observed, convergence of the iterative process of the proposed PI method
is generally very fast and only a few iterations are required before very accurate results
are obtained. To further assess the practicality of the proposed new method, a practical

Table 1: Eigenvalues of the companion reference system.

Mode No. 1 2 3 4 5
Eigenvalue 650534.7411 3236116.562 8069734.543 10715001.30 25918539.62
Mode No. 6 7 8 9 10
Eigenvalue 40000000.00 43937413.21 50767873.90 60000000.00 66704786.09

Table 2: Eigenvalues of the frequency dependent system.

Mode No. 1 2 3 4 5
Eigenvalue 699101.6179 3355388.282 9579522.282 10842730.46 30315672.19
Mode No. 6 7 8 9 10
Eigenvalue 40000000.00 44090582.70 60258874.04 79652142.57 88366951.34
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(a) First eigenvalue λ1 (b) Second eigenvalue λ2

(c) Third eigenvalue λ3 (d) Fourth eigenvalue λ4

Figure 3: Iteration results showing convergence of the lower 4 modes.

frequency dependent sandwich beam structure with double layers of viscoelastic core
shown in Fig. 4 is used as a more realistic practical case example.

The three constraining layers are assumed to be aluminum with Young’s modulus
E = 7.1 × 1010N/m2 and density ρ = 2710kg/m3. The viscoelastic cores are ISD-112
material and under room temperature of 24◦C, the shear modulus (N/m2) and the
loss factor are assumed to be expressed as

G(ω) = 9.94 × 105 × e0.6937×ln(ω/2π)−2.6962, (4.2a)

η(ω) = e−0.08807×ln(ω/2π)+0.60503, (4.2b)

for the convenience of this study though in practice, G(ω) and η(ω) are obtained from
the given nomogram as shown in Fig. 1. In fact, the relationships of (4.2a) and (4.2b)
were obtained from the data given in the frequency range up to 1500Hz using curve-
fitting analysis.

With these given material properties and structural geometries, finite element mod-
eling was then conducted by using 30 solid elements with 8 nodes for each layer as
shown in Fig. 4. Since each layer of surface has 45 nodes and each node is assumed
to have 3 degrees of freedom, the total number of degrees of freedom specified in the
finite element model for all the 6 layers of surface therefore becomes 3× 45× 6 = 810.
During the modeling, the shear modulus and loss factor for the viscoelastic cores were
assumed to be taken at a reference frequency f = 100Hz. The thus established mass
[M] and stiffness [K] and structural damping [D] matrices are then used to obtain the
eigenvalues and eigenvectors of the reference companion system by solving the com-
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Figure 4: A multilayer sandwiched beam structure with viscoelastic damping.

plex eigenvalue problem of (3.2), where B0 = [M] and A0 = [K] + i[D] (i is the com-
plex notation). The first 5 eigenvalues (in terms of natural frequencies and damping
loss factors) of the companion system are shown in Table 3 and Table 4 together with
the exact eigenvalues of the frequency dependent system which are obtained using
conventional iterative eigensolution on mode by mode basis.

In the case of complete modes where all modes of the companion reference sys-
tem are included (N = 810 in Eq. (3.16a)), the proposed PI method produces exact
eigenvalues (and corresponding exact eigenvectors) as shown in Table 3 and Table
4 for the lower 5 modes of interest where accuracy control parameters was given as
ε = 10−8. The system considered here is a damped system and the eigenvalues are
hence complex which lead to natural frequencies and damping loss factors [21]. For
the first mode, iteration results are shown in Fig. 5 and Fig. 6 which demonstrate that
convergence for this mode is quite fast. In general, only a few iterations are required
before very accurate results are obtained.

In practice, one may not have all the modes of the companion reference system but
only a few of the lower M (M < N) modes are available, in this case, the proposed
PI method can still be formulated by summing up all the available M modes (setting
N = M in Eq. (3.16a)). However, the formulation will not be exact in this case due to
truncation of higher modes which are not included and thus the computed eigenval-
ues will be in error as shown in Table 3 and Table 4. In the case of M = 20, the errors
caused by truncation are quite small as far as practical applications are concerned.
Though eigenvectors are not compared due to its large number of elements involved,
in the case of complete modes where eigenvalues computed based the proposed PI
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Figure 5: Iteration results for the natural frequency of mode 1.

Figure 6: Iteration results for the damping loss factor of mode 1.

method are numerically exact, the corresponding eigenvectors are also numerically
exact. On the other hand, when incomplete modes of the companion reference system
are used, similar eigenvector error percentage in vector norm to that of eigenvalue has
been observed for the various cases discussed.

By employing the eigenproperties of the companion reference system, the pro-
posed PI method progressively computes the required eigenvalues and eigenvectors
of interest accurately and efficiently. In the case of complete modes, the computed
eigenvalues and eigenvectors are numerically exact while in the case of incomplete
modes, the results obtained are very accurate. From computational efficiency point of

Table 3: Natural frequencies of the first 5 modes of the system (Hz).

Mode No. Companion System Exact (conventional) PI (all modes) PI (20 modes) Percentage Error
1 34.727373 29.082119 29.082119 29.123871 0.143566%
2 140.67897 152.99209 152.99209 152.73121 -0.17052%
3 342.82570 390.25261 390.25261 389.36512 -0.22741%
4 659.37501 747.93604 747.93604 746.05321 -0.25174%
5 1117.7161 1235.5445 1235.5445 1238.5863 0.246191%

Table 4: Damping loss factors of the first 5 modes of the system.

Mode No. Companion System Exact (conventional) PI (all modes) PI (20 modes) Percentage Error
1 0.65271813 0.58985995 0.58985995 0.57900131 -1.84087%
2 0.52014321 0.40644844 0.40644844 0.41250012 1.48892%
3 0.43219821 0.34542296 0.34542296 0.32901787 -4.74927%
4 0.32418882 0.27482320 0.27482320 0.25501621 -7.20717%
5 0.32666112 0.22023118 0.22023118 0.23842914 8.26313%
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view, proposed PI method requires far less CPU time than the conventional iterative
full eigensolution method. For the 5 modes considered and for the same termination
criterion of ε = 10−8, only about 2.5% of CPU time is required when PI method is
used as compared with conventional iterative full eigensolution method in the case
of complete modes. The computational time required for the complete iterative full
eigensolution for the first 5 modes in this case based on Fujitsu Lifebook S Series is
126 minutes. By using the proposed method, the computational time required is 3
minutes and 6 seconds. The convergence of the PI method is generally very fast and
only few iterations are required before accurate results are obtained.

5 Limitation and applications of the proposed method

Having developed the mathematical formulation and numerical implementation of
the proposed method, it is however worth mentioning that there does exist some lim-
itations on the applicability of the proposed method. It would be customary that once
an iterative procedure is proposed, a rigorous proof on the convergence of the pro-
cedure is in order, as those presented in [24]. However, the iterative procedure de-
veloped in this paper is mathematically based on eigensensitivity analysis and as a
result, converegence is not always guaranteed. To ensure convergence, the difference
between the actual model and the reference model should be small, that is

∥A(λ)∥ − ∥A0∥
∥A0∥

≪ 1 and
∥B(λ)∥ − ∥B0∥

∥B0∥
≪ 1. (5.1)

Classical eigensensitivity analysis enables us to predict the changes in eigenvalues
and eigenvectors of interest based on the eigenvalues and eigenvectors of the current
system and the changes to system matrices without solving the eigenvalue problem
of the modified system [25]. However, such prediction is never exact but only ac-
curate to a first order provided the changes made satisfy (5.1). The novelty of the
present proposed algorithm is that it keeps updating the eigensensitivity using iter-
ations and eventually derives the exact eigenvalue and eigenvector of interest, when
the difference between the actual system associated with the frequency of interest and
its reference system satisfies (5.1) and hence the iteration process converges. On the
other hand, in the practical case where incomplete modes are available, provided suf-
ficient number of modes are included, the proposed algorithm becomes very accurate.
Though rigorous error analysis in this case is difficult, the existence of the squared fre-
quency separation 1/(λi − λ

(k)
r ) term in (3.16a) means that the contributions of higher

modes away from the mode of interest become increasingly negligible and hence the
truncation error tends to be small. Finally, for repeated modes, eigensensitivities only
exist on normalized non-physical space [26] and in this case, the proposed iteration
algorithm cannot be used for the particular mode(s). For other modes which are non-
repeating, the proposed method can still be applied.

The proposed method is ideally suited for applications where eigenvalues and
eigenvectors of modified systems are of interest. These problems arise in structural
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dynamics modification prediction and damped eigenvalue problems, among many
others. In structural dynamics re-analysis, structural modifications are often made
and changes of vibration properties due to these modifications are often sought. In
this case, a complete eigensolution ab initia is unnecessary and the proposed method
can be best employed to solve the problem. In damped vibration problems, through
complex eigensoltuion techniques can be used, it is often the case that onw solves the
undamped eigenvalue problem first and then, together with the damping matrix, we
predict the damping ratios and complex damped eigenvectors. Recognising the fact
that the additional damping matrix is usually small as compared with stiffness matrix
in Euclidean norm, the proposed method can be ideally applied to computed damped
eigenvalues and eigenvectors of interest.

The method has been developed with the practical application cases of structural
modification analysis and eigenproperties of damped systems in mind. For these
group of applications, the starting reference systems are always available which is the
current design in the case structural modification analysis and the undamped system
mass and stiffness matrices in the case of damped eigenvalue analysis. However, the
method is by no means limited to those applications since mathematically, it is a very
general method. For general applications, if one has some priori knowledge about
where the natural frequency of interest is, then a good starting companion reference
system can be made and the method should work nicely. If, on the other hand, no
such information is available, a starting value of frequency estaimate will converge to
the mode which is geometrically closest to that starting value.

6 Concluding remarks

Many problems encountered in engineering can be formulated as frequency depen-
dent eigenvalue problems and such eigenvalue problems need to be effectively and
efficiently solved for structural vibration analysis, dynamics control and stability, op-
eration deflection and stress analysis etc. However, there has not been any existing
effective method to date which addresses this important type of engineering problem
even though many methods have been developed for conventional eigenvalue prob-
lems. The work presented in this paper seeks to provide a new and effective method
which can be used to solve frequency dependent eigenvalue problems. Theoretical
development of the proposed method has been presented and computational imple-
mentation of the method has been discussed. Extensive numerical case studies have
been carried out to fully assess the numerical accuracy and computational efficiency.
The method has been extended to the practically more realistic case of incomplete
modes and very encouraging results have been achieved.

Mathematically, the method is based on certain type of perturbation analysis and
because of this, one would expect that the difference in the sense of matrix norm be-
tween the target system and the companion reference system should remain small in
order to ensure convergence. Though convergence has been achieved for the cases
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which are reported in this paper, in the case of mass-spring system, for some higher
modes, convergence was found to be an issue due to the large difference between the
target system and the companion reference system. To ensure convergence in this
case, there is a need to compute eigenvalues and eigenvectors of an intermediate com-
panion reference system first using the proposed PI algorithm and then, using the
intermediate companion reference system as a new companion reference system to
compute the eigenvalue and eigenvectors of interest of target system. This will add
extra computational cost but as compared with the conventional iterative full eigen-
solution method, the proposed new method remains computationally efficient.

References

[1] S. HE AND R. SINGH, Estimation of amplitude and frequency dependent parameters of hy-
draulic engine mount given limited dynamic stiffness measurement, Noise. Control. Eng. J.,
53(2) (2005), pp. 271–285.

[2] Q. Y. WANG AND E. H. MASLEN, Identification of frequency dependent parameters in a flexible
rotor system, ASME J. Eng. Gas. Turb. Power., 128(3) (2006), pp. 670–676.

[3] A. WEBSTER AND W. SEMKE, Frequency dependent viscoelastic structural elements for passive
broad-band vibration control, J. Vibr. Control., 10(6) (2004), pp. 881–895.

[4] X. J. DAI, J. H. LIN, H. R. CHEN AND F. W. WILLIAMS, Random vibration of compos-
ite structures with attached frequency dependent damping layer, Composites. B. Eng., 39(2)
(2008), pp. 405–413.

[5] N. E. CONZA AND D. J. RIXEN, Influence of frequency-dependent properties on system identifi-
cation: simulation study on a human levis model, J. Sound. Vibr., 302(4-5) (2007), pp. 699–715.

[6] M. MONDAL AND Y. MASSOUD, Accurate analytical modeling of frequency dependent loop
self-inductance, J. Circuit. Sys. Comput., 17(1) (2008), pp. 77–93.

[7] E. BANDRAN AND S. E. ULLOA, Frequency-dependent magnetotransport and particle dynam-
ics in magnetic modulation systems, Phys. Rev. B., 59(4) (1999), pp. 2824–2832.

[8] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, Eng-
land, 1972.

[9] RUTISHAUSER, The Jacobi method for real symmetric matrices, Numer. Math., 9 (1966), pp.
1–10.

[10] G. H. GOLUB, G. H. AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, Maryland, 1996.

[11] C. B. MOLER AND G. W. STEWART, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10(2) (1973), pp. 241–256.

[12] I. C. F. IPSEN, Computing an eigenvector with inverse iteration, SIAM Rev., 39 (1997), pp.
254–291.

[13] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Res. National. Bureau. Standards., 45 (1950), pp. 255–282.

[14] W. E. ARNODI, The principle of minimized iterations in the solution of the matrix eigenvalue
problems, Quarter. Appl. Math., 9 (1951), pp. 17–29.

[15] X. JIAXIAN, An improved method for partial eigensolution of large structures, Comput. Struct.,
32 (1989), pp. 1055–1060.

[16] K. J. BATHE AND S. RAMASWAMY, An accelerated subspace iteration method, Comput.
Methods. Appl. Mech. Eng., 23(3) (1980), pp. 313–331.



R. M. Lin / Adv. Appl. Math. Mech., 3 (2012), pp. 325-339 339

[17] K. J. BATHE AND E. L. WILSON, Large eigenvalue problems in dynamic analysis, ASCE, Eng.
Mech. Div., 98 (1972), pp. 1471–1485.

[18] K. J. BATHE AND E. L. WILSON, Solution methods for eigenvalue problems in structural me-
chanics, Int. J. Numer. Methods. Eng., 6 (1973), pp. 213–266.

[19] M. BORRI AND P. MANTEGAZZA, Efficient solution of quadratic eigenproblems arising in
dynamic analysis of structures, Comput. Methods. Appl. Mech. Eng., 12 (1977), pp. 19–31.

[20] H. C. CHEN AND R. L. TAYLOR, Solution of eigenproblems for damped structural systems by
Lanczos algorithm, Comput. Struct., 30 (1988), pp. 151–161.

[21] Y. SAAD, Variations of Arnoldi’s method for computing eigenelements of large unsymmetric
matrices, Linear. Algebra. Appl., 34 (1980), pp. 269–295.

[22] T. S. ZHENG, W. M. LIU AND Z. B. CAI, A general inverse iteration method for solution of
quadratic eigenvalue problems in structural dynamic analysis, Comput. Struct., 33(5) (1989),
pp. 1139–1143.

[23] D. J. EWINS, Modal Testing: Theory, Practice and Applications, Research Studies Press,
2000.

[24] K. J. BATHE, Finite Element Procedures, Prentice Hall, 1996.
[25] R. M. LIN AND M. K. LIM, Relationship between improved inverse eigensensitivity and FRF

sensitivity methods for analytical model updating, ASME J. Vibr. Acoust., 119(3) (1997), pp.
354–363.

[26] R. L. DAILEY, Eigenvector derivatives with repeated eigenvalues, AIAA J., 27(4) (1989), pp.
486–491.


