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Abstract. In this paper the fractional Euler-Lagrange equation is considered. The frac-
tional equation with the left and right Caputo derivatives of order α ∈ (0,1] is trans-
formed into its corresponding integral form. Next, we present a numerical solution
of the integral form of the considered equation. On the basis of numerical results, the
convergence of the proposed method is determined. Examples of numerical solutions
of this equation are shown in the final part of this paper.
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1 Introduction

In the past few years, many applications in real phenomena have been found, where
certain dynamics are described not only by integer but also by real order operators [4,
15, 16, 23, 29, 33, 34, 38]. An important issue is that the derivative of fractional order has a
local property at any point of a domain only when order is an integer number. For non-
integer cases, the fractional derivative is a nonlocal operator and depends on the past
values of a function (left derivative) or future ones (right derivative). We refer the reader
to a summary of fractional calculus theory in monographs [6,18,24,27] and papers [1,14,
19, 20, 26, 31, 36, 37] that cover various problems in this field.

One natural application of fractional operators is variational calculus. In this ap-
proach, one modifies the variational principle with replacing the integer order operators
by a fractional one. Then, the minimisation of the action leads to the fractional differential
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equations which are known in the literature as the fractional Euler-Lagrange equations.
Different approaches have been considered in recent years e.g., the Lagrangian or Hamil-
tonian approach with fractional integrals or fractional derivatives [1, 3, 5, 7, 19, 21].

The main feature of the fractional Euler-Lagrange equations is that the fractional op-
erator appearing in these equations contains simultaneously the left and right derivative.
This is also a fundamental problem in finding solutions of equations of a variational
type [6]. Consequently, numerical methods have been devoted to solving fractional vari-
ational problems [8–12, 28, 35].

In this paper we present a numerical solution of the Euler-Lagrange equation with
Caputo derivatives in the finite time interval.

2 Fractional preliminaries

In this section, we introduce the fractional derivatives and integrals used in this work
and some of their properties (see [18, 25, 27]). The left and right Caputo derivatives of
order α∈ (0,1] are defined as follows

CDα
a+x(t) := I1−α

a+ Dx(t), (2.1a)
CDα

b−x(t) :=−I1−α
b− Dx(t), (2.1b)

where D is an operator of the first order derivative and operators Iα
a+ and Iα

b− are the left
and right fractional integrals of order α>0, respectively, defined by

Iα
a+x(t) :=

1

Γ(α)

∫ t

a

x(τ)

(t−τ)1−α
dτ, (t> a), (2.2a)

Iα
b−x(t) :=

1

Γ(α)

∫ b

t

x(τ)

(τ−t)1−α
dτ, (t<b). (2.2b)

If α=1, then CD1
a+x= x′ and CD1

b−x=−x′.

The composition rules of the fractional operators (for α∈ (0,1]) are as follows [18, 22]

Iα
a+

CDα
a+x(t)= x(t)−x(a), (2.3a)

Iα
b−

CDα
b−x(t)= x(t)−x(b), (2.3b)

and the fractional integral of a constant C

Iα
a+C=C

(t−a)α

Γ(1+α)
. (2.4)
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3 The Euler-Lagrange equation and its equivalent integral form

We consider the problem of extremizing a functional with a Lagrangian depending on
the independent variable t, function x, and its left Caputo fractional derivative of order
α∈ (0,1]

S=
∫ b

a
L(t,x,CDα

a+x)dt (3.1)

subject to the boundary conditions

x(a)= ξa , x(b)= ξb. (3.2)

By using results presented in [21] we obtain the following fractional Euler-Lagrange
equation

∂L(t,x,CDα
a+x)

∂x
+CDα

b−
∂L(t,x,CDα

a+x)

∂CDα
a+x

=0. (3.3)

When the Lagrangian has the form

L(t,x,CDα
a+x)≡

1

2
(CDα

a+x)2−
(ω2α

2
x2+ f ·x

)

, (3.4)

then we get the fractional Euler-Lagrange equation in the finite time interval t∈ [a,b]

CDα
b−

CDα
a+x(t)−ω2αx(t)= f (t), (3.5)

where x and f are continues on [0,b].
In particular, when α=1, then CD1

b−
CD1

a+ =−D2 and Eq. (3.5) becomes

D2x(t)+ω2x(t)=− f (t). (3.6)

Now, we can transform Eq. (3.5) into an integral equation [9]. Such an approach for
equation (3.6) has been considered in [32]. We integrate Eq. (3.5) two times by using
the right fractional integral operator (2.2b) and the left fractional integral operator (2.2a),
respectively

Iα
a+ Iα

b−
CDα

b−
CDα

a+x(t)−ω2α Iα
a+ Iα

b−x(t)= Iα
a+ Iα

b− f (t). (3.7)

Next, using the property (2.3b) we get

Iα
a+

(

CDα
a+x(t)−CDα

a+x(t)
∣

∣

∣

t=b

)

−ω2α Iα
a+ Iα

b−x(t)= Iα
a+ Iα

b− f (t). (3.8)

In the above equation, the value CDα
a+x(t)|

t=b
occurs to be a constant. The application

of the composition rule (2.3a) and the fractional integral of a constant (2.4) leads to the
following equation

x(t)−x(a)−CDα
a+x(t)|t=b

(t−a)α

Γ(α+1)
−ω2α Iα

a+ Iα
b−x(t)= Iα

a+ Iα
b− f (t). (3.9)
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The unknown value CDα
a+x(t)|

t=b
can be determined due to the boundary condition. We

substitute t=b into Eq. (3.9)

x(b)−x(a)−CDα
a+x(t)|t=b

(b−a)α

Γ(α+1)
−ω2α Iα

a+ Iα
b−x(t)|t=b= Iα

a+ Iα
b− f (t)|t=b (3.10)

and we obtain

CDα
a+x(t)|t=b =

Γ(α+1)

(b−a)α (x(b)−x(a)−ω2α Iα
a+ Iα

b−x(t)|t=b− Iα
a+ Iα

b− f (t)|t=b). (3.11)

Substituting the right-hand side of the formula (3.11) into Eq. (3.9) one get the integral
form of Eq. (3.5) in the following form

x(t)−ω2α
(

Iα
a+ Iα

b−x(t)−
( t−a

b−a

)α

Iα
a+ Iα

b−x(t)
∣

∣

∣

t=b

)

=
( t−a

b−a

)α

(ξb−ξa− Iα
a+ Iα

b− f (t)|t=b)+ Iα
a+ Iα

b− f (t)+ξa . (3.12)

4 Numerical solution

In order to solve Eq. (3.12) we present a numerical scheme. We start with the introduction
of the homogeneous grid of nodes ti = a+i∆t (i= 0,1,··· ,n), with the constant time step
∆t= (b−a)/n, where n+1 is a number of nodes. For every grid node ti we obtain the
following equation

x(ti)−ω2α
(

Iα
a+ Iα

b−x(t)|t=ti
−
( ti−t0

tn−t0

)α

Iα
a+ Iα

b−x(t)|t=tn

)

=
( ti−t0

tn−t0

)α

(ξb−ξa− Iα
a+ Iα

b− f (t)|t=tn)+ Iα
a+ Iα

b− f (t)|t=ti
+ξa. (4.1)

We introduce notations xi = x(ti) and fi = f (ti) (the values of functions x(t) and f (t) at
the node ti). In our previous works [9,10,13] we have determined the discrete form of the
composition of operators. On the basis of our earlier results, we present the final discrete
forms (being the approximation of Iα

a+ Iα
b−x(t)|t=ti

and Iα
a+ Iα

b− f (t)|t=ti
, for i=0,1,··· ,n) as

Iα
a+ Iα

b−x(t)|t=ti
≈

n

∑
j=0

xjz
(α)
i,j and Iα

a+ Iα
b− f (t)|t=ti

≈
n

∑
j=0

f jz
(α)
i,j , (4.2)
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where z
(α)
i,j =∑

min(i,j)
k=0 u

(α)
i,k v

(α)
k,j and coefficients u

(α)
i,k and v

(α)
k,j look as follows:

u
(α)
i,k =

(∆t)α

Γ(α+2)

×























0, for i=0 and k=0,

(i−1)α+1−iα+1+iα(α+1), for i>0 and k=0,

(i−k+1)α+1−2(i−k)α+1+(i−k−1)α+1, for i>0 and 0<k< i,

1, for i>0 and k= i,

(4.3a)

v
(α)
k,j =

(∆t)α

Γ(α+2)

×























0, for k=n and j=n,

(n−k−1)α+1−(n−k)α+1+(n−k)α(α+1), for k<n and j=n,

(j−k+1)α+1−2(j−k)α+1+(j−k−1)α+1, for k<n and k< j<n,

1, for k<n and j=k.

(4.3b)

In order to compute values of operators (4.2) at every node ti, we need to use values
of functions at all nodes of the domain. From the computational point of view, it leads to
an increase calculation time of discrete values of function.

Now, we present the numerical scheme of the integral equation (3.12). If we substitute
(4.2) into (4.1), then the solution can be written as the system of n+1 linear equations:

xi−ω2α
( n

∑
j=0

xjz
(α)
i,j −

( i

n

)α n

∑
j=0

xjz
(α)
n,j

)

=
( i

n

)α[

ξb−ξa−
n

∑
j=0

f jz
(α)
n,j

]

+
n

∑
j=0

f jz
(α)
i,j +ξa, (4.4)

for i=0,··· ,n.

The Eqs. (4.4) can also be written in the matrix form

A·x=b, (4.5)

where x=[x0,x1,··· ,xn]T and the coefficients in matrices A and b look as follows:

Ai,j=δi,j−ω2α
(

zi,j
(α)−

( i

n

)α

z
(α)
n,j

)

, (4.6a)

bi=
( i

n

)α[

ξb−ξa−
n

∑
j=0

f jz
(α)
n,j

]

+
n

∑
j=0

f jz
(α)
i,j +ξa, (4.6b)

for i=0,··· ,n, j=0,··· ,n and

δi,j=

{

1, if i= j,

0, if i 6= j.
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5 Example of computations

We present the results of computations obtained by our numerical scheme to the con-
sidered fractional Euler-Lagrange equation (3.5). We use the Gaussian elimination algo-
rithm (the LUP decomposition method [30]) to solve the system of linear equation (4.5).
We present several examples of calculations for different values of parameters α, ω and
for different types of a function f (t). In all examples we assumed a= 0, b= 1. The time
domain t∈[0,1] has been divided into n=1000 subintervals. The values of the parameters
used in the solution of Eq. (3.5) are given in the plot legends.

The simulation results as the plots of x(t) are given below. In Figs. 1, 2 and 3, we
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Figure 1: Numerical solution of Eq. (3.5) for α ∈ {0.5,0.6,0.8,1}, ω ∈ {0,5,15}, f (t) = 0, a = 0, b = 1, and:
left-side: ξa=0, ξb =1, right-side: ξa=1, ξb=0.
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Figure 2: Numerical solution of Eq. (3.5) for α ∈ {0.5,0.6,0.8,1}, ω ∈ {0,5,15}, f (t) = 5, a = 0, b = 1, and:
left-side: ξa =0, ξb =1, right-side: ξa=1, ξb =0.

present results of the numerical solution of Eq. (3.5) for the fixed parameter ω and various
values of order α. Whereas, in Fig. 4, we show results for the fixed order α and different
values of the parameter ω. The behaviors of the solution of the fractional Euler-Lagrange
equation are different from various values of order α, various values of parameter ω, and
different forms of function f .

One can note that by fixing the parameter ω, and the function f and by changing the
order of the Caputo derivative α we observe that the amplitude of oscillations increases
when α decreases. On the other hand, for the fixed order α and for varying the param-
eter ω we can observe that the number of oscillations increases when the value of the
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Figure 3: Numerical solution of Eq. (3.5) for α∈{0.5,0.6,0.8,1}, ω ∈{0,5,15}, f (t)= 5sin(2πt), a= 0, b= 1,
and: left-side: ξa=0, ξb=1, right-side: ξa =1, ξb=0.

parameter ω increases. By changing only values of boundary conditions and simultane-
ously assuming that other parameters of the equation remaining unchanged, we obtain
not symmetrical solutions for α<1. Symmetry appears only when α=1.

The analysis of the numerical solutions of the fractional Euler-Lagrange equation
shows us that, taking into account the fractional order of the differential equation, it is
possible to have more flexible models which can describe the dynamical properties of the
real system in a better manner. Another important feature is that when we consider the
fractional order derivative in the model, we deal with the memory effect of the model
due to the kernel type in the fractional order operator.
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Figure 4: Numerical solution of Eq. (3.5) for α∈{0.5,0.6,0.8,1}, ω∈{5,7.5,10,12.5,15}, f (t)=10, a=0, b=1,
ξa=0, ξb =0.

5.1 Estimating the rate of convergence

Convergence analysis of the numerical scheme (4.4) is important from the computational
point of view, especially when an analytical solution of an equation with given param-
eters is not available. Here, we use the following formula (see Proposition [2]) for the
rate of convergence p = pi(∆t,α,ω) at nodes ti (i should be an even number), for fixed
parameters α, ω and variable values of ∆t

R
(∆t,α,ω)
i =

x
(∆t,α,ω)
i −x

(2∆t,α,ω)
i/2

x
(∆t/2,α,ω)
2i −x

(∆t,α,ω)
i

=2pi(∆t,α,ω), (5.1)

from which we determine

pi(∆t,α,ω)= log2

x
(∆t,α,ω)
i −x

(2∆t,α,ω)
i/2

x
(∆t/2,α,ω)
2i −x

(∆t,α,ω)
i

. (5.2)

In this order, we considered several cases for various parameters of the equation. We
assumed in all cases: ω = π/2, f (t) = 10, a = 0, b = 1. In Tables 1 and 2, we presented
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Table 1: Numerical values of x at nodes ti, i∈{n/4,n/2,3n/4} and rates of convergence p for parameters:
ω=π/2, f (t)=10, a=0, b=1, ξa=1 and ξb =0.

t=0.25 t=0.5 t=0.75
α ∆t=1/n x(t)≡xn/4 p x(t)≡xn/2 p x(t)≡x3n/4 p

0.5 1/100 5.751401814 – 6.000537754 – 4.053823043 –
1/200 5.742775279 0.93 5.987934744 0.96 4.040117802 0.98
1/400 5.738257173 0.97 5.981464417 0.98 4.033149420 0.99
1/800 5.735945160 0.98 5.978187337 0.99 4.029637505 0.99
1/1600 5.734775549 0.99 5.976538491 1.00 4.027875021 1.00
1/3200 5.734187270 1.00 5.975711560 1.00 4.026992274 1.00
1/6400 5.733892249 – 5.975297490 – 4.026550563 –

0.6 1/100 4.590617288 – 4.854742475 – 3.260517955 –
1/200 4.588340770 1.07 4.851133657 1.12 3.256339986 1.14
1/400 4.587255599 1.13 4.849469124 1.15 3.254449954 1.17
1/800 4.586758949 1.16 4.848720577 1.17 3.253608947 1.18
1/1600 4.586536532 1.18 4.848388617 1.18 3.253238194 1.19
1/3200 4.586438124 1.19 4.848242559 1.19 3.253075620 1.19
1/6400 4.586394883 – 4.848178587 – 3.253004551 –

0.8 1/100 3.065551324 – 3.330101157 – 2.243252313 –
1/200 3.065526370 0.13 3.329983689 1.06 2.243025485 1.34
1/400 3.065503628 1.03 3.329927196 1.29 2.242936187 1.43
1/800 3.065492480 1.28 3.329904101 1.40 2.242903087 1.48
1/1600 3.065487888 1.40 3.329895363 1.47 2.242891252 1.52
1/3200 3.065486143 1.46 3.329892200 1.51 2.242887119 1.54
1/6400 3.065485511 – 3.329891086 – 2.242885698 –

1 1/100 2.166255362 – 2.385747145 – 1.625061072 –
1/200 2.166313163 2.00 2.385825124 2.00 1.625117515 2.00
1/400 2.166327614 2.00 2.385844619 2.00 1.625131627 2.00
1/800 2.166331227 2.00 2.385849493 2.00 1.625135155 2.00
1/1600 2.166332130 2.00 2.385850712 2.00 1.625136037 2.00
1/3200 2.166332356 1.99 2.385851016 2.00 1.625136257 2.00
1/6400 2.166332412 – 2.385851093 – 1.625136313 –

numerical values at three selected nodes ti, i∈{n/4,n/2,3n/4} for α∈{0.5,0.6,0.8,1} and
different combinations of boundary conditions: ξa=1, ξb=0 (in Table 1) and ξa=0, ξb=1
(in Table 2). Also, in both tables, the rates of convergence are shown. On the basis of
analysis of values of p for increasing values of n, we can estimate the rate of convergence
as p=2α.

6 Conclusions

In this paper the non-homogenous fractional Euler-Lagrange equation with Caputo
derivatives of order α∈(0,1] was transformed into the integral form. Next, the numerical
scheme for the integral form of equation was presented. We presented several examples
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Table 2: Numerical values of x at nodes ti, i∈{n/4,n/2,3n/4} and rates of convergence p for parameters:
ω=π/2, f (t)=10, a=0, b=1, ξa=0 and ξb=1.

t=0.25 t=0.5 t=0.75
α ∆t=1/n x(t)≡xn/4 p x(t)≡xn/2 p x(t)≡x3n/4 p

0.5 1/100 5.680739373 – 6.527671682 – 4.990789515 –
1/200 5.670654549 0.94 6.512988479 0.97 4.974863504 0.98
1/400 5.665399277 0.97 6.505474754 0.98 4.966781748 0.99
1/800 5.662716828 0.98 6.501675683 0.99 4.962713041 1.00

1/1600 5.661361580 0.99 6.499765914 1.00 4.960672310 1.00
1/3200 5.660680392 1.00 6.498808580 1.00 4.959650525 1.00
1/6400 5.660338897 – 6.498329334 – 4.959139328 –

0.6 1/100 4.386745815 – 5.237761476 – 4.087854654 –
1/200 4.384011561 1.09 5.233464617 1.13 4.082913068 1.15
1/400 4.382722759 1.14 5.231496411 1.16 4.080686164 1.17
1/800 4.382136355 1.16 5.230614665 1.18 4.079697454 1.18

1/1600 4.381874585 1.18 5.230224478 1.19 4.079262151 1.19
1/3200 4.381758976 1.19 5.230053016 1.19 4.079071419 1.19
1/6400 4.381708229 – 5.229977970 – 4.078988078 –

0.8 1/100 2.665443020 – 3.495581958 – 2.907988670 –
1/200 2.665382445 0.79 3.495406301 1.20 2.907692864 1.38
1/400 2.665347375 1.19 3.495329637 1.35 2.907579569 1.45
1/800 2.665332015 1.35 3.495299645 1.44 2.907538243 1.50

1/1600 2.665325997 1.44 3.495288572 1.49 2.907523619 1.53
1/3200 2.665323774 1.49 3.495284623 1.52 2.907518546 1.55
1/6400 2.665322981 – 3.495283247 – 2.907516810 –

1 1/100 1.625061072 – 2.385747145 – 2.166255362 –
1/200 1.625117515 2.00 2.385825124 2.00 2.166313163 2.00
1/400 1.625131627 2.00 2.385844619 2.00 2.166327614 2.00
1/800 1.625135155 2.00 2.385849493 2.00 2.166331227 2.00

1/1600 1.625136037 2.00 2.385850712 2.00 2.166332130 2.00
1/3200 1.625136257 1.99 2.385851016 2.00 2.166332356 2.00
1/6400 1.625136313 – 2.385851093 – 2.166332412 –

of numerical solutions of considered equation for different values of parameters α, ω,
different values of boundary conditions, and different functions f (t). One can note that
if the value of α decreases, then values of the amplitude of oscillations increase, and if
the value of ω increases, then the oscillation frequency also increases. The analytical so-
lution of this type of fractional differential equation (except for α= 1) is not yet known.
Our proposed numerical method of solutions for α→ 1 is consistent with the analytical
solution for α=1.
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