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Abstract. In this paper, He’s homotopy perturbation method is utilized to obtain
the analytical solution for the nonlinear natural frequency of functionally graded
nanobeam. The functionally graded nanobeam is modeled using the Eringen’s non-
local elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlin-
earity relation. The boundary conditions of problem are considered with both sides
simply supported and simply supported-clamped. The Galerkin’s method is utilized
to decrease the nonlinear partial differential equation to a nonlinear second-order ordi-
nary differential equation. Based on numerical results, homotopy perturbation method
convergence is illustrated. According to obtained results, it is seen that the second term
of the homotopy perturbation method gives extremely precise solution.
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1 Introduction

Functionally graded (FG) materials are a new class of composite materials. These com-
posite include of two or more materials, in which the material properties change smoothly
from one interface to the other. During the past years, FG materials have a great practical
importance because of their wide applications in many industrial and engineering fields.
Recently, the application of FG materials has widely been developed in nano-structures
such as nano-electromechanical systems, spacecraft heat shields, thin films in the form of
shape memory alloys, plasma coatings for fusion reactors, and atomic force microscopes,
jet fighter structures to obtain high sensitivity and desired function.
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Due to the presence of small-scale effects at the nanoscale, the classical continuum
theories fail to accurately predict the mechanical behavior of nanostructures [1]. So, non-
local continuum theories which contain additional material length scale parameter have
been proposed to predict the accurate behavior of nano-structures. One widely promis-
ing size-dependent continuum theory is the nonlocal elasticity theory pioneered by Erin-
gen [2].

The approximate analytical methods have their own restrictions. For example, Per-
turbation method depends on small parameter and choosing unsuitable small parameter
can be lead to wrong solution [3]. Homotopy is an important part of topology [4] and it
can convert any nonlinear problem to a finite linear problems and it doesn’t depend on
small parameter [5, 6]. Lia [7] based on homotopy proposed homotopy analysis method
(HAM). The homotopy perturbation method was first proposed by Ji-Huan He [8] in 1999
for solving differential and integral equations. Homotopy perturbation method (HPM)
is a combination of homotopy and classic perturbation techniques. The HPM has a sig-
nificant advantage that it provides an analytical approximate solution to a wide range of
nonlinear problems in applied sciences. HPM is a special case of HAM that due to its
easier algorithm, it is used in this paper.

In practical, the governing differential equations of many vibrational systems are non-
linear such as satellites, helicopter blades, airplane wings, towers. They have no exact
solution generally. Consequently, numerical or approximate analytical methods are used
to investigate behavior of nonlinear systems. Numerical method like boundary element
and finite element methods don’t give parametric solutions. Hence, they have no ap-
plication to study the qualitative and global response of the vibrational systems. Some
approaches such as perturbation methods can eliminate shortages of numerical methods.
There are some approaches to solve the governing equations of the nonlinear vibrations
such as homotopy and perturbation methods and combination of them. We cite some of
the papers that were used these methods.

Foda [9] and Ramezani et al. [10] used multiple scales to investigate the nonlinear
vibration of the beam by considering shear deformation and rotary inertia effects for
both sides simply supported (SS) and clamped-clamped, respectively. Nazemnezhad et
al. [11] utilized the same method to investigate the nonlinear natural frequency of the
FG nanobeam with considering small scale. The perturbation method was used to study
the nonlinear vibrations of beams with different boundary conditions by Evensen [12].
Pirbodaghi et al. [13] studied nonlinear vibrational behavior of Euler Bernoulli beams
subjected to axial loads using HAM. Akbarzade et al. [14] presented a new technique
couples HPM with variational method for solving approximate analytical higher order
solutions for strong nonlinear Duffing oscillators with cubic-quintic nonlinear restoring
force. Bayat et al. [15] analyzed the high amplitude free vibrations of the tapered beams
by using Max-Min Approach (MMA) and HPM. Ahmadian et al. [16] utilized homotopy
and modified Lindstedt-Poincare methods to study the nonlinear free vibrations of the
beams subjected to axial loads. Moeenfard et al. [17] used the same method to study the
nonlinear natural frequencies of the pre-stretched microbeam considering the effects of
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rotary inertia and shear deformation. Poorjamshidian et al. [18] employed combination
of homotopy and traditional perturbation methods in investigation of the nonlinear vi-
bration in large amplitude for SS beam with a constant velocity carrying a moving mass.
Yazdi [19] studied the nonlinear natural frequency of doubly curved cross-ply shells with
SS boundary conditions by using HPM. Using HPM, Sedighi et al. [20] studied transver-
sal oscillation of quintic nonlinear beam. Sedighi et al. [21] presented homotopy pertur-
bation method with an auxiliary term (HPMAT) and they used HPMAT to study buck-
led beam nonlinear vibration, uniform beam carrying an intermediate lumped mass and
transversely vibrating quintic nonlinear beam.

In this work, free vibration of FG nanobeam is investigated in the context of the
nonlocal continuum theory of Eringen and by employing Von Karman type nonlinear-
ity within frame work of Euler-Bernoulli beam theory. An approximation based on the
Galerkin method is used to reduce the partial differential equation (PDE) of motion and
associated boundary conditions to a system of nonlinear second-order ordinary differ-
ential equation (ODE). The HPM is used to obtain approximate analytical solutions for
nonlinear natural frequency.

2 Governing equation

Utilizing the nonlocal elasticity within the frame work of Euler-Bernoulli beam theory
(EBT) with von Karman type nonlinearity the nonlocal nonlinear free vibration is gov-
erned by the following nonlinear PDE [11]
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It is assumed that material properties of the nanobeam, such as Young’s modulus E(z)
and mass density ρ(z), vary continuously through the beam thickness according to power
law distribution form, which can be described by

E(z)=(E1−E2)
(2z+h

2h

)m
+E2, (2.3a)

ρ(z)=(ρ1−ρ2)
(2z+h

2h

)m
+ρ2. (2.3b)
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Where the subscripts 1 and 2 denote the top surface and the bottom surface, respectively,
and a gradient index m determines the variation profile of material properties across the
FG nanobeam thickness. In this equation, L is the length, h is thickness, b is width of the
FG nanobeam and µ is the small-scale parameter includes influence of length scale.

3 Problem solution

Upon employing the dimensionless quantities as follows:

t=
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Tn
, (3.1a)

x=
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L
, (3.1b)
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. (3.1c)
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Tn =

√

√

√

√

I1L4

(

bC1− bB2
1

A1

)

. (3.2)

The governing equation of motion of the FG beam can be expressed as the following
normalized form:
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Considering the first mode shape of linear vibration, it is generally the dominant mode
shape of the vibration, the solution of Eq. (3.3) can be assumed as:

W(x,t)=φ(x)·q(t). (3.4)

Where φ(x) is the normalized form of the first linear mode shape and can be stated as

φ(x)=
Q(x)

max{Q(x)} . (3.5)
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Where Q(x) is defined as follows:

SS : Q(x)=sin(nπx). (3.6)

Simply supported-clamped (SC):

Q(x)=
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The parameters ζ1 and ζ2 can be determined from the eigenvalue equation

ζ2 tan(ζ1)−ζ1 tanh(ζ2)=0.

Note that φ(x) satisfies the geometric and forcing boundary conditions of the beam,
which can be described as
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SC :
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The initial conditions are assumed as:

W(x,0)=
qmax

r
φ(x), (3.9a)

∂W

∂t
(x,0)=0. (3.9b)

Where r and qmax are gyration radius and vibration amplitude, respectively.
Substituting Eq. (3.4) in to Eq. (3.3) and using Galerkin’s procedure and integrating

the residual by weight φ(x) over the problem domain, the nonlinear ordinary differential
for the first vibrational mode can be derived as

q̈+α1q+α2q2+α3q3=0. (3.10)



M. Ghadiri and M. Safi / Adv. Appl. Math. Mech., 9 (2017), pp. 144-156 149

Where
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In Eqs. (3.11a) to (3.11c), Fi, 1≤ i≤5 are described as follows:

F1=
∫ 1

0
φ2dx, (3.12a)
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∫ 1

0
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Homotopy perturbation is used to solve Eq. (3.10). The initial conditions (3.9a) and (3.9b)
can be translated to the following initial condition for q(t)

q(0)=
qmax

r
, (3.13a)

q̇(0)=0. (3.13b)

The homotopy form is constructed as follows:

(1−P)(q̈+α1q)+P(q̈+α1q+α2q2+α3q3)=0, (3.14)

Eq. (3.14) can be simplified as

q̈+α1q+P(α2q2+α3q3)=0. (3.15)

From Eq. (3.15), linear frequency of the FG beam are calculated as

ω2
10=α1. (3.16)

Using the modified Lindstedt-Poincare method [22,23], q(t), ω102 are perturbed utilizing
homotopy parameter P

q(t)=q0(t)+Pq1(t)+O(P2), (3.17a)

ω2
10=ω2

1+Pω11+O(P2). (3.17b)
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Substituting Eqs. (3.17a) and (3.17b) into Eq. (3.15) and setting the coefficients of each
power of P to zero, it yields the following set of equations:

q̈0+ω2
1q0=0, (3.18a)

q̈1+ω2
1q1+ω11q0+α2q2

0+α3q3
0=0. (3.18b)

Initial conditions (3.13a) and (3.13b) are converted as

q0(0)=
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r
, (3.19a)

q̇0(0)=0, (3.19b)

q1(0)=0, (3.19c)

q̇1(0)=0. (3.19d)

Solving Eq. (3.18a) results

q0(t)=Acosω1t+Bsinω1t. (3.20)

Where A=qmax/r, B=0.
Substituting q0 from Eq. (3.20) into Eq. (3.18b) and simplification leads to
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Avoiding secular term in Eq. (3.21) gives

ω11
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r
+0.75α3

( qmax

r

)3
=0. (3.22)

Letting P=1 in Eq. (3.17b), we have

α1=ω2
1+ω11. (3.23)

Substituting ω11 from Eq. (3.22) into Eq. (3.23), we have nonlocal nonlinear natural fre-
quency of FG beam as

ω2
1 =α1+0.75α3

( qmax

r

)2
. (3.24)

4 Results

In order to ensure of the present results, three comparison studies are conducted for this
purpose. Consider a SS homogenous nanobeam in the presence of the nonlocal effect.
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Comparison of the first linear nondomensional natural frequency between present
and published work is illustrated in Table 1 for a SS nonlocal Euler-Bernoulli nanobeam
with the parameters: L=10nm, E=30106Pa, ρ=1Kg/m3. It is noted that obtained results
have identical agreement with the analytical results given by [11, 24] for various small-
scale parameters.

To illustrating convergence of HPM, nonlinear frequency to classical linear frequency
ratios (ωnl/ωl) for the present HPM solution with various order (P1,P2,P3), multiple
scale method [11], exact solution [25] and the Ritz-Galerkin method [26] with L= 20nm
and h=0.1L, are given in Table 2. According to Table 2 speed of convergence of the HPM
is very fast, and the accuracy of the method increases with increasing order of HPM
solution and also a good agreement with the [11, 25, 26] and present results is observed.
It is interesting to note that the results obtained by first order of present method exactly
match with that of the solution obtained by Singh et al. using Ritz-Galerkin method [26]
and second order of present result are match with exact solution [25].

In the next comparison study a FG nanobeam with squared cross-section (b=h=0.1L)
composed of Aluminum (Al) and Silicon (Si) is considered as comparative study between
the present HPM solution and [11] that the top surface (z=h/2) and the bottom surface
(z=−h/2) of the FG nanobeam are silicon-rich and Aluminum-rich, respectively, and its
mixture changes through the thickness.

The bulk elastic properties of aluminum with crystallographic direction of (111) and
silicon with crystallographic direction of (100) are as follows:

{

Silicon [27] : E1=210GPa, ν1=0.24, ρ1=2370Kg/m3,

Aluminum [28] : E2=70GPa, ν2 =0.3, ρ2 =2700Kg/m3.

To illustrate nonlocal effect on natural frequency we defined linear and nonlinear fre-

Table 1: Comparative study for the first linear nondimensional natural frequency of a SS isotropic nanobeam.

µ (nm2) Present [11] [24]
0 9.8696 9.8696 9.8696
1 9.4159 9.41588 9.4159
2 9.0195 9.01948 9.0195
3 8.6693 8.66927 8.6693
4 8.3569 8.35692 8.3569

Table 2: Convergence illustration and comparative study for the nonlinear frequency ratio (ωnl/ωl) of a SS
isotropic nanobeam.

qmax/r P1 P2 P3 [11] [25] [26]
1 1.0897 1.0892 1.0892 1.0937 1.0892 1.0897
2 1.3229 1.3178 1.3178 1.3750 1.3178 1.3229
3 1.6394 1.6256 1.6256 1.8438 1.6257 1.6394
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Table 3: Frequency ratios of FG nanobeam for boundary condition SC and different amplitude ratios, gradient
index, nonlocal parameter values, nanobeam length.

[11] HPM
qmax/r m L (nm) µ (nm2) µ (nm2)

2 4 2 4
0 3 10 0.9013 0.8267 0.9013 0.8267

20 0.9724 0.9469 0.9724 0.9469
30 0.9874 0.9753 0.9874 0.9753

1 0 10 0.9202 0.8625 0.9172 0.8556
20 0.9774 0.9567 0.9767 9553
30 0.9897 0.9798 0.9894 0.9792

1 10 0.9205 0.8625 0.9185 0.8579
20 0.9775 0.9569 0.9771 0.9560
30 0.9898 0.9799 0.9896 0.9795

2 10 0.9192 0.8598 0.9178 0.8566
20 0.9772 0.9562 0.9769 0.9556
30 0.9896 0.9796 0.9895 0.9793

3 10 0.9209 0.8632 0.9170 0.8552
20 0.9776 0.9571 0.9767 0.9552
30 0.9898 0.9800 0.9894 0.9791

2 0 10 0.9676 0.9519 0.9512 0.9158
20 0.9899 0.9812 0.9861 0.9735
30 0.9953 0.9909 0.9937 0.9876

1 10 0.9680 0.9509 0.9543 0.9212
20 0.9901 0.9816 0.9870 0.9752
30 0.9954 0.9912 0.9941 0.9884

2 10 0.9639 0.9426 0.9526 0.9183
20 0.9891 0.9796 0.9865 0.9742
30 0.9950 0.9903 0.9939 0.9880

3 10 0.9700 0.9594 0.9507 0.9149
20 0.9907 0.9827 0.9860 0.9732
30 0.9957 0.9916 0.9936 0.9875

quency ratio as

Nonlinear frequency ratio=
(Nonlocal nonlinear natural frequency)

(Classical nonlinear natural frequency)
,

Linear frequency ratio=
(Nonlocal linear natural frequency)

(Classical linear natural frequency)
.

Table 3 and Table 4 contain a comparison between the present results with [11] for non-
linear frequency ratio and linear frequency ratio for various small scale values (µ =
2,4nm2) and different nanobeam length (L = 10,20,30nm) and different gradient index
when boundary conditions are both SC and SS, respectively.

Figs. 1(a) and (b) compare variations of the first nonlinear frequency ratios on the
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Figure 1: Variations of the first nonlinear frequency ratios on the gradient index, various amplitude ratios
(qmax/r=1,2), and different small scale values (µ=2,4nm2) when the length of nanobeam is L=20nm, (a) SS
boundary conditions (b) SC boundary conditions.
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Figure 2: Variations of first frequency ratio on the amplitude ratio for different small scale values (µ=2,4nm2)
with L=20nm and m=3.

gradient index between present study and [11] at selected amplitude ratios (qmax/r=1,2),
nonlocal parameters (µ= 2,4nm2), FG nanobeam length L= 20nm and when boundary
conditions are both SS and SC respectively.

Fig. 2 displays variations of the first frequency ratios on the amplitude ratio for differ-
ent values of small scale (µ=2,4nm2) and both SS and SC boundary conditions when the
values of the FG nanobeam length L=20nm and the gradient index m=3. Some selected
data from Fig. 2 are also listed in Table 5.

5 Conclusions

The aim of this paper is to investigate the application of homotopy perturbation method
(HPM) in predicting nonlocal nonlinear natural frequency of a functionally graded (FG)
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Table 4: Frequency ratios of FG nanobeam for boundary condition SS and different amplitude ratios, gradient
index, nonlocal parameter values, nanobeam length.

[11] HPM
qmax/r m L (nm) µ (nm2) µ (nm2)

2 4 2 4
0 3 10 0.9139 0.8467 0.9139 0.8467

20 0.9762 0.9540 0.9762 0.9540
30 0.9892 0.9788 0.9892 0.9788

1 0 10 0.9293 0.8754 0.9280 0.8727
20 0.9803 0.9621 0.9800 0.9614
30 0.9911 0.9824 0.9909 0.9821

1 10 0.9247 0.8659 0.9291 0.8747
20 0.9792 0.9599 0.9803 0.9620
30 0.9906 0.9815 0.9911 0.9824

2 10 0.9221 0.8607 0.9285 0.8736
20 0.9786 0.9585 0.9801 0.9617
30 0.9903 0.9809 0.9910 0.9823

3 10 0.9221 0.8608 0.9278 0.8724
20 0.9785 0.9585 0.9800 0.9614
30 0.9903 0.9809 0.9909 0.9821

2 0 10 0.9631 0.9379 0.9517 0.9156
20 0.9893 0.9797 0.9865 0.9740
30 0.9551 0.9905 0.9938 0.9879

1 10 0.9491 0.9087 0.9536 0.9189
20 0.9860 0.9729 0.9870 0.9750
30 0.9936 0.9875 0.9941 0.9884

2 10 0.9412 0.8929 0.9526 0.9171
20 0.9840 0.9689 0.9867 0.9745
30 0.9928 0.9857 0.9940 0.9881

3 10 0.9413 0.8936 0.9515 0.9151
20 0.9840 0.9689 0.9864 0.9738
30 0.9927 0.9857 0.9938 0.9879

Table 5: Frequency ratios of SS and SC FG nanobeam with L=20nm and m=3.

Boundary µ qmax/r

conditions (nm2) -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

SS 2 0.9864 0.9833 0.9800 0.9773 0.9762 0.9773 0.9800 0.9833 0.9864
4 0.9738 0.9678 0.9614 0.9561 0.9540 0.9561 0.9614 0.9678 0.9738

SC 2 0.9860 0.9811 0.9767 0.9735 0.9724 0.9735 0.9767 0.9811 0.9860
4 0.9732 0.9637 0.9552 0.9491 0.9469 0.9491 0.9552 0.9637 0.9732

nanobeam. The Galerkin method is employed to reduce the nonlinear partial differential
(PDE) equations to a nonlinear second-order ordinary differential equation (ODE). The
HPM is used to analyze the present nonlinear ordinary equation. According to obtained
results, it is seen that the HPM convergence speed is very fast and has more accurate than
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traditional perturbation method.
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