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Abstract. In this paper, we extend using the Runge-Kutta discontinuous Galerkin
method together with the front tracking method to simulate the compressible two-
medium flow on unstructured meshes. A Riemann problem is constructed in the nor-
mal direction in the material interfacial region, with the goal of obtaining a compact,
robust and efficient procedure to track the explicit sharp interface precisely. Extensive
numerical tests including the gas-gas and gas-liquid flows are provided to show the
proposed methodologies possess the capability of enhancing the resolutions nearby
the discontinuities inside of the single medium flow and the interfacial vicinities of the
two-medium flow in many occasions.
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1 Introduction

The algorithms for simulating the compressible two-medium flow are usually consisted
of two parts: one is to solve the single-medium flow precisely and the other is to treat
the material interface accurately. On the one hand, in recent years, the discontinu-
ous Galerkin (DG) method has been a research hotspot in the simulations of the single
medium flow. The original DG method was introduced by Reed and Hill [27] for solv-
ing the linear equations in the framework of neutron transport. A major development of
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the DG method was carried out by Cockburn and Shu in a series of papers [5–9]. They
employed the total variation diminishing (TVD) high order Runge-Kutta time discretiza-
tion [29] and DG discretization in space with exact or approximate Riemann solvers as in-
terface fluxes and a total variation bounded (TVB) limiter [28] to achieve non-oscillatory
property for strong shocks. These methods are termed as Runge-Kutta discontinuous
Galerkin (RKDG) methods. On the other hand, a relatively dominant part is the treatment
of the moving material interface and its vicinity for simulating compressible two-medium
flow. Early algorithms have treated the material interfaces with the γ-based model [17],
the mass fraction model [1,18] or a level set function [21,23]. These algorithms, based on
shock capturing methods, always yield a numerical diffusion of contact discontinuities
over several nodes. However, for the front tracking method [3,12–14], fluid interfaces are
explicitly tracked by connected marker points and a sharp interface boundary is main-
tained during the computation. The ghost fluid method (GFM) introduced by Fedkiw et
al. [2,10,11] presents a fairly simple and flexible way to treat multi-medium flows. How-
ever, when the pressure or the velocity experiences a large gradient across the interface,
the GFM may cause numerical inaccuracy. Indeed, the ghost fluid states should consider
the influence of both wave interaction and material properties on the interfacial evolu-
tion. This leads to the proposal of improved versions of GFM, for example, the real ghost
fluid method (RGFM) [33]. The RGFM predicts the flow states for the real fluid nodes
just next to the interface because wave interaction at the interface can propagate upward
and downward simultaneously.

So far, there is less work related to a DG method coupled to the GFM [25,34] technique
for two-medium flow simulations and the corresponding method to track the interface
is almost on structured meshes. In this paper, our major intention is to investigate the
performance of the RKDG method combined with the front tracking method to solve
for the compressible two-medium flow on unstructured meshes. The RGFM is used to
define the interface boundary conditions. Unlike interpolating from the fixed grids to
obtain the interface velocity [32], we propose the method based on the Riemann problem
constructed in the normal direction of the interface to determine the interface motion, and
the corresponding Riemann solutions are also used directly to update the real fluid states
in the RGFM. In the earlier works of RGFM [33] based on the uniform structured meshes,
the cell center states were usually used as the initial conditions to the Riemann problem.
However, it may cause some inaccuracies for the unstructured meshes since the mesh
size may vary acutely near the material interface. Due to the explicit tracked interface in
this paper, we can easily select the initial conditions to the Riemann problem in the same
distances in the normal direction of the interface so that the geometrical influences of the
triangular unstructured meshes are avoided.

Except the better adaptability with the complex boundary of the unstructured
meshes, the main purposes to use the RKDG method in the simulation of the two-
medium flow are in the following: firstly, the higher order accuracy can be obtained
in smooth regions easily. Secondly, the initial conditions to the Riemann problem are
obtained directly from the solution polynomials in the RKDG method, in contrast to the
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interpolation used in the finite volume method. Thirdly, the normal vectors and the ghost
fluid states on the ghost cells far from the interface are less accuracy in the front tracking
method. However, the good compactness of the RKDG method makes it flexible in deal-
ing with material interface since we only need to consider the ghost cells which have the
common edge with the real fluid cells.

The paper is organized as follows. In Section 2 and Section 3, we describe the RKDG
method with front tracking method for solving the two-medium flow on unstructured
meshes and give the algorithms of advancing the material interface in detail. Extensive
numerical examples are presented in Section 4 to verify the effectiveness of these proce-
dures. Concluding remarks are then given in Section 5.

2 Equations and numerical method

2.1 Governing equations

We consider the two dimensional hyperbolic conservation laws

∂U⃗
∂t

+∇· F⃗(U⃗)=0, (2.1)

where U⃗=[ρ,ρu,ρv,E]T, F⃗(U⃗)=[F⃗1(U⃗), F⃗2(U⃗)], F⃗1(U⃗)=[ρu,ρu2+p,ρuv,(E+p)u]T, F⃗2(U⃗)=

[ρv,ρuv,ρv2+p,(E+p)v]T. Here, ρ is the density, u and v are the velocities of different
directions, p is the pressure, E is the total energy per unit volume. The total energy is
given as

E=ρe+ρ(u2+v2)/2, (2.2)

where e is the internal energy per unit mass.
For closure of the system, the equation of state (EOS) is required. The EOS for gas or

liquid medium can be written uniformly as

p=(γ−1)ρe−γB, (2.3)

where γ and B are treated as fluid constants, and will be specified in Section 4.

2.2 The implementation of the RKDG method

In this section, we will briefly describe the RKDG method on unstructured meshes [9].
The coupling with the interface treatment will be presented in the next section.

Consider the triangular cell K0, replace the exact solution U⃗ by the numerical solution
U⃗h, the numerical solution as well as the test function space is given by Vk

h = {p : p|K0 ∈
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Pk(K0)}, where Pk(K0) is the space of polynomials with degree no greater than k on the
cell K0. We use the expression for the numerical solution U⃗h(x,y,t) inside the cell K0,

U⃗h
K0
(x,y,t)=

N

∑
i=1

U⃗(i)
K0
(t)ϕi(x,y) for (x,y)∈K0. (2.4)

For the P1 case, the degrees of freedom U⃗(i)
K0
(t) are the values of the numerical solution at

the midpoints of edges, and the basis function ϕi(x,y) is the linear function which takes
the value 1 at the midpoint of the i-th edge, and the value 0 at the midpoints of the other
two edges. For the P2 case, the degrees of freedom U⃗(i)

K0
(t) are the values of the numerical

solution at the three midpoints of edges and the three vertices. The basis function ϕi(x,y)
is the quadratic function which takes the value 1 at the point i of the six points mentioned
above, and the value 0 at the other five points.

By multiplying (2.1) with the test function, integrating over the cell K0 by parts, and
substituting (2.4) into (2.1), we can obtain the governing Galerkin weak form equations
for the degrees of freedom as

M
dUK0(t)

dt
=− ∑

e∈∂K0

∫
e

−→
F (

−→
U

h
(x,y,t))·−→n e,K0 ϕ(x,y)dΓ

+
∫

K0

−→
F (

−→
U

h
(x,y,t))·gradϕ(x,y)dxdy, (2.5)

where
MN×N =

(∫
K0

ϕi(x,y)ϕj(x,y)dxdy
)

ij

is the mass matrix (see [9] for details), UK0(t) = [
−→
U (1)

K0
,
−→
U (2)

K0
,··· ,−→U (N)

K0
]
T

, ϕ(x,y) =

[ϕ1(x,y),ϕ2(x,y),··· ,ϕN(x,y)]T and −→n e,K0 is the outward unit normal to edge e of cell K0.
The integrals are approximated by a Gaussian quadrature formula with sufficient accu-
racy as

∫
e
F⃗(U⃗h(x,y,t))·−→n e,K0 ϕ(x,y)dΓ≈

L

∑
l=1

ωl F⃗(U⃗h(xel ,yel ,t))·−→n e,K0 ϕ(xel ,yel)|e|, (2.6a)

∫
K0

F⃗(U⃗h(x,y,t))·gradϕ(x,y)dxdy≈
S

∑
s=1

ω̄s F⃗(U⃗h(xK0s,yK0s,t))·gradϕ(xK0s,yK0s)|K0|. (2.6b)

See [5,9] for details of the numerical quadrature formulas. The flux F⃗(U⃗h(xel ,yel ,t))·−→n e,K0

in the boundary integral is replaced by the simple Lax-Friedrichs flux

F⃗(U⃗h(xel ,yel ,t))·−→n e,K0 ≈
1
2
[(F⃗(U⃗+(xel ,yel ,t))+ F⃗(U⃗−(xel ,yel ,t)))·−→n e,K0

−α(U⃗+(xel ,yel ,t)−U⃗−(xel ,yel ,t))], (2.7)
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Figure 1: Illustration of slope limiter.

where α is the biggest absolute value of the eigenvalues of the Jacobian matrix in the
−→n e,K0 direction, and U⃗±(xel ,yel ,t) refer to the values of U⃗h in the neighboring cell and in
the current cell K0, respectively.

The semi-discrete scheme (2.5) can be generalized as
−→
U t =L(

−→
U ), (2.8)

which is discretized by a third-order TVD Runge-Kutta time discretization [29]

−→
U

(1)
=
−→
U

n
+∆tL(

−→
U

n
), (2.9a)

−→
U

(2)
=

3
4
−→
U

n
+

1
4
−→
U

(1)
+

1
4

∆tL(
−→
U

(1)
), (2.9b)

−→
U

n+1
=

1
3
−→
U

n
+

2
3
−→
U

(2)
+

2
3

∆tL(
−→
U

(2)
). (2.9c)

If there are strong discontinuities in solution, spurious oscillations may occur. Thus, a
local slope limiter is used to overcome such difficulty. Consider the triangles in Fig. 1,
where mi is the midpoint of the edges on the boundary of K0 for i=1,2,3, and bi denotes
the barycenter of the triangles Ki for i=0,1,2,3. Since we have

xm1−xb0 =α1(xb1−xb0)+α2(xb2−xb0),
ym1−yb0 =α1(yb1−yb0)+α2(yb2−yb0),

for nonnegative coefficients α1, α2 and

UKi =
1
Ki

∫
Ki

−→
U

h
dxdy, i=0,1,2,3,

we denote

U
h
(m1,K0)≡

−→
U h

K0
(m1)−UK0 , (2.10a)

∆U(m1,K0)≡α1(UK1−UK0)+α2(UK2−UK0). (2.10b)
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It is similar for the other two midpoints of the cell K0. Consider a piecewise linear function
U⃗h,

U⃗h
K0
(x,y,t)=

3

∑
i=1

U⃗h
K0
(mi)ϕi(x,y)=UK0+

3

∑
i=1

U
h
(mi,K0)ϕi(x,y) for (x,y)∈K0, (2.11)

we first compute the quantities:

∆i =m(U
h
(mi,K0),ν∆U(mi,K0)), (2.12)

here we take ν=1.5 and m is a modified minmod function

m(a1,a2)=


a1, if |a1|≤M|K0|,
s·min(|a1|,|a2|), if s= sign(a1)= sign(a2),
0, otherwise,

(2.13)

where M is the TVB limiter constant. Then if ∑3
i=1 ∆i =0, we simply set

U⃗h
K0
(x,y,t)=UK0+

3

∑
i=1

∆iϕi(x,y). (2.14)

If ∑3
i=1 ∆i ̸=0, we compute

pos=
3

∑
i=1

max(0,∆i), neg=
3

∑
i=1

max(0,−∆i),

θ+=min
(

1,
neg
pos

)
, θ−=min

(
1,

pos
neg

)
,

then

U⃗h
K0
(x,y,t)=UK0+

3

∑
i=1

∆iϕi(x,y),

where

∆i = θ+max(0,∆i)−θ−max(0,−∆i). (2.15)

For the system cases, the limiter is always used with a local characteristic field decompo-
sition in the

−→
b0bi, (i=1,2,3) direction. See, e.g., [9] for details.

3 The interface treatment

In this section we describe the method to track the interface and determine the ghost fluid
region in detail. Moreover, the RGFM [33] is described here briefly when coupled to the
RKDG method.
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3.1 Tracking fluid interface

As indicated in Fig. 2, medium 1 and medium 2 are separated by the fluid interface at time
tn. The marker points are intersections of the interface with the grid lines. N⃗P=(NPx,NPy)
is the unit normal vector of marker point P(xP,yP) and its orientation is always from
medium 1 to medium 2. Point A(xA,yA) and point B(xB,yB) are in different mediums,
obtained by the same distance h from the marker point P (h can be the maximum circum-
scribed diameter of triangular meshes)

xA = xP+h·NPx,yA =yP+h·NPy,
xB = xP−h·NPx,yB =yP−h·NPy.

The state vectors at point A and point B can be obtained directly from the solution poly-
nomials in the RKDG method

U⃗A =
N

∑
i=1

U⃗(i)
KA
(t)ϕi(xA,yA), (3.1a)

U⃗B =
N

∑
i=1

U⃗(i)
KB
(t)ϕi(xB,yB), (3.1b)

where KA and KB are the grid cells containing point A and point B. The density, the
normal velocity and the pressure at point A and point B are calculated, denoted by

−→
W A=

[ρA,uA
N ,pA]

T and
−→
W B = [ρB,uB

N ,pB]
T. Therefore we can construct a Riemann problem in

the normal direction of marker point P with the initial conditions

−→
W 0=

{ −→
W B,
−→
W A.

(3.2)

An approximate Riemann problem solver (ARPS) based on a two shock structure [19] is
applied to solve this Riemann problem. The Riemann solutions are denoted by

−→
W P =

[ρI
L,ρI

R,uI
N ,pI ]

T, where the superscript ”I” refers to the interface, and the subscript ”L”
and ”R” denote the left and right side of the interface, respectively. As the tangential
velocity of marker point P is not determined from the Riemann problem, the method
proposed by Cocchi et al. [4] is used

vI
T =

{
vB

T, if uI
N ≥0,

vA
T , otherwise,

(3.3)

where uI
N and vI

T are the normal and tangential velocities of marker point P, vA
T and vB

T
are the tangential velocities of point A and point B. Once the velocity of each marker
point has been solved, its new position is updated simultaneously with the governing
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Figure 2: Construction of the Riemann problem at the marker point P.

equations by the same time integration scheme

x⃗(1)f = x⃗n
f +∆t·−→v f (x⃗n

f ), (3.4a)

x⃗(2)f =
3
4

x⃗n
f +

1
4

x⃗(1)f +
1
4

∆t·−→v f (x⃗(1)f ), (3.4b)

x⃗n+1
f =

1
3

x⃗n
f +

2
3

x⃗(2)f +
2
3

∆t·−→v f (x⃗(2)f ), (3.4c)

where x⃗n
f and x⃗n+1

f are the positions of marker points at time tn and tn+1, respectively. v⃗ f

is the interface velocity vector, and ∆t is the time step.
Reconstructing the interface on triangular meshes is similar with uniform structured

meshes. The robust grid based method is used here: we connect the marker points at
the new positions and compute the intersections with the grid lines. These intersections
are the new marker points at time tn+1 after reordering them. More details about recon-
structing the interface methodology, see, e.g., [13].

3.2 Determining the ghost fluid region and normal vector

Since the Euler equations are solved in each fluid domain independently, it is required
that we be able to identify the ghost fluid region near the interface. In many papers, this is
accomplished by using the Heaviside function and solving a Poisson equation [15,31]. As
is known, the front tracking method, compared to the level set method, should be more
dependent on the interface geometrical information. Here we use a simpler method to
determine the ghost fluid region. Consider the grid point C in Fig. 2. The normal vector of
each marker point is always set to direct from medium 1 to medium 2. We first calculate
the distance between the grid point C and the marker points nearby. The marker point P
is selected if the minimum distance is obtained there. Next, we calculate the sign of the
inner-product −→r PC ·

−→
N P, where −→r PC is the position vector directing from point P to point

C. If the sign is positive, then the grid point C is in the ghost fluid region of medium 1.
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Otherwise, it is in the ghost fluid region of medium 2. It is similar for other grid points
near the interface. The normal vector on the fixed grid cells near the interface is solved
by area-weighting [32]. The normal vector of the grid cells far away from the interface
need not to be computed due to the good compactness of the RKDG method.

3.3 Real ghost fluid method

In the RGFM [33], a Riemann problem is defined at the interface to update the flow states
at the real fluid cells adjacent to the interface and the ghost fluid states are extrapolated
by solving an advection equation. However, since the Riemann problem has been con-
structed when tracking fluid interface in Section 3.1, the Riemann solutions can be used
directly. As indicated in Fig. 2, points R, P, Q are the marker points near the grid point
C.

−→
N P is the normal vector of marker point P and

−→
N C is the normal vector of grid cell

C. The flow states at the cell C can be updated by the marker point nearby. The marker
point P is selected if the angle between

−→
N P and

−→
N C is the minimum compared with other

marker points. Since in general the derivatives of physical solutions are discontinuous
across the interface, we project the flow states at the marker point P (ρI

L,uI
N ,pI) to obtain

the average values in cell C while the tangential velocity in cell C remains unchanged. It
is similar to update the flow states in other real fluid cells adjacent to the interface.

In order to extrapolate the updated flow states into the ghost fluid region, the follow-
ing advection equation is used as

∂ϕ

∂t
±−→

N ·∇ϕ=0, (3.5)

where ϕ represents the density, the normal velocity, the tangential velocity and the pres-
sure in the ghost fluid region,

−→
N is the unit normal vector on the ghost cells. As indicated

in Fig. 2, the ”+” sign is used in (3.5) if the interface boundary conditions of medium 1
are to determine and the ”−” sign is used in (3.5) if the interface boundary conditions of
medium 2 are to determine. This advection equation is solved by iterating in fictitious
time τ at each time step. Consider the compactness of the RKDG method, we only need
to take 2∼3 grid cells across the interface as the ghost fluid region. Once the advection
equation has been solved in the ghost fluid region, we project the flow states to obtain the
average ghost fluid values, and then the interface boundary conditions can be obtained.

3.4 Summary of the solution procedures

The implementation procedures are shown by the flowchart in Fig. 3.

4 Numerical results

In this section, several two dimensional compressible two-medium flow problems are
simulated. The RKDG method combined with the front tracking method is named as
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Figure 3: Flow chart for implementation procedures.

RKDG-FT method for convenience. The TVB limiter constant is taken as M = 0.1. The
software POINTWISE is used to generate the unstructured meshes.
Case 1: Sod shock tube

This first example is a simple sod shock tube problem and is used to investigate a high
pressure air cavity expanding in water. We artificially design a circular computational
domain centered at (1,1) with a diameter of 2 in order to demonstrate the adaptability
with the irregular domain boundary by the unstructured RKDG-FT method. Initially, a
cylindrical air cavity is at the center of the domain with a diameter of 0.8. The initial
conditions are taken as

(ρ,u,v,p,γ,B)=

{
(1.27,0,0,8000,1.4,0), inside the cylinder,
(1,0,0,1,7.15,3309), outside the cylinder.

(4.1)

The nonreflecting boundary condition is used at all the boundaries. The mesh we use is
shown in Fig. 4(a). The computational domain is divided into 4746 mesh cells and the
number of grid nodes is 2443. We use the P2 RKDG method to compute this problem.
The density contour at time t = 0.002 is shown in Fig. 4(b) (the red line is the domain
boundary). A shock is formed running towards the boundary of the domain and an
expansive wave is running towards the center of the domain. Here we replace the RKDG
method by the third order weighted essentially non-oscillatory (WENO) method and the
WENO method combined with the front tracking method is named as WENO-FT method
for convenience (see [20] for the implementation of the WENO-FT method in detail). We
compare the density distributions along y=1 at time t=0.002 in Fig. 4(c). We can see that
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(a) Triangular mesh (b) Density contours

(c) Density distribution along y=1 (d) Mass errors of air cavity

Figure 4: The numerical results for case 1.

these results are in a relative good agreement, including the interface position. However,
better results are obtained with the RKDG-FT method, especially for the shock wave
and expansive wave. The shock wave is sharper by the RKDG-FT method. Fig. 4(d)
shows the mass errors of air cavity for these two methods. The mass error is defined by
Em=(mn−m0)/m0, where mn is the mass of air cavity at time tn and m0 is the initial mass
of air cavity. It is found that there are mass losses of air cavity for both methods, however,
the mass loss caused by the RKDG-FT method is smaller.

Case 2: Shock-bubble interaction
Shock wave interactions with bubbles have been studied experimentally and numer-

ically by several authors [16,22,24,26,31]. The Hass and Sturtevant’s experiment is simu-
lated here. Fig. 5(a) shows the computational set-up and the geometrical parameters are:
a=50mm, b=25mm, c=100mm, d=325mm, e=44.5mm. The cylindrical helium bubble
is placed within the air. The shock wave propagates to the left and hits a helium bubble
with a Mach number of 1.22.

Since the flow field is symmetric about the center axis, only the upper half domain is
computed. On the left and right boundaries, nonreflecting boundary condition is used
and the upper boundary is treated as slip-wall. The sound speed in the pre-shocked air
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(a) A schematic of computational domain (not to scale)

(b) Sample mesh

Figure 5: Computational domain and sample mesh.

(a) t=32µsec (b) t=62µsec

(c) t=102µsec (d) t=427µsec

(c) t=674µsec (d) t=983µsec

Figure 6: The evolution of density field.

and the bubble diameter are used for the nondimensionalization. The non-dimensional
initial conditions are: ρ = 1, u = 0, v = 0, p = 1/1.4, γ = 1.4, B = 0, for pre-shocked air,
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Figure 7: Space-time diagrams for three characteristic interface points.

Figure 8: Comparison of mass errors of helium bubble.

ρ=1.3764, u=−0.3336, v=0, p=1.5698/1.4, γ=1.4, B=0, for post-shocked air, ρ=0.1819,
u=0, v=0, p=1/1.4, γ=1.648, B=0, for helium. The computational domain is divided
into 58364 mesh cells and the number of grid nodes is 29604. A sample mesh coarser than
what is used in the actual computation is shown in Fig. 5(b). We use the P2 RKDG method
to compute this problem. Fig. 6 shows the time histories of density field. The timing is the
same as in [16, 31] for easy comparison. We can see that the general trend, including the
bubble shape and the refracted shock wave, are in good qualitative agreement with the
earlier results. Fig. 7 shows the space-time diagram for three characteristic points (Jet,
Downstream, Upstream shown in the figure) compared with the earlier computational
results from [31] during the early stage. In general, these results are in a relatively good
agreement, showing the accuracy of the new method. In order to compare the RKDG-
FT method with the WENO-FT method, the mass errors of helium bubble are calculated
and presented in Fig. 8. It is found that the mass errors are limited within 7% before
the helium bubble collapses for both methods. In general the mass error caused by the
RKDG-FT method is smaller.
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Case 3: Richtmyer-Meshkov instability

This example consists of two simulations with gas-gas and gas-liquid interfaces. It has
been investigated by several authors to test and validate their methods before [22,30,31].
The first one is a gas-gas interface taken from [31]. Only the bottom half domain is com-
puted since the flow field is symmetric about the center axis. As indicated in Fig. 9(a),
a computational domain of [0,4]×[0,0.5] is used and we take a single mode perturba-
tion of an air-SF6 interface that the initial location of the interface is represented by:
x= 2.9−0.1sin(2π(y+0.25)), 0< y< 0.5. The initial conditions are: ρ= 5.04, u= 0, v= 0,
p=1, γ=1.093, B=0, for SF6, ρ=1, u=0, v=0, p=1, γ=1.4, B=0, for pre-shocked air,
ρ= 1.411, u=−0.39, v= 0, p= 1.628, γ= 1.4, B= 0, for post-shocked air. To trigger the
instability, at x= 3.2 there is a planar Mach number 1.24 shock wave in air propagating
from the right to the left of the interface. The upper and lower boundaries are taken to be
periodic and the nonreflecting boundary condition is applied at the left and right bound-
aries. The computational domain is divided into 105542 mesh cells and the number of
grid nodes is 53357. A sample mesh coarser than what is used in the actual computation
is shown in Fig. 9(b). We use the P2 RKDG method to compute this problem. The flow
evolution in the density field is presented in Fig. 10 where the interface and the transmit-
ted shock wave can be observed clearly. Due to the initial perturbation of the interface,
there is a misalignment of density and pressure gradient, which forms the vorticity in the

(a) A schematic of flow field at t=0

(b) Sample mesh. The mesh points on the boundary are uniformly distributed with cell length 1/10

Figure 9: Flow field and sample mesh.

(a) t=2.3138 (b) t=4.6173

(c) t=6.9298 (d) t=9.2443

Figure 10: Dynamics of the interface and density field.
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Figure 11: Comparison with other results on time histories of characteristic positions.

Figure 12: Comparison of mass errors of the SF6 medium.

perturbed zone, as can be seen in Fig. 10(c) and Fig. 10(d). In order to validate the accu-
racy of the results, in Fig. 11 we present the time evolution of the location of the spike and
the leading edge of the bubble along with the results of Terashima et al. [31]. It shows
that these results are almost identical for the location of the characteristic points. Similar
with the shock-bubble interaction problem, here we also compare the mass errors of the
SF6 medium in Fig. 12 before the shock wave transmits to the left boundary. It is found
that the mass errors are similar for both methods at the initial stage. However, the error
by the WENO-FT method increases quickly after the shock wave transmits into the SF6
medium. The error curve for the RKDG-FT method is smoother and the corresponding
mass error is much smaller.

The second one is a gas-liquid interface that is interacting with a planar Mach number
1.95 shock wave at x=3.025 initially in liquid. The computational domain, the grids and
the initial location of the interface are the same with the first simulation of Richtmyer-
Meshkov instability. The initial conditions are: ρ=1, u=0, v=0, p=1, γ=1.4, B=0, for
air, ρ=5, u=0, v=0, p=1, γ=4, B=1, for pre-shocked liquid, ρ=7.093, u=−0.7288, v=0,
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(a) t=0.1094 (b) t=0.3041

(c) t=0.4995 (d) t=0.9907

Figure 13: The density field at different time.

(a) t=0.1

(b) t=0.3

(c) t=0.5

(d) t=1.0

Figure 14: Comparison of density and pressure along line y=0.5 at different time.

p=10, γ=4, B=1, for post-shocked liquid. We use the P2 RKDG method to compute this
example. The density field is shown in Fig. 13 and the complex wave structure is once
again present and is relatively well captured. To check the correctness of the computed
solutions, in Fig. 14 we compare the distributions of density and pressure along line y=
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Figure 15: Comparison of mass errors of the air medium.

0.5 with the results (”◦”) obtained by using the γ-based model in [30]. Good agreement
of the solutions is clearly observed. In Fig. 15 the mass errors of the air medium are
calculated by the RKDG-FT method and the WENO-FT method, respectively. It shows
that the mass error obtained by the WENO-FT method increases quickly as the shock
wave transmits in the air medium. It demonstrates again that the RKDG-FT method has
advantages in the mass conservation compared to the WENO-FT method.

5 Concluding remarks

In this paper, the RKDG method combined with the front tracking method is used to sim-
ulate the compressible two-medium flow on unstructured meshes. Due to the solution
polynomial in the RKDG method, we can directly obtain the state vectors. The normal
vectors and ghost fluid states far from the interface which is less accurate need not to
be solved due to the good compactness of the RKDG method. Extensive numerical ex-
amples are provided to demonstrate the new procedures are compact, adaptive with the
irregular domain boundary and the results compared with the earlier literatures are sta-
ble and robust subject to many varied initial conditions. The mass errors are calculated to
make comparison between the RKDG-FT method and the WENO-FT method. It is found
that in general the mass errors caused by the RKDG-FT method are smaller.
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