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Abstract. In this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for
simulation of viscous compressible flows. In the solver, the finite volume method is
applied to solve the Navier-Stokes equations. Different from conventional Navier-
Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by
local reconstruction of solution using one-dimensional lattice Boltzmann model, while
the viscous flux is still approximated by conventional smooth function approximation.
The present work overcomes the two major drawbacks of existing LBFS [28–31], which
is used for simulation of inviscid flows. The first one is its ability to simulate viscous
flows by including evaluation of viscous flux. The second one is its ability to effectively
capture both strong shock waves and thin boundary layers through introduction of a
switch function for evaluation of inviscid flux, which takes a value close to zero in
the boundary layer and one around the strong shock wave. Numerical experiments
demonstrate that the present solver can accurately and effectively simulate hypersonic
viscous flows.

AMS subject classifications: 76M12
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1 Introduction

As fast development of computer hardware and numerical approaches, computational
fluid dynamics (CFD) plays a more and more important role in industrial applications.
The CFD is to apply a numerical method to solve governing equations (Navier-Stokes
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equations) on the computer. Currently, there are a number of numerical methods avail-
able [1–17]. Among them, the finite volume method (FVM) [7] is widely used. The ap-
plication of FVM is in line with application of physical conservation laws to a control
volume. Thus, its major advantage is to keep numerical conservation of physical quan-
tities. It is also flexible and suitable for solving problems with complex geometry. The
key issue in applying FVM is to develop an appropriate numerical scheme, which is also
known as flux solver, for evaluation of inviscid and viscous fluxes at cell interface.

In the conventional application of FVM to simulate viscous compressible flows, eval-
uation of inviscid flux and viscous flux is made by different ways. The viscous flux is
evaluated by using a smooth function approximation such as polynomial approxima-
tion, while inviscid flux is computed by using various upwind schemes such as Roe
scheme [10], van Leer scheme [11], and AUSM (Advection Upstream Splitting Method)
scheme [12]. Roe scheme is widely used in simulation of compressible viscous flows due
to its high accuracy for boundary layers and good resolution for shock waves. How-
ever, for the simulation of hypersonic flows, the Roe scheme often exhibits carbuncle
phenomenon and induces numerical instability [13]. Van Leer scheme has a good per-
formance in solving Euler equations, but may smear out the solution of boundary layers
and also lead to inaccurate stagnation and wall temperature for simulation of viscous
compressible flows [14].

An alternative approach for evaluation of fluxes is the Boltzmann equation-based
flux solver, which is also known as gas kinetic scheme. Different from the conven-
tional CFD approaches, the Boltzmann equation-based schemes evaluate fluxes by local
reconstruction of solution for the Boltzmann equation at a cell interface. This kind of
scheme can be used to simulate both incompressible and compressible flows. Kinetic
Flux Vector Splitting (KFVS) scheme [15] and gas-kinetic Bhatnagar-Gross-Krook (BGK)
scheme [16,17] are the commonly-used Boltzmann equation-based flux solvers. Basically,
for the KFVS scheme, the collisionless Boltzmann equation is solved in the gas evolution
stage, and the collision process is controlled by a numerical time step. As a result, the
KFVS scheme usually gives poorer results than those obtained from Roe scheme [10] and
AUSM scheme [12]. Unlike KFVS scheme, the gas-kinetic BGK scheme considers the par-
ticle collisions during the gas evolution stage by the BGK model. As a consequence, the
dissipation in the streaming process is controlled by the collision time rather than by the
numerical time step. Numerical results showed that the gas-kinetic BGK scheme can ac-
curately simulate both inviscid and viscous flows [17, 18]. On the other hand, as far as
we know, most of existing gas kinetic schemes are based on the Maxwellian distribution
function [15–18]. Due to complexity of the Maxwellian function, these schemes are usu-
ally more complicated and less efficient than the traditional numerical schemes [10–12].

Recently, lattice Boltzmann method (LBM) [19, 20] receives more and more attention
due to its kinetic nature, simplicity, and easy implementation. However, the conventional
LBM is only limited to the simulation of incompressible flows since its equilibrium distri-
bution function is approximated from truncated Taylor series expansion of Maxwellian
function in terms of Mach number. To simulate compressible flows by LBM, one has to
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use new equilibrium distribution functions. Some efforts have been made in the liter-
ature [21, 24]. It is noted that the new equilibrium functions are usually very compli-
cated, especially for multi-dimensional problems. In addition, to get the stable solution,
one often needs to apply an upwind scheme to solve the discrete velocity Boltzmann
equation (DVBE) [21–27]. The solution process of DVBE is quite tedious and computa-
tional efficiency is low. To develop a more efficient solver for compressible flows, a lattice
Boltzmann flux solver (LBFS for short) for simulation of inviscid compressible flows is
proposed by Ji et al. [28], and further improved by Yang et al. [29, 30] and Shu et al. [31].
In LBFS, FVM is applied to discretize Euler equations, and the inviscid flux at the cell
interface is reconstructed from local solution of one-dimensional (1D) compressible lat-
tice Boltzmann model. It has been demonstrated that the LBFS provides good positivity
property for simulation of flows with strong shock wave and expansion wave [30]. On
the other hand, it should be indicated that the existing LBFS has two major shortcomings.
One is due to the use of 1D model for reconstruction of local solution. The 1D model can
make the scheme very simple, but it can only be applied along the normal direction to
the cell interface. Since the tangential effect is not properly considered, the existing LBFS
can only be applied to simulate inviscid flows. In other words, it only evaluates invis-
cid flux at the cell interface. To solve viscous flows, evaluation of viscous flux should
also be taken into account. The second drawback is from the use of distribution function
to compute the inviscid flux. In the existing LBFS [28–31], the distribution functions at
cell interface streamed from neighboring points are directly used to compute the inviscid
flux. On the other hand, from Chapman-Enskog expansion analysis [19, 20], it is known
that the inviscid flux can be fully determined by equilibrium distribution function. From
this process, it is clear that the non-equilibrium part of the distribution function at the cell
interface introduces numerical dissipation for calculation of inviscid flux. The introduced
numerical dissipation is very useful to capture the strong shock wave, but it will affect
the true solution in smooth regions such as in boundary layers. To capture both strong
shock waves and boundary layers, the numerical dissipation has to be controlled. That
is, numerical dissipation should only be introduced in the region around strong shock
waves. How to remove the above two drawbacks of existing LBFS motivates the present
work.

In this work, following Chapman-Enskog analysis, a hybrid LBFS is proposed for sim-
ulation of viscous flows. In the hybrid solver, the inviscid flux is evaluated by LBFS (local
reconstruction of solution using 1D lattice Boltzmann model), and viscous flux is com-
puted by the smooth function approximation. The numerical dissipation is controlled by
introducing a switch function which ranges from 0 to 1. In the smooth region such as in
boundary layer, the switch function takes a value close to zero, while around the shock
wave, it tends to one. The present hybrid solver is validated by its application to solve
some test examples including the Couette flow, Blasius boundary layer, laminar flows
over NACA0012 airfoil and hypersonic flow around a half of cylinder. Numerical results
demonstrate that the hybrid LBFS can effectively simulate compressible viscous flows
with strong shock wave and boundary layer.
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2 Methodology

2.1 Navier-Stokes equations discretized by finite volume method

In general, the integral form of Navier-Stokes equations without source term can be writ-
ten as

∂

∂t

∫
Ω

WdΩ+
∮

Γ

(
Fc−Fv

)
dS=0, (2.1)

where, the conservative variables W, inviscid flux Fc and viscous flux Fv are given by

W=


ρ

ρu
ρv
ρE

, Fc =


ρUn

ρuUn+nx p
ρvUn+ny p
(ρE+p)Un

, Fv =


0

nxτxx+nyτxy
nxτyx+nyτyy
nxΘx+nyΘy

. (2.2)

Here, ρ and p are the density and pressure of the mean flow, respectively. (u,v) and
(nx,ny) denote the velocity vector and unit normal vector on the control surface in the
Cartesian coordinate system, respectively. Un represents the normal velocity, which is
defined as the scalar product of the velocity vector and the unit normal vector, i.e.,

Un =nxu+nyv. (2.3)

E is the total energy of the mean flow, which is defined as

E= e+
1
2
(u2+v2). (2.4)

Here, e=p/[(γ−1)ρ] is the potential energy of the mean flow, where γ is the specific heat
ratio. Furthermore, τij denotes the components of viscous stress tensor and Θi represents
the term describing the work of viscous stress and the heat conduction in the fluid.

In the FVM, the integral of the fluxes in Eq. (2.1) is approximated by a sum of the
fluxes crossing the cell interface, i.e.,

dWI

dt
=− 1

ΩI

N f

∑
i=1

(
Fci−Fvi

)
Si, (2.5)

where I is the index of a control volume, ΩI and N f represent the volume and the number
of the faces of the control volume I, respectively. Si denotes the area of the ith face of the
control volume. The key for solving Eq. (2.5) is to evaluate the inviscid flux Fc and viscous
flux Fv. In line with the elliptic nature of the viscous flux, Fv is usually approximated
by smooth functions such as polynomial. Therefore, the only remaining problem is to
calculate the inviscid flux Fc.
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2.2 Evaluation of inviscid flux by local solution of 1D lattice Boltzmann
model

To effectively simulate inviscid compressible flows, Shu and his coworkers [28–31] pro-
posed a lattice Boltzmann flux solver (LBFS). In the LBFS, the local solution of one-
dimensional (1D) lattice Boltzmann (LB) model is used to construct inviscid flux solver
at the cell interface, while the FVM is used to discretize the macroscopic governing equa-
tions. In the existing LBFS [28–31], the numerical dissipation takes effect uniformly
in the whole computational domain, and is too large in smooth regions to affect the
true solution for simulation of viscous flows. In the present work, we start from the
Chapman-Enskog analysis [19,20,32,33] and consider both the equilibrium part and non-
equilibrium part of the distribution function at the cell interface. The non-equilibrium
part is viewed as numerical dissipation since LBFS is only used to evaluate inviscid flux
in this work. For evaluation of the non-equilibrium part, a simple difference scheme is
applied, i.e., the non-equilibrium part is computed by the difference of equilibrium dis-
tribution functions at the cell interface and its surrounding point. At the same time, the
weight of the non-equilibrium part is controlled by introducing a switch function. Before
we move on, the 1D LB model used in this work will be introduced first.

Most of existing 1D LB models [21–23] involve a number of user-specified parame-
ters, which could significantly affect the performance of LBFS. To remove this drawback,
Yang et al. [29, 30] proposed a platform to develop non-free parameter LB models from
conservation forms of moments. A typical such model is the non-free parameter D1Q4
model as shown in Fig. 1, which contains six unknowns (4 equilibrium distribution func-
tions g1, g2, g3, g4 and 2 lattice velocities d1, d2). Using conservation forms of moments,
g1, g2, g3, g4 and d1, d2 can be given as [29, 30],

g1=
ρ(−d1d2

2−d2
2u+d1u2+d1c2+u3+3uc2)

2d1(d2
1−d2

2)
, (2.6a)

g2=
ρ(−d1d2

2+d2
2u+d1u2+d1c2−u3−3uc2)

2d1(d2
1−d2

2)
, (2.6b)

g3=
ρ(d2

1d2+d2
1u−d2u2−d2c2−u3−3uc2)

2d2(d2
1−d2

2)
, (2.6c)

g4=
ρ(d2

1d2−d2
1u−d2u2−d2c2+u3+3uc2)

2d2(d2
1−d2

2)
, (2.6d)

d1=

√
u2+3c2−

√
4u2c2+6c4, (2.6e)

d2=

√
u2+3c2+

√
4u2c2+6c4, (2.6f)

where, c represents the peculiar velocity of particles defined as c=
√

Dp/ρ, D denotes
the space dimension, D=1 means one-dimension.
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Figure 1: Distribution of discrete lattice velocities for D1Q4 model.

Figure 2: Application of 1D model to 2D case.

After obtaining the equilibrium distribution functions and lattice velocities, the phys-
ical conservation laws give

ρ=
4

∑
i=1

gi, (2.7a)

ρu=
4

∑
i=1

giξi, (2.7b)

ρuu+p=
4

∑
i=1

giξiξi, (2.7c)

ρE=
4

∑
i=1

gi

(1
2

ξiξi+ep

)
, (2.7d)

(ρE+p)u=
4

∑
i=1

gi

(1
2

ξiξi+ep

)
ξi, (2.7e)

where, ξi is the particle velocity in the i-direction, i.e., ξ1 = d1, ξ2 =−d1, ξ3 = d2 and
ξ4=−d2. ep is the potential energy of particles, ep=[1− D

2 (γ−1)]e. It is necessary to point
out that when multi-dimensional problems are considered, the above 1D model needs to
be applied along the normal direction of cell interface [29, 30]. For example, for the 2D
case, as shown in Fig. 2, we can use the normal velocity Un to replace u and set nx as 1 in
the 1D model (2.7).

After introducing the non-free parameter D1Q4 model, we now can construct a corre-
sponding LBFS by using this model. For the general case, D1Q4 model is applied along
the normal direction of a cell interface. Suppose that this cell interface is located at x=0.
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Then the inviscid flux at the cell interface can be computed by

F∗
c,i+1/2=

[
ρUn ρUnUn+p

(
ρ
(1

2
UnUn+e

)
+p

)
Un

]T

=
4

∑
i=1

ξiφα fi(0,t), (2.8)

where ξi has been defined previously, φα stands for the moments

φα =
(

1,ξi,
1
2

ξ2
i +ep

)T
, (2.9)

and fi(0,t) is the distribution function at the cell interface. The notation ∗ means numer-
ical value. Usually, fi(0,t) consists of equilibrium part f eq

i (0,t) and non-equilibrium part
f neq
i (0,t), which can be written as

fi(0,t)= f eq
i (0,t)+ f neq

i (0,t). (2.10)

From Chapman-Enskog analysis [19, 20, 32, 33], to recover Navier-Stokes equations by
Boltzmann equation, the non-equilibrium part f neq

i can be written as

f neq
i (0,t)=−τ

(∂gi

∂t
+ξi

∂gi

∂x

)∣∣∣
(0,t)

. (2.11)

By applying Taylor series expansion in time and physical space, the above equation can
be further simplified to

f neq
i (0,t)=− τ

δt
[gi(0,t)−gi(−ξiδt,t−δt)]+O(δt), (2.12)

where gi(0,t)= f eq
i (0,t) is the equilibrium distribution function at the cell interface, and

gi(−ξiδt,t−δt) is the equilibrium distribution function at the surrounding point of the
cell interface. Substituting Eq. (2.12) into Eq. (2.10) gives

fi(0,t)= gi(0,t)−τ0[gi(0,t)−gi(−ξiδt,t−δt)]+O(δt), (2.13)

where τ0 = τ/δt is the dimensionless collision time and δt is the streaming time step. It
is known from the Chapman-Enskog analysis that the equilibrium part of the distribu-
tion function contributes to the inviscid flux while its non-equilibrium part contributes
to the viscous flux. As LBFS is only used to evaluate inviscid flux in this work, f neq

i (0,t)
can be viewed as numerical dissipation, and τ0 can be regarded as the weight of the nu-
merical dissipation. In other words, to apply LBFS for evaluation of inviscid flux with
minimum numerical dissipation, τ0 should be taken as 0. This kind of scheme is noted as
Scheme I in this work. As will be shown in this paper, Scheme I provides very accurate
results for boundary layer flows as very little numerical dissipation is introduced. How-
ever, this scheme often exhibits oscillation or even diverges for simulation of hypersonic
flows with strong shock waves. To capture strong shock waves with stable solution, we
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need to introduce numerical dissipation and set a non-zero value to τ0. In the existing
LBFS [28–31], τ0 is actually taken as 1. In fact, the existing LBFS is based on collisionless
Boltzmann equation. For this case, the distribution function fi(0,t) at the cell interface is
streamed from the surrounding points initialized by the equilibrium state, which can be
given as [29–31]

fi(0,t)= gi(−ξiδt,t−δt), (2.14)

Eq. (2.14) is exactly the same as Eq. (2.13) when we set τ0 as 1. In this work, we note
this scheme as Scheme II. Obviously, Scheme II introduces a large numerical dissipation.
That is why the existing LBFS can well simulate hypersonic inviscid flows with very high
Mach number [29–31]. On the other hand, as shown in this paper, the large numerical
dissipation pollutes the solution in smooth regions, and the scheme cannot provide ac-
curate solution in the boundary layer. To capture both the strong shock waves and thin
boundary layers accurately, we need to carefully control the numerical dissipation. This
can be done by introducing a switch function to control τ0. In other words, τ0 should
be taken as a value close to zero in the boundary layer and one around the strong shock
wave. In this work, the scheme involving the switch function is termed Scheme III. The
details of the three schemes will be shown below.

Scheme I: Evaluation of inviscid flux by setting τ0=0

By taking τ0=0, Eq. (2.13) can be reduced to

fi(0,t)= gi(0,t). (2.15)

In Eq. (2.15), in order to obtain the equilibrium distribution function gi(0,t), the con-
servative variables at the cell interface should be computed in advance. According to
relationships (2.7), at the cell interface, the density, momentum in the normal direction
and energy attributed to normal velocity can be computed by

W∗
i+1/2=

[
ρ ρUn

1
2

ρUnUn+ρe
]T

=
4

∑
i=1

φα fi(0,t)=
4

∑
i=1

φαgi(0,t). (2.16)

According to the compatibility condition [33], the non-equilibrium part of distribution
function has no contribution in calculation of conservative variables. That is,

4

∑
i=1

φα f neq
i (0,t)=−

4

∑
i=1

φα
τ

δt
[gi(0,t)−gi(−ξiδt,t−δt)]=0. (2.17)

Substituting Eq. (2.17) into Eq. (2.16) gives

W∗
i+1/2=

4

∑
i=1

φαgi(0,t)=
4

∑
i=1

φαgi(−ξiδt,t−δt). (2.18)
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From Eq. (2.18), it can be seen that the conservative variables at the cell interface can
be computed from gi(−ξiδt,t−δt), which is the function of the conservative variables
at the surrounding point of the cell interface. Like the conventional upwind schemes,
it is assumed that a local Riemann problem is formed at the cell interface. Thus, the
equilibrium distribution function gi(−ξiδt,t−δt) can be given according to the location
of −ξiδt. Specifically, gi(−ξiδt,t−δt) can be written as

gi(−ξiδt,t−δt)=

{
gL

i , if −ξiδt≤0,
gR

i , if −ξiδt>0.
(2.19)

Since the streaming time step δt is always positive, Eq. (2.19) can be rewritten as

gi(−ξiδt,t−δt)=

{
gL

i , if ξi ≥0,
gR

i , if ξi <0,
(2.20)

where, gL
i and gR

i are the equilibrium distribution functions at the left and right side of
cell interface. For the non-free parameter D1Q4 model, Eq. (2.20) can be further reduced
to

gi(−ξiδt,t−δt)=

{
gL

i , if i=1,3,
gR

i , if i=2,4.
(2.21)

The above process is illustrated in Fig. 3 and the details can be found in [29]. Substituting
Eq. (2.21) into Eq. (2.18), we can get

W∗
i+1/2= ∑

i=1,3
φαgL

i + ∑
i=2,4

φαgR
i . (2.22)

Since the 1D LB model is used, in Eq. (2.22), only the conservative variables attributed to
the normal velocity are obtained. To evaluate the tangential velocity at the cell interface,
one of the feasible ways can be expressed as

(ρUτ)
∗=

4

∑
i=1

gi ·U∗
τ = ∑

i=1,3
gL

i ·UL
τ + ∑

i=2,4
gR

i ·UR
τ , (2.23)

where, U∗
τ , UL

τ and UR
τ are the tangential velocity at the cell interface, and the left and

right side of cell interface, respectively. With Eqs. (2.22) and (2.23), we can obtain the
primitive variables ρ∗, U∗

n , U∗
τ and p∗ in a straightforward way. Furthermore, substitut-

ing these variables into Eqs. (2.6a)-(2.6f), we can get the equilibrium distribution function
at the cell interface gi(0,t). Finally, the inviscid flux across the cell interface can be com-
puted by substituting Eq. (2.15) into Eq. (2.8). An alternative but more efficient way is to
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Figure 3: Streaming process of D1Q4 model at the cell interface.

substitute the above primitive variables directly into Eq. (2.2). As such, the inviscid flux
at the cell interface F(I)

c,i+1/2 can be expressed as

F(I)
c,i+1/2=


ρUn

(ρUnUn+p)nx−ρUnUτny
(ρUnUn+p)ny+ρUnUτnx

(ρE+p)Un


∗

i+1/2

. (2.24)

Note that in Eq. (2.24), the relationships of u=nxUn−nyUτ and v=nxUτ+nyUn have been
used. For the sake of discussion, we name this approach as Scheme I.

Since the distribution function at the cell interface is completely computed from the
equilibrium part, the numerical dissipation in Scheme I is very little. As a consequence, it
can provide accurate results for compressible viscous flows with weak shock waves. But
it will encounter numerical instability for simulation of hypersonic flows due to the lack
of numerical dissipation.

Scheme II: Evaluation of inviscid flux by setting τ0=1

When τ0 = 1 is considered, Eq. (2.13) is reduced to Eq. (2.14). Different from Scheme I,
in Eq. (2.14), the distribution function at cell interface is determined by the equilibrium
distribution function at the surrounding point of the cell interface gi(−ξiδt,t−δt). Since
gi(−ξiδt,t−δt) has been determined by Eq. (2.21), the inviscid flux can be computed
directly for this case. Substituting Eq. (2.14) into Eq. (2.8), we can obtain the mass flux,
momentum flux in the normal direction and energy flux attributed to the normal velocity
across the interface as

F∗
c,i+1/2=

[
ρUn ρUnUn+p

(
ρ
(1

2
UnUn+e

)
+p

)
Un

]T

=
4

∑
i=1

ξiφαgi(−ξiδt,t−δt). (2.25)

And further substituting Eq. (2.21) into Eq. (2.25) gives

F∗
c,i+1/2=

4

∑
i=1

ξiφαgi(−ξiδt,t−δt)= ∑
i=1,3

ξiφαgL
i + ∑

i=2,4
ξiφαgR

i . (2.26)
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In addition, the contribution of the tangential velocity to the momentum flux in the tan-
gential direction and energy flux can be approximated by

(ρUnUτ)
∗=

4

∑
i=1

ξigi(−ξiδt,t−δt)·U∗
τ = ∑

i=1,3
ξigL

i ·UL
τ + ∑

i=2,4
ξigR

i ·UR
τ , (2.27a)

(ρUnU2
τ)

∗
=

4

∑
i=1

ξigi(−ξiδt,t−δt)·(U∗
τ)

2= ∑
i=1,3

ξigL
i ·(UL

τ )
2
+ ∑

i=2,4
ξigR

i ·(UR
τ )

2
. (2.27b)

With Eqs. (2.26)-(2.27b), we can obtain the total convective flux vectors across the cell
interface as follows

F(I I)
c,i+1/2=



4
∑

i=1
ξigi

4
∑

i=1
ξiξiginx−

4
∑

i=1
ξigi ·U∗

τ ny

4
∑

i=1
ξiξiginy+

4
∑

i=1
ξigi ·U∗

τ nx

4
∑

i=1
ξi

(1
2

ξiξi+ep

)
gi+

1
2

4
∑

i=1
ξigi ·(U∗

τ)
2


, (2.28)

where, gi = gi(−ξiδt,t−δt). It can be seen that Eq. (2.28) is the same as the inviscid flux
solver in [28–31]. In this work, this scheme is noted as Scheme II.

Since a large numerical dissipation is introduced by setting τ0=1, Scheme II can cap-
ture strong shock waves stably and it is more robust than Scheme I. However, since the
weight of non-equilibrium part of distribution function is fixed with value 1, the numer-
ical dissipation of Scheme II takes effect uniformly in the whole computational domain.
As a result, the numerical dissipation of the scheme is too large in smooth regions to
affect the true solution. This is undesirable in smooth regions.

Scheme III: Evaluation of inviscid flux by a variable switch function

As mentioned above, Scheme I has a good performance in capturing the thin boundary
layer but it is usually incompetent for simulation of hypersonic flows, while Scheme
II can capture strong shock waves stably but gives poor result for capturing the thin
boundary layer. Naturally, one may expect to develop a new scheme which can combine
the advantages of Scheme I and Scheme II. This motivates the development of Scheme III
by introducing a switch function α defined as

α= tanh
(

C
|pL−pR|
pL+pR

)
, (2.29)

where, tanh(x) is the hyperbolic tangent function, pL and pR are the pressure at the left
and right side of cell interface. C is the amplification factor, and C = 10 is used in this



898 L. M. Yang, C. Shu and J. Wu / Adv. Appl. Math. Mech., 8 (2016), pp. 887-910

work. From Eq. (2.29), it can be seen that α ranges from 0 to 1. As a result, the total
inviscid flux across the cell interface can be written as

F(I I I)
c,i+1/2=(1−α)F(I)

c,i+1/2+αF(I I)
c,i+1/2. (2.30)

By comparing Eq. (2.30) with Eq. (2.13), it is found that τ0 in Eq. (2.13) actually corre-
sponds to α in Eq. (2.30). In other words, the value of τ0 is no long treated as a constant
as used in Scheme I and Scheme II. It is a variable in Scheme III. From Eq. (2.30), it can be
observed that the inviscid flux F(I I I)

c,i+1/2 is close to that in Scheme I in smooth regions due
to the small pressure difference at two sides of the cell interface and approaches that in
Scheme II in the vicinity of strong shock wave.

On the other hand, it should be noted that the heat flux in the vicinity of stagna-
tion point exhibits oscillations when Eq. (2.30) is applied to simulate hypersonic flows.
This phenomenon can be observed in Case 4 of this work. The main reason may be that
the switch function defined in Eq. (2.29) cannot well switch Scheme III into Scheme II
around strong shock waves. To overcome this deficiency, a slight modification is ap-
plied to Eq. (2.29). This remedy is inspired by the construction of limiter of Barth and
Jespersen [34]. The new form of switch function is defined as

α∗=max{αL,αR}, (2.31)

where, αL and αR are the maximum values of the switch function of the left and right
control volumes, respectively, which are defined as

αL = max
i=1,N f L

{αi}, αR = max
i=1,N f R

{αi}, (2.32)

where, N f L and N f R are the number of the faces of the left and right control volumes,
respectively. Accordingly, Eq. (2.30) is changed as

F(I I I)
c,i+1/2=(1−α∗)F(I)

c,i+1/2+α∗F(I I)
c,i+1/2. (2.33)

We name the above scheme as Scheme III∗ to distinguish it from Scheme III.

2.3 Evaluation of viscous flux by employing central difference scheme

In this section, we give a brief description on calculation of viscous flux. In Eq. (2.2), the
viscous flux can be rewritten as

Fv=


0

nxτxx+nyτxy

nxτyx+nyτyy

nx

(
uτxx+vτxy+k

∂T
∂x

)
+ny

(
uτyx+vτyy+k

∂T
∂y

)
, (2.34)
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where, k is the thermal conductivity. The stress tensor τ in 2D case is given by

τ=µ


4
3

∂u
∂x

− 2
3

∂v
∂y

∂u
∂y

+
∂v
∂x

∂u
∂y

+
∂v
∂x

4
3

∂v
∂y

− 2
3

∂u
∂x

, (2.35)

where, µ is the dynamic viscosity, which is determined from the Sutherland’s law or the
relationship of Reynolds number.

Due to elliptic nature of the viscous flux, we can evaluate Fv from variables averaged
at the cell interface. At the cell interface, the values of the velocity components (u,v), the
dynamic viscosity µ and the thermal conductivity k can be calculated by simple averaging
technique, i.e.,

ϕi+1/2=
1
2
(ϕi+ϕi+1), (2.36)

where, ϕ stands for any of the above flow variables. Next, we need to compute the
derivatives of the velocity components in Eq. (2.35) and of temperature in Eq. (2.34).
Since the gradients of flow variable inside each control volume have been computed in
the stage of reconstruction, unless otherwise stated, these gradients will be used to get
the mean value at the cell interface, i.e.,

∇ϕi+1/2=
1
2
(∇ϕi+∇ϕi+1). (2.37)

It should be noted that the above approach may lead to strong odd-even decoupling
in the simulation of hypersonic flows [35]. In Case 4 of this work, to well capture the
strong shock waves, the finite difference scheme is applied to calculate the derivatives in
Eqs. (2.34) and (2.35). The details can be found in [36].

3 Numerical examples

To validate the present solver, the Couette flow, laminar boundary layer, laminar flow
over NACA0012 airfoil and hypersonic flow around a half of circular cylinder are simu-
lated. Except for the case of hypersonic flow around a half of cylinder, the conservative
variables at two sides of cell interface are interpolated from those at cell centers and the
Venkatakrishnan’s limiter [37] is used. For temporal discretisation of Eq. (2.5), three-
stages Runge-Kutta method is applied. Unless otherwise stated, in all numerical exam-
ples reported in this work, the CFL number is set as 2 and the Prandtl number is taken as
0.72.
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Case 1: Couette flow

Couette flow is a classical heat-transfer problem which can be used to examine the ca-
pability of a flow solver to describe the viscous heat dissipation. This problem can be
considered as a viscous fluid flow between two infinite parallel plates separated by a
distance of H. The bottom plate is stationary and the top one is moving at a speed u in
the horizontal direction. The temperature at the bottom and top walls is fixed as T0 and
T1 respectively. In a steady state, under the assumption of constant viscosity and heat
conduction coefficient, the temperature profiles can be obtained as

T−T0=Pr
u2

2cp

y
H

(
1− y

H

)
, when T0=T1, (3.1a)

T−T0

T1−T0
=

y
H
+Pr

Ec
2

y
H

(
1− y

H

)
, when T0 ̸=T1, (3.1b)

where, y is the distance from the bottom boundary, Pr is the Prandtl number, cp is the
specific heat ratio at constant pressure, and Ec=u2/cp(T1−T0) is the Eckert number. In
this case, we set H as H = 1. At the inlet and outlet, a periodic boundary condition is
implemented. In addition, the specific heat ratio γ is chosen as 1.4 for all simulations.

At first, the test cases with different Prandtl numbers of Pr=1 and Pr=2 and u=u0,
T1 =T0 are simulated. A uniform mesh with 10×40 cells is used. The temperature pro-
files along the vertical central line obtained from Scheme I, Scheme II and Scheme III are
shown in Fig. 4. It is observed that all the results of three schemes match well with the
analytic data. In addition, we also simulated the cases with different top plate velocities
of u= u0 and u= 2u0, and Pr= 2, T1 = (1+0.5)T0. In these tests, two kinds of uniform
meshes with 10×40 cells and 10×80 cells are used. Fig. 5 shows the comparison of tem-
perature profiles along the vertical central line obtained by three schemes and analytic
solution. As shown in this figure, the results of three schemes agree fairly well with an-
alytical data except that the result of Scheme II with mesh size of 10×40 and top plate
velocity of u= 2u0 shows some deviation from analytical solution. However, when the

Figure 4: Comparison of temperature profiles along vertical central line for different Prandtl numbers.
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Figure 5: Comparison of temperature profiles along vertical central line for different moving velocities at top
plate.

mesh size is refined to 10×80, the result of Scheme II can match excellently well with the
analytical data. This finding clearly reveals that the numerical viscosity of Scheme II is
larger than Scheme I and Scheme III, and it can be reduced by refining the mesh.

Case 2: Laminar boundary layer

The second case is the laminar boundary layer. For this case, the Reynolds number is
taken as 105 and the free stream Mach number is set as 0.15. At first, a non-uniform mesh
with 160×60 cells as shown in Fig. 6 is used. The u-velocity contours obtained from
Scheme I at the steady state are shown in Fig. 7. Fig. 8 and Fig. 9 show the u-velocity
(upper) and v-velocity (lower) profiles along the vertical lines of x = 100,200 and 250

Figure 6: Computational mesh for laminar boundary layer flow (mesh: 160×60).

Figure 7: u-velocity contours of laminar boundary layer flow obtained by Scheme I (mesh: 160×60).
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Figure 8: Comparison of u-velocity (upper) and v-velocity (lower) profiles along the vertical lines of x=100,200
and 250 for laminar boundary layer flow obtained by Scheme I (mesh: 160×60).

Figure 9: Comparison of u-velocity (upper) and v-velocity (lower) profiles along the vertical lines of x=100,200
and 250 for laminar boundary layer flow obtained by Scheme II (mesh: 160×60).

computed by Scheme I and Scheme II, respectively. Also displayed in these figures is
the Blasius solution. As shown in these figures, Scheme I provides accurate solutions for
laminar boundary layers, while Scheme II can hardly capture the correct shear layers.
Note that, the results of Scheme III, which have not been shown in the figure to save the
space, are essentially the same as those of Scheme I. The above results show again that
the numerical dissipation of Scheme II is larger than Scheme I and Scheme III. Like the
previous example, the numerical dissipation is usually related to the mesh spacing. To
investigate this phenomenon, a refined mesh with 480×180 cells is used to re-solve the
problem by Scheme II, and the resultant solution is shown in Fig. 10. It can be seen clearly
that as mesh size is refined, Scheme II can also provide accurate solution for viscous
flows. This is because the numerical dissipation is significantly reduced when the mesh
size is refined.
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Figure 10: Comparison of u-velocity (upper) and v-velocity (lower) profiles along the vertical lines of x=100,200
and 250 for laminar boundary layer flow obtained by Scheme II (mesh: 480×180).

Case 3: Laminar flow over NACA0012 airfoil

The third test case is a laminar flow over NACA0012 airfoil. For this case, the free-stream
Mach number is 0.8, the Reynolds number is 500 and the angle of attack is 10 degree.
Unstructured grid with 10382 cells is used, and its partial view is shown in Fig. 11. Along
the surface of airfoil, there are 150 grid points. The computational domain of −10≤ x≤
10, −10≤ y ≤ 10 is used. This is the test case A3 from GAMM workshop [38]. Fig. 12
shows the streamline patterns obtained from Scheme III (left) and given by Jawahar et
al. [39]. It can be observed that both patterns are almost the same. The comparison of
pressure coefficient (left) and skin friction coefficient (right) distributions on the airfoil
surface obtained from three schemes is shown in Fig. 13. Also presented in the figure are

Figure 11: Partial view of the grid around NACA0012 airfoil.
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Figure 12: Streamline pattern around NACA0012 airfoil obtained by Scheme III (left) and given by Jawahar et
al. [39] (right).

Figure 13: Comparison of pressure coefficient (left) and skin friction coefficient (right) distributions on the
NACA0012 airfoil surface.

the results of [39]. As can be seen from the pressure coefficient distribution, the results
of Scheme I and Scheme III are closer to the result of [39] as compared with result of
Scheme II. In the meantime, the lift and drag coefficients obtained by three schemes are
compared in Table 1 with reference data of GAMM [38] and Jawahar et al. [39]. It can
be observed that the results of Scheme I and Scheme III are close each other, and they
basically agree well with the reference data. Once again, this test example shows that the
numerical dissipation in Scheme I and Scheme III has little effect in simulation of viscous
compressible flows.

Table 1: Comparison of lift coefficient and drag coefficient for NACA0012 case.

References Cdp Cd f
Cdtotal

Cltotal

Jawahar et al. [39] 0.15287 0.12439 0.27726 0.50231
GAMM [38] — — 0.243-0.2868 0.4145-0.517

Scheme I 0.15353 0.13012 0.28365 0.43593
Scheme II 0.16031 0.13439 0.29470 0.46350
Scheme III 0.15387 0.13027 0.28414 0.43751
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Case 4: Hypersonic flow around a half of circular cylinder

The above three test cases demonstrate that Scheme I and Scheme III have a good prop-
erty for capturing viscous heat dissipation and boundary layer. To investigate the capa-
bility of three schemes for simulation of hypersonic flows with strong shock waves and
boundary layer, the hypersonic flow around a half of circular cylinder is simulated. For
this case, the free-stream Mach number is 8.03, the Reynolds number is 1.835×105, the
free-stream temperature is 124.94K and the wall temperature is fixed as 299.44K. In this
test problem, structured grid with 160×160 cells is used, and the cell Reynolds number
is taken as Recell = ρ∞u∞∆r/µ∞ = 1.835, where ∆r is the mesh spacing of the first cell in
the normal direction adjacent to the cylinder surface, ρ∞, u∞ and µ∞ are the density, ve-
locity and dynamic viscosity of the free stream respectively. In addition, the van Leer
limiter [40] and LU-SGS scheme [41] are applied. The convergence criterion is set by
the condition that the maximum residual of governing equation is decreased to less than
10−7.

Numerical experiments revealed that the computation will diverge when Scheme I is
applied for this test case. The main reason may be that Scheme I lacks essential numerical
dissipation to suppress the instability of strong shock waves. Fig. 14 shows the tempera-
ture contours obtained from Scheme II (left), Scheme III (middle) and Scheme III∗ (right).
It can be seen that the result of Scheme III exhibits oscillation in the post-shock region.
The reason may be attributed to the switch function defined in Eq. (2.29), which cannot
well switch Scheme III into Scheme II around the strong shock wave. This can be well
demonstrated by Fig. 15, which displays the switch function contours used in Scheme III
(left) and Scheme III∗ (right). The values of the switch function of Scheme III are obvi-
ously less than those of Scheme III∗ in the vicinity of shock wave. Fig. 16 presents the
pressure (upper) and heat flux (bottom) distributions along the cylindrical surface com-

Figure 14: Temperature contours of hypersonic flow around a half of circular cylinder obtained by Scheme II
(left), Scheme III (middle) and Scheme III∗ (right).
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Figure 15: Switch function contours for hypersonic flow around a half of circular cylinder used in Scheme III
(left) and Scheme III∗ (right).

Figure 16: Comparison of pressure (upper) and heat flux (bottom) distributions along the cylindrical surface for
hypersonic flow around a half of circular cylinder.

puted by Scheme II, Scheme III and Scheme III∗, where p0 and q0 are the exact solutions,
p0=0.9209 and q0=0.003655. Also displayed in this figure are the experimental data [42]
and results calculated by gas-kinetic BGK scheme [43]. It can be observed that the pres-
sure and heat flux distributions of Scheme III jitter apparently in the vicinity of stagnation
point, and the heat flux distribution of Scheme II deviates significantly from the reference
data [43] near the stagnation point. The comparison of computed pressure and heat flux
at stagnation point by three schemes with exact solution is made in Table 2. As shown
in this table, the results of Scheme III∗ agree very well with exact solution. This example
shows that Scheme III∗ can well capture strong shock waves and thin boundary layer in
numerical simulation of hypersonic viscous flows.
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Table 2: Comparison of stagnation pressure and heat flux for hypersonic flow around a half of cylinder.

References p/ρ∞u2
∞ q/ρ∞u3

∞
Exact solutions 0.9209 0.003655

Scheme I – –
Scheme II 0.9223 0.003717
Scheme III 0.9581 0.004108
Scheme III∗ 0.9214 0.003650

4 Conclusions

In this paper, the lattice Boltzmann flux solver (LBFS), which is developed in our previ-
ous work for simulation of inviscid compressible flows [28–31], is extended to simulate
viscous compressible flows. In the solver, the inviscid flux across the cell interface is
evaluated by LBFS, while the viscous flux is still approximated by conventional smooth
function approximation. From Chapman-Enskog expansion analysis [19, 20, 32, 33], it is
known that the equilibrium part of the distribution function contributes to the inviscid
flux while its non-equilibrium part contributes to the viscous flux. As LBFS is only used
to evaluate inviscid flux in this work, the non-equilibrium part in LBFS can be viewed
as numerical dissipation, and the dimensionless collision time τ0 can be regarded as the
weight of the numerical dissipation. By taking τ0 as 0, 1 and a variable switch function,
three schemes of LBFS are presented. For τ0 = 0 (Scheme I), the distribution function at
the cell interface is completely computed from the equilibrium part, and the numerical
dissipation in the scheme is very little. As a consequence, it can provide accurate results
for boundary layer flows. But it often exhibits oscillation or even diverges for simula-
tion of hypersonic flows due to the lack of numerical dissipation. For τ0 =1 (Scheme II),
the distribution functions at cell interface streamed from neighboring points are directly
used to compute the inviscid flux. This scheme has relatively large numerical dissipation
to get stable solution for strong shock waves. However, the large numerical dissipation
pollutes the solution in smooth regions. To capture both the strong shock waves and thin
boundary layers accurately, a switch function to control τ0 is introduced and Scheme III
and Scheme III* are proposed. In Scheme III and Scheme III∗, τ0 is taken as a value close
to zero in the boundary layer and one around the strong shock wave.

To compare the performances of the above schemes, several numerical examples are
tested. Numerical results showed that (1) Scheme I can well simulate viscous boundary
layers with little numerical dissipation but it is usually incompetent for simulation of
hypersonic flows; (2) Scheme II has relatively large numerical dissipation to get stable
solution for strong shock waves, and the numerical dissipation can be significantly re-
duced through refinement of mesh size; (3) Scheme III∗ can capture well both strong
shock waves and thin boundary layer in numerical simulation of hypersonic viscous
flows. From the present study, we may conclude that for simulation of compressible
flows with relatively low Mach number, Scheme I and Scheme III are better than Scheme
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III∗ due to lower cost of their computational effort. For simulation of supersonic and
hypersonic flows, Scheme III∗ could be the best choice.
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