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Abstract. A local domain-free discretization-immersed boundary method (DFD-
IBM) is presented in this paper to solve incompressible Navier-Stokes equations
in the primitive variable form. Like the conventional immersed boundary method
(IBM), the local DFD-IBM solves the governing equations in the whole domain in-
cluding exterior and interior of the immersed object. The effect of immersed bound-
ary to the surrounding fluids is through the evaluation of velocity at interior and
exterior dependent points. To be specific, the velocity at interior dependent points
is computed by approximate forms of solution and the velocity at exterior depen-
dent points is set to the wall velocity. As compared to the conventional IBM, the
present approach accurately implements the non-slip boundary condition. As a re-
sult, there is no flow penetration, which is often appeared in the conventional IBM
results. The present approach is validated by its application to simulate incom-
pressible viscous flows around a circular cylinder. The obtained numerical results
agree very well with the data in the literature.

AMS subject classifications: 76 Fluid mechanics; 35 Partial differential equations

Key words: Local domain free discretization (local DFD), immersed boundary method (IBM),
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1 Introduction

Immersed Boundary Method (IBM) has been becoming more and more popular in the
numerical simulation of incompressible viscous flows since it was firstly proposed by
Peskin in 1970s for the study of blood flow in the heart valve [1]. The original IBM
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uses a fixed Eulerian mesh for the flow field, and a set of Lagrangian points to repre-
sent the boundary of objects immersed in the fluid. The basic idea of IBM is that the
physical boundary is treated as deformable with high stiffness. A small distortion of
the boundary will yield a force which tends to restore the boundary into its original
shape. The balances of such forces are distributed into the Eulerian mesh points and
the Navier-Stokes (N-S) equations with a body force are solved on the whole domain,
including exterior and interior of the object. After the work of Peskin [1], numer-
ous research works have been made to improve IBM. Goldstein et al. [2] proposed
a model named virtual boundary method which permits simulations with complex
geometries. Lai and Peskin [3] presented a so-called second-order accurate IBM with
adoption of a well-chosen Dirac delta function. Linnick and Fasel [4] used the fourth-
order compact finite-difference schemes for approximation of spatial derivatives in
the IBM application. Lima E Silva et al. [5] proposed a version named physical virtual
model, which is based on the conservation laws, and simulated a channel flow and
the flow around a circular cylinder. Feng and Michaelides [6] firstly presented the im-
mersed boundary-lattice Boltzmann method (IB-LBM) to simulate the motion of rigid
particles in the flow field, where the solution of flow field is obtained by the newly-
developed lattice Boltzmann method (LBM) [7]. Later, Niu et al. [8] proposed the
momentum exchange-based IB-LBM for simulation of several incompressible flows,
and Peng et al. [9] developed the multi-block IB-LBM for simulation of flows around
a circular cylinder and an airfoil.

The major advantage of IBM is its simplicity and easy implementation because it
decouples the solution of governing equation with the implementation of boundary
conditions at immersed boundaries. This means that the governing equation can al-
ways be solved on a regular domain without considering the presence of solid bound-
ary immersed in the flow field. The effect of solid boundary to surrounding fluids
is through the introduction of body force in the governing equation. On the other
hand, it should be indicated that the conventional IBM suffers two major drawbacks.
One is the flow penetration to the immersed boundary. This is because in the IBM,
the non-slip boundary condition is not enforced, and is only approximately satis-
fied at the converged state. As a consequence, some streamlines may penetrate the
immersed boundary. The flow penetration means some mass exchange through the
boundary, which will cause the momentum exchange and lead to numerical error of
force calculation. Another drawback is the low order accuracy nearby the immersed
boundary due to the use of Dirac delta function interpolation. In the IBM, the dis-
tribution of restoring force at the boundary (Lagrangian) nodes to the Eulerian mesh
points and interpolation of flow velocity at the Eulerian mesh points to the boundary
nodes are through the Dirac delta function, which only has the first order of accuracy.
To remove the drawback of flow penetration, Shu et al. [10] did some analysis and
found that unsatisfying of non-slip boundary condition in IBM is in fact due to pre-
calculated restoring force. Using the fractional step technique, they concluded that,
adding a body force in the momentum equations is equivalent to make a correction in
the velocity field. To enforce the non-slip boundary condition, the velocity correction
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(restoring force) should be considered as unknown, which is determined by enforcing
the non-slip boundary condition. In the work of Shu et al. [10], the flow penetration
is avoided. However, the numerical accuracy near the immersed boundary is still
the first-order. In addition, it needs to find and store the intersection points between
the immersed boundary and mesh lines. This may bring some inconveniences in the
numerical computation. Recently, Wu and Shu [11] further incorporated the idea of
enforcing non-slip boundary condition into the conventional IBM and presented the
boundary condition-enforced IBM. The drawback of flow penetration is also removed,
but the first order delta function interpolation is still used. It seems that under the cur-
rent framework of IBM, the drawback of low order accuracy due to the use of delta
function is difficult to be overcome. There is a demanding to develop more accurate
and efficient solver to remove this drawback.

On the other hand, it was found that the local domain-free discretization (DFD)
method can enforce the non-slip boundary condition with the second or higher order
of accuracy [12]. The DFD method was firstly proposed by Shu and Fan [13], Shu and
Wu [14]. Its basic idea is inspired from the analytical method. Consider a partial dif-
ferential equation (PDE) on an irregular domain. The PDE is discretized at all mesh
points inside the solution domain (defined as interior points), but the spatial discretiza-
tion at an interior mesh point may involve some points outside the solution domain
(defined as exterior points). The functional values at those exterior points can be eval-
uated by approximate forms of solution at the interior point, either globally or locally,
leading to two versions of DFD methods, i.e., global DFD and local DFD [12]. If the
approximate form of solution is obtained by using all the information along a mesh
line, it is named as the global DFD approach. If the approximate form of solution is
obtained locally by using a low order polynomial, it is termed as the local DFD ap-
proach. In general, DFD method can be applied to any kind of mesh configuration.
When the local DFD method is applied on the Cartesian mesh, it can be considered
as a kind of Cartesian mesh solvers. Usually, for the application of local DFD method
to problems with complex geometry or moving boundaries [15], the mesh points take
one of the following three statuses: interior points where the governing equations
are solved; exterior dependent points adjacent to the boundary where the functional
values are determined by approximate forms of the solution; exterior independent
points where we do not need to do anything. It should be indicated that the process
of computing functional values at exterior dependent points by approximate forms of
solution is actually extrapolation, which would bring larger numerical errors than the
interpolation.

From the above descriptions, we can see clearly that the conventional IBM and lo-
cal DFD method have different features. To summarize, IBM is easy to apply, which
solves governing equations in the whole domain, but it may not accurately satisfy the
non-slip boundary condition and the numerical treatment near the immersed bound-
ary only has the first order of accuracy. In contrast, the local DFD method can accu-
rately implement the non-slip boundary condition, but it only solves governing equa-
tions at interior points and the functional values at exterior dependent points are cal-
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Figure 1: Classification of points in Local DFD-IBM.

culated by extrapolation. In this work, we will incorporate the idea of IBM (solving
governing equations in the whole domain) into the local DFD method, and the ap-
proach is named as local DFD-IBM. Like the conventional IBM, two sets of nodes are
also used in the local DFD-IBM. One set of nodes are the Eulerian points defined on the
fixed Cartesian mesh (mesh nodes in Fig. 1). The other set of nodes are the Lagrangian
points to represent the immersed boundary (represented by small solid squares dis-
tributed along the boundary in Fig. 1). Different from the local DFD method [12], in
the local DFD-IBM, the Eulerian mesh points are classified into three categories: dis-
cretization points (including points inside and outside the immersed object that are
not adjacent to the immersed boundary, represented by black solid circles in Fig. 1)
where the governing equations are solved; interior dependent points just adjacent to
the immersed boundary (represented by empty squares in Fig. 1) where approximate
forms of solution are used to evaluate the functional values; exterior dependent points
just adjacent to the immersed boundary (represented by empty circles in Fig. 1) where
the velocity is set to the boundary velocity. It is indicated that the approximate forms
of solution used for interior dependent points serve as a bridge to link information
between Eulerian and Lagrangian nodes with accurate implementation of non-slip
boundary condition, which has the same role as Dirac delta function used in the con-
ventional IBM. The process is in fact interpolation. Clearly, the present approach com-
bines the advantages of conventional IBM and local DFD method. It is validated by its
application to simulate incompressible viscous flows around a circular cylinder. Nu-
merical experiments show that the present results agree very well with available data
in the literature.

2 Solution of incompressible N-S equations by
local DFD-IBM

In this section, we will describe how to apply the local domain-free discretization-
immersed boundary method (DFD-IBM) to solve incompressible N-S equations. The
primitive variable form of N-S equations is taken as the governing equation for nu-
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merical simulation, which can be written as

Momentum equation:
∂u
∂t

+ u · ∇u = −∇p +
1

Re
∆u, (2.1a)

Continuity equation: ∇ · u = 0. (2.1b)

Re denotes the Reynolds number, defined as

Re =
UL
ν

,

where L is the reference length, U the reference velocity and ν the kinematic viscosity.
Eqs. (2.1a) and (2.1b) can be solved by pressure correction method [16]. Using Euler
explicit scheme, Eq. (2.1a) can be discretized as

ũn+1 − un

∆t
= −H(un)− Gpn +

1
Re

L(un), (2.2)

where H denotes the discrete advection operator, G is the discrete gradient operator,
L the discrete Laplacian operator. Superscripts n and n + 1 denote the time levels.

The basic idea of local DFD-IBM has been described in the introduction. Like the
conventional IBM, Eq. (2.2) is solved in the whole domain. However, at interior depen-
dent points adjacent to the immersed boundary (represented by Lagrangian nodes),
we need to use approximate forms of the solution to evaluate the velocity, and at the
exterior dependent points adjacent to the immersed boundary, we need to set their
velocity to the wall velocity. Note that the local DFD method only gives discretization
strategy, that is, functional values at dependent points to the boundary are evaluated
by approximate forms of the solution. It still needs conventional numerical schemes
to discretize the spatial derivatives. In this work, the second order finite difference
schemes are used to approximate spatial derivatives in discrete operators H, G and L.

To show the process of evaluating the velocity at dependent interior and exterior
points, let us consider a solid boundary immersed in a fixed Cartesian mesh as shown
in Fig. 1, where the symbol ”�” represents the interior dependent points just adjacent
to the immersed boundary and ”⃝” represents the exterior dependent points just ad-
jacent to the immersed boundary, ”•” represents for all other Eulerian nodes in the
local DFD-IBM method. The symbol ”�” denotes the Lagrangian nodes, i.e., the in-
tersection points of mesh lines and the immersed boundary. Obviously, A1 and A2
are interior dependent points and E is the exterior dependent point. The velocity at
A1 and A2 can be evaluated by approximate forms of the solution which involve the
solution at interior mesh points and the velocity at immersed boundary. The evalua-
tion process is actually interpolation. Take point A1 as an example. Since numerical
discretization in the x direction at the exterior dependent point E needs the informa-
tion at A1, the velocity at A1 can be evaluated by a second order polynomial along
the x direction, which involves three points P, B1, C1 as shown in Fig. 1. Here, B1 and
C1 are the interior mesh points, and point P is the intersection point of the horizontal
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mesh line with the immersed boundary, where the velocity of immersed boundary is
assigned, i.e.,

uP = Ub, vP = Vb. (2.3)

Ub, Vb are velocity components of the immersed boundary. For stationary boundary,
they are zero. The interpolation form for calculation of velocity at A1 can be written
as

ûn
A1 =

(xA1 − xB1)(xA1 − xC1)

(xP − xB1)(xP − xC1)
un

P +
(xA1 − xC1)(xA1 − xP)

(xB1 − xC1)(xB1 − xP)
un

B1

+
(xA1 − xP)(xA1 − xB1)

(xC1 − xP)(xC1 − xB1)
un

C1, (2.4a)

v̂n
A1 =

(xA1 − xB1)(xA1 − xC1)

(xP − xB1)(xP − xC1)
vn

P +
(xA1 − xC1)(xA1 − xP)

(xB1 − xC1)(xB1 − xP)
vn

B1

+
(xA1 − xP)(xA1 − xB1)

(xC1 − xP)(xC1 − xB1)
vn

C1. (2.4b)

Similarly, the velocity at point A2 can be updated by the following interpolation form

ûn
A2 =

(yA2 − yB2)(yA2 − yC2)

(yQ − yB2)(yQ − yC2)
un

Q +
(yA2 − yC2)(yA2 − yQ)

(yB2 − yC2)(yB2 − yQ)
un

B2

+
(yA2 − yQ)(yA2 − yB2)

(yC2 − yQ)(yC2 − yB2)
un

C2, (2.5a)

v̂n
A2 =

(yA2 − yB2)(yA2 − yC2)

(yQ − yB2)(yQ − yC2)
vn

Q +
(yA2 − yC2)(yA2 − yQ)

(yB2 − yC2)(yB2 − yQ)
vn

B2

+
(yA2 − yQ)(yA2 − yB2)

(yC2 − yQ)(yC2 − yB2)
vn

C2, (2.5b)

which involves three points Q, B2, C2 in the vertical (y) direction as shown in Fig. 1.
Here B2, C2 are the interior mesh points, and Q is the intersection point of a vertical
mesh line with the immersed boundary, where the immersed boundary velocity is
assigned, i.e.,

uQ = Ub, vQ = Vb. (2.6)

Again, Ub, Vb are velocity components of the solid boundary. Note that in Eqs. (2.3)
and (2.6), the non-slip boundary condition is directly implemented through the ve-
locity at points P and Q. The approximate forms of solution (2.4) and (2.5) have the
second-order of accuracy, and they are actually interpolation forms to compute veloc-
ity at A1 and A2.

Point E is the exterior dependent node. Since E is inside the solid body (outside
flow domain), in this work, its velocity is simply assigned to the wall velocity, i.e.:

ûn
E = Ub, v̂n

E = Vb. (2.7)

On the other hand, the solution of Eq. (2.2) can also be obtained by the following two
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steps

u∗ − un

∆t
= −H(un) +

1
Re

L(un), (2.8a)

ũn+1 − u∗

∆t
= −Gpn. (2.8b)

Here u∗ is the intermediate velocity. Since ũn+1 has been calculated by Eq. (2.2), we
can use Eq. (2.8b) to compute the intermediate velocity u∗. Note that in this process,
the boundary effect to the surrounding fluids has been considered by Eqs. (2.4), (2.5)
and (2.7). With u∗, the velocity at time level tn+1 can be corrected by

un+1 − u∗

∆t
= −Gpn+1, (2.9)

where pn+1 is the pressure at time level tn+1. Apart from the momentum equation, the
continuity equation (2.1b) should also be satisfied at time level tn+1, that is,

Dun+1 = 0, (2.10)

where D is the divergence operator. Taking divergence of Eq. (2.9) and using Eq. (2.10),
we have

Lpn+1 =
1

∆t
(Du∗). (2.11)

Eq. (2.11) is Poisson equation for pressure pn+1. Once the pressure pn+1 is calculated
by Eq. (2.11), the velocity un+1 can be given by

un+1 = u∗ − ∆tG(pn+1) . (2.12)

Obviously, in the above process, the physical boundary condition is implemented. As
a result, there will be no flow penetration to the solid boundary. This will be confirmed
by the test examples shown in the next section.

To sum up, the present solver has the following features:

(1) In the present solver, there is no need to calculate the restoration force F on the La-
grangian points, and thus no need to distribute the restoring force F to the Eulerian
nodes. The boundary effect is considered in the approximate form of solution to update
the velocity at interior and exterior dependent points.

(2) The boundary condition is implemented accurately. As a consequence, the flow pene-
tration is avoided.

(3) Since the pressure on all the Eulerian nodes is obtained by solving the pressure Poisson
equation, the treatment of Neumann boundary condition for pressure as did in other
Cartesian mesh solvers, is avoided.

(4) Like the original local DFD method, an important step of the local DFD-IBM method is
to identify which mesh node is the interior dependent node, and which mesh node is
the exterior dependent node. In other words, we should know the status of the mesh
nodes. With our recently developed ”odd/even parity method” [12], this judgment can
be done very quickly. For rigid body problem, this judgment can be done only once
before the iteration. Then the status of the mesh nodes can be stored in the rest of the
computation to save the running time.
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3 Application of local DFD-IBM to simulate flows over a
stationary circular cylinder

The incompressible, viscous flow around a circular cylinder is a classical problem in
fluid mechanics. This kind of problems has been studied extensively and there are
numerous theoretical, experimental and numerical results available in the literature.
It is well known that for this problem, different Reynolds number gives different kind
of flow behaviors. It is generally agreed that in two dimensions, the vortex shedding
begins at a critical Reynolds number around 49. For the case of Reynolds numbers less
than the critical value (Recritical = 49), the flow is an essentially steady one. Above this
critical Reynolds number, the introduced perturbation will trigger the vortex shedding
process to form a Von Karman vortex street. The flow will show an unsteady feature.
It serves as a good sample problem for validating a new numerical method in solving
unsteady two-dimensional Navier-Stokes equations. In this paper, the local DFD-IBM
is used to solve this problem. In the present study, we performed numerical simulation
at a series of Reynolds numbers ranging from 10 to 200 with various flow patterns in
the steady and unsteady state. The Reynolds number Re is defined as

Re =
U∞D

ν
,

where D is the cylinder diameter, and ν is the kinematic viscosity.
The problem configuration is shown in Fig. 2, which is an incompressible, viscous

fluid flow at a constant velocity U∞ past a stationary cylinder of diameter D.
The two-dimensional Navier-Stokes equations (2.1a) and (2.1b) are taken as the

governing equations for this problem. The boundary conditions of the problem are:
At the inlet, a free stream velocity profile is specified, that is,{

u = 1,
v = 0.

(3.1)

On the cylinder surface, non-slip boundary condition is implemented by{
u = 0,
v = 0.

(3.2)

On the far field boundary except downstream of the cylinder, undisturbed velocity
field is used, that is, {

u = 1,
v = 0.

(3.3)

At the far field downstream boundary of the cylinder, the natural boundary condition
is applied by 

∂u
∂x

= 0,

∂v
∂x

= 0.
(3.4)
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Figure 2: Computational domain for simulation of flow around a circular cylinder.

Figure 3: Local refined mesh for simulation of flow past a circular cylinder (45363 nodes).

At beginning of numerical simulation, the unsymmetrical initial flow field is used to
act as the initial perturbation, which is given as

u|t=0 = 1.0 − 0.05 ∗ x√
x2 + y2

,

v|t=0 =
0.05 ∗ y√

x2 + y2
.

(3.5)

In the simulation, an initial Cartesian mesh of 160 × 101 is used. The initial uniform
mesh is obviously not fine enough when Re becomes larger and larger. This is because
the boundary layer will be thinner and thinner as Re increases. Therefore, in this work,
we adopted the stencil mesh refinement algorithm proposed by Ding & Shu [17] to
refine the mesh around the cylinder with 8 refinement levels. The final mesh is shown
in Fig. 3, which has 45363 nodes. The mesh spacing near the cylinder is about 0.0125D.

3.1 Simulation of steady flow over a stationary circular cylinder

The local DFD-IBM is firstly applied to simulate the steady flow over a stationary cir-
cular cylinder with Re = 20 and 40. Fig. 4 illustrates the streamlines when flow reaches
its final steady state. For both cases, a pair of vortices develops behind the cylinder
and is perfectly aligned. This is consistent with previous observation. To demonstrate
that the present approach has no flow penetration to the boundary of immersed object,
the streamlines obtained by conventional IBM [18] are shown in Fig. 5 for comparison.
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(a) Re = 20 (b) Re = 40
Figure 4: Streamlines for steady flow with Re = 20 and 40 (Present method).

(a) Re = 20 (b) Re = 40
Figure 5: Streamlines for steady flow with Re = 20 and 40 from conventional immersed boundary
method [18]: Flow penetration is very clear in this figure.

Fig. 5 shows very clearly that some streamlines pass through the solid body, which is
not true in physics. Comparison between Fig. 4 and Fig. 5 demonstrates that the local
DFD-IBM has the advantage to satisfy the non-slip boundary condition accurately.

Some quantitative parameters for the recirculation region, such as the length of
the recirculation region, Ls, from the rearmost point of the cylinder to the end of the
wake, separation angle θs and drag coefficient CD, as well as the results from other
researchers, are listed in Table 1. It was found that both the geometrical and dynam-
ical parameters agree well with the results of previous studies for all two Reynolds
numbers studied.

Table 1: Comparison of geometrical and dynamical parameters with previous studies for Re = 20 and 40.

Ls/a θs CD
Re = 20 Dennis and Chang [19] 1.88 43.7◦ 2.05

He and Doolen [20] 1.84 43.0◦ 2.15
Calhoun [21] 1.82 45.5◦ 2.19
Tuann and Olson [22] 1.80 44.1◦ 2.25
Ding et al [23] 1.88 43.8◦ 2.14
Present 1.80 43.8◦ 2.22

Re = 40 Dennis and Chang [19] 4.69 53.8◦ 1.522
Calhoun [21] 4.36 54.2◦ 1.62
Tuann and Olson [22] 4.20 54.8◦ 1.675
Ding et al. [23] 4.64 52.8◦ 1.58
Present 4.45 53.7◦ 1.567
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3.2 Simulation of unsteady flow over a stationary circular cylinder

Simulation of the vortex shedding process behind a circular cylinder is a standard
test case for validating new numerical approaches to simulate unsteady flows. In this
paper, comparisons are made between the present study and other numerical work for
Reynolds numbers of Re = 100 and 200. It is generally agreed that in two dimensions,
the vortex shedding begins when Reynolds number is above 49. Fig. 6 and Fig. 7 show
the instantaneous streamlines and vorticity contours near the wake at Re = 100 and
200. It is found that for Re = 100, 200, the flow field eventually settles into a periodic
oscillatory pattern. This confirms the other experimental and numerical findings.

For the flow past blunt bodies, the drag and lift coefficients at the surface of body
are two important parameters. The time-evolution of these two characteristic parame-
ters illustrates the variation of the flow field. The drag and lift coefficients are defined
by

CD =
FD

ρU2D/2
, CL =

FL

ρU2D/2
, (3.6)

where FD is the drag force and FL is the lift force acting on the circular cylinder. In this
study, the drag force and lift force are obtained by integrating the local pressure and
stress distributions along the cylinder wall. Figs. 8 and 9 show the final periodic state
of these two parameters for Re = 100 and Re = 200. It can be observed in Figs. 8 and
9 that lift and drag coefficients show obvious periodic oscillations for both Re = 100
and 200 cases. This implies the periodic variation of flow field. From Figs. 8 and 9, it
can also be found that the lift coefficient oscillates with larger amplitude than the drag
coefficient, and the drag coefficient varies twice as fast as the lift coefficient. These
phenomena are consistent with those observed by other researchers. The reason lies

(a) Re = 100 (b) Re = 200
Figure 6: Near wake structures of instantaneous streamlines for Re = 100, 200.

(a) Re = 100 (b) Re = 200
Figure 7: Near wake structures of instantaneous vorticity contours for Re = 100, 200.
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Figure 8: The time-evolution of Lift and Drag coefficients for Re = 100.
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Figure 9: The time-evolution of Lift and Drag coefficients for Re = 200.

in the fact that the drag coefficient is affected by vortex shedding process from both
sides of the cylinder.

The average drag coefficient and lift coefficient and Strouhal number (St = f D/U,
where f is the shedding frequency) are calculated and listed in Table 2. The vortex
shedding frequency is obtained by measuring the final period of the lift coefficient. In
Table 2, the present results are quantitatively compared with numerical results from
other researchers for Re = 100 and 200, respectively. It can be observed that good
agreement has been achieved.

Table 2: Comparison of dynamical parameters with previous studies for Re = 100 and 200.

CD CL St
Re = 100 Braza et al. [24] 1.364 ± 0.015 ±0.25 0.160

Liu et al. [25] 1.350 ± 0.012 ±0.339 0.164
Ding et al. [26] 1.325 ± 0.008 ±0.28 0.164
Present results 1.330 ± 0.010 ±0.341 0.166

Re = 200 Braza et al. [24] 1.40 ± 0.05 ±0.75 0.200
Liu et al. [25] 1.31 ± 0.049 ±0.69 0.192
Ding et al. [26] 1.327 ± 0.045 ±0.60 0.196
Present results 1.30 ± 0.041 ±0.69 0.200
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4 Conclusions

The major advantage of conventional IBM is its simplicity and easy implementation.
It solves the governing equations in the whole domain and decouples the solution of
governing equations with the implementation of boundary conditions at immersed
boundaries. However, it suffers two major drawbacks. One is the flow penetration
due to less accurate satisfaction of non-slip boundary conditions. The other is low
order accuracy near the immersed boundary due to the use of Dirac delta function. As
shown in this paper, these two drawbacks can be removed in the proposed local DFD-
IBM, which incorporates the idea of IBM (solving governing equations in the whole
domain) into local DFD method. As the non-slip boundary condition is accurately
implemented in the local DFD-IBM, the flow penetration often appeared in the IBM
results is avoided. This is confirmed by its application to simulate flows around a
circular cylinder. The present numerical results are also in good agreement with other
experimental and numerical data in the literature. It seems that the present approach
has a potential to become an effective solver for simulation of incompressible viscous
flows.
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