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Abstract. In this work, the hybrid solution reconstruction formulation proposed by
Luo et al. [H. Luo, H. Dai, P. F. de Sousa and B. Yin, On the numerical oscillation of the
direct-forcing immersed-boundary method for moving boundaries, Computers & Flu-
ids, 56 (2012), pp. 61–76] for the finite-difference discretization on Cartesian meshes
is implemented in the finite-element framework of the local domain-free discretiza-
tion (DFD) method to reduce the numerical oscillations in the simulation of moving-
boundary flows. The reconstruction formulation is applied at fluid nodes in the im-
mediate vicinity of the immersed boundary, which combines weightly the local DFD
solution with the specific values obtained via an approximation of quadratic polyno-
mial in the normal direction to the wall. The quadratic approximation is associated
with the no-slip boundary condition and the local simplified momentum equation.
The weighted factor suitable for unstructured triangular and tetrahedral meshes is
constructed, which is related to the local mesh intervals near the immersed boundary
and the distances from exterior dependent nodes to the boundary. Therefore, the re-
constructed solution can account for the smooth movement of the immersed boundary.
Several numerical experiments have been conducted for two- and three-dimensional
moving-boundary flows. It is shown that the hybrid reconstruction approach can work
well in the finite-element context and effectively reduce the numerical oscillations with
little additional computational cost, and the spatial accuracy of the original local DFD
method can also be preserved.

AMS subject classifications: 76D05, 76M99
Key words: Numerical oscillation, immersed boundary method, moving boundary, domain-free
discretization, boundary condition.

1 Introduction

Recently, the immersed boundary methods (IBMs) have gained a special attention for its
simplicity and effectiveness in the simulation of flows with complex moving boundaries.
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According to the classification proposed by Mittal and Iaccarino [1], IBMs can be catego-
rized into two major groups. One is the so-called continuous forcing approach where the
forcing is incorporated into the momentum equations before discretization is performed.
The distinguished drawback of this approach is that the boundary condition on the im-
mersed interface cannot be precisely satisfied and the interface is smeared. The other
group corresponds to the discrete forcing approach where the boundary condition is di-
rectly introduced into the discrete equations by imposing discrete body forces, explicitly
or implicitly, on the cells/nodes close to the surface of immersed body and thereby en-
ables a sharp representation of the immersed interface.

Temporal oscillations can be found in the vast majority of the numerical results ob-
tained by the discrete-forcing IBMs [2–5]. Lee et al. [3] indicated that the spatial disconti-
nuity of pressure and the temporal discontinuity of velocity are the two sources of these
numerical oscillations. In the work of Kim et al. [4], the oscillations are found to be re-
duced by introducing the mass source/sink terms. In the work of Seo and Mittal for the
ghost-cell IBM [2], the numerical oscillations are reduced by adopting the Cartesian cut-
cell approach [6,7] with a virtual merging technique [8]. Later, Lee and You [9] proposed a
fully-implicit ghost-cell IBM coupled with a mass source/sink term to remedy this prob-
lem. Nevertheless, all the aforementioned approaches are considered from the perspec-
tive of improving mass conservation near the immersed boundary. To achieve this goal,
a tedious task of geometric handling, such as local reconstruction of mesh cells in the im-
mediate vicinity of the boundary and recalculation of fluxes for these cells is inevitably
required. These processes could be time-consuming and difficult to implement, espe-
cially for three-dimensional problems with complex geometries. Recently, Luo et al. [10]
proposed a hybrid reconstruction formulation which is considered from the perspective
of making smooth transitions of numerical descriptions at the direct-forcing points. They
stated that when the boundary moves across the nodes on the fixed background mesh,
the abrupt change of numerical description between the standard finite-difference for-
mula and the flow reconstruction at these nodes could cause numerical oscillations in the
pressure. To reduce the oscillations, a hybrid formulation was proposed, which combines
the reconstructed solution and the solution of governing equations at the fluid nodes im-
mediately next to the solid boundary.

Zhou and Shu recently proposed a local domain-free discretization (DFD) method to
simulate the moving-boundary flows [11]. In this method, a partial differential equation
is discretized at all mesh nodes inside the solution domain, but the discrete form may
involve some exterior nodes. The exterior dependent nodes, which are connected to an
interior node by a cell edge, serve as the role to enforce the wall boundary condition. The
flow variables at an exterior dependent node are obtained via some approximate form of
the solution in the vicinity of solid boundary. This method can be classified as a discrete-
forcing IBM. Unsurprisingly, temporal oscillations can be observed in the previous DFD
results of moving-boundary problems.

Following the work of Luo et al. [10], we formulate a hybrid solution reconstruc-
tion in the finite-element framework of the local DFD method to reduce the numerical
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oscillations in the results of moving-boundary problems. The formulation is applied at
fluid nodes in the immediate vicinity of the immersed boundary and combines the lo-
cal DFD solution with the specific values calculated by the quadratic interpolation in the
normal direction to the wall. The quadratic interpolation is inspired by the linear one
employed in the hybrid Cartesian immersed boundary (HCIB) method [12]. With this
solution reconstruction, a smooth transition of the numerical description at these fluid
nodes near the immersed boundary can be achieved, and the temporal oscillations can
be reduced. Furthermore, the tedious work of geometric handling in the Cartesian cut-
cell [2] and mass source/sink [4, 9] approaches can be avoided. In this work, the hybrid
reconstruction formulation has also been implemented for moving-boundary problems
with complex three-dimensional geometries.

The reminder of this article is arranged as follows. In Section 2, the governing equa-
tions and the basic numerical schemes in the local DFD method are described briefly. In
Section 3, the hybrid reconstruction approach aiming at the reduction of numerical os-
cillations in the simulation of moving-boundary flows is presented, and the definition of
the weighted average factor is elaborated. In Section 4, we validate the present approach
for both two- and three-dimensional moving-boundary flows by numerical experiments.
Finally, in Section 5, we summarize this work and present the conclusions.

2 Governing equations and basic numerical schemes

The two-dimensional incompressible Navier-Stokes equations in a Cartesian coordinate
system can be written as

Im · ∂w
∂t

+
∂fi

∂xi
=

∂si

∂xi
, i=1,2, (2.1)

where w is the vector of conserved variables, fi and si are the convective and viscous flux
vectors, respectively

w=

 p
u1
u2

, fi =

 ui
u1ui+pδ1i
u2ui+pδ2i

, si =

 0
τi1
τi2

, (2.2)

and Im =diag(0,1,1) is the modified identity matrix annihilating the temporal derivative
of pressure from the continuity equation. In (2.2), ui denotes the velocity components, p
the pressure, and τij the dimensionless viscous stress tensor.

In the original local DFD method [11], the two-dimensional computational domain is
discretized with a triangular mesh. Spatial discretization of the governing equations is
achieved by employing the Galerkin finite element approach proposed by Mavriplis and
Jameson [13]

Im · ∂(ΩPwP)

∂t
=

n

∑
e=1

FA+FB

2
·∆LAB−

n

∑
e=1

3
2

Se ·∆LAB. (2.3)
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Figure 1: Influence domain of node P.

In (2.3), the summation is over all the triangles that share the node P, and ΩP rep-
resents the area sum of these triangles. The set of these triangles defines the influence
domain of P. As illustrated in Fig. 1, ∆LAB denotes the edge vector (outward normal) of
the face of each triangle e on the boundary of the influence domain. FA and FB are the
tensors of convective flux at the two ends of this edge, and Se is the viscous flux tensor in
triangle e.

Non-reflecting boundary conditions at the in- and outflow boundaries are imposed
via the Steger-Warming flux splitting scheme [14]. The artificial dissipation term that con-
sists of biharmonic operators is introduced to prevent the odd-even decoupling [15]. The
semi-discrete equations (2.3) are integrated in time with a dual-time-stepping scheme [15].
The third-order temporal discretization is used in physical time marching, and the five-
stage hybrid scheme proposed in [13] is adopted to march in the pseudo time.

3 Implementation of the hybrid solution reconstruction in the
local DFD

3.1 Treatment of the immersed boundary in the local DFD

The treatment of the immersed boundary in the local DFD method has been described
in detail in [11, 16]. Here, only a brief review is given for completeness. According to
the basic numerical method presented in Section 2, the discrete form of governing equa-
tions at an interior computed node in the immediate vicinity of the immersed boundary
involves at least one node in the solid domain. An example is illustrated in Fig. 2. To
close the discretization, the functional values at the exterior dependent nodes are updat-
ed at each physical time step by the approximate form of solution near the immersed
boundary, which is constructed through extrapolation and the simplified momentum e-
quation along the normal direction to the boundary. In this process, the no-slip boundary
condition is enforced [11].

As shown in Fig. 2, the line normal to the boundary and passing through the exterior
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Figure 2: 2D schematic of the extrapolation stencil. H: interior computed node; G: exterior dependent node;
W: boundary-intercept point; I: interpolation point; HC: interior cell edge closest to the wall and intersected
by the normal line.

dependent node G intersects with the boundary at W. To obtain the flow variables at the
exterior dependent node G, an interpolation point I in the fluid domain, which is called
the fictitious point in [11, 16], should be identified. The intersection between the normal
line and the nearest interior cell edge (both ends of the edge locate in the fluid) is defined
as the interpolation point I. The values of flow variables at the point I can be obtained
by linear interpolation between the two end points of the edge, points H and C in Fig. 2.
Therefore, the velocity components at the exterior dependent node G can be obtained by
linear extrapolation between I and W

uG =
uW |IG|−uI |WG|

|IW| . (3.1)

In the above equation, uG, uW and uI are the Cartesian components of the velocity at
G, W and I, respectively, and the absolute value means the distance between the two
points. According to the no-slip boundary condition, uW is equal to the component of the
velocity of the known boundary motion.

By solving the local simplified momentum equation(∂p
∂n

)
W
=−

(dVn

dt

)
W

, (3.2)

where Vn is the normal component of the velocity of the boundary motion, the pressure
at the exterior dependent node G can be obtained

pG = pI+|IG|
(dVn

dt

)
W

, (3.3)

where pG and pI represent the pressure at the exterior dependent node G and the in-
terpolation point I, respectively. With the known values of flow variables at all exterior
dependent nodes, the discretization is closed in the whole solution domain.
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3.2 Hybrid reconstruction approach

Obviously, in the local DFD method, the governing equations are solved down to the
fluid nodes in the immediate vicinity of the immersed boundary. However, in the HCIB
approach proposed by Gilmanov and Sotiropoulos [12], the flow variables at the fluid
nodes closest to the boundary (node H in Fig. 3) are obtained by linear interpolation a-
long the normal line, and the governing equations are solved only down to the second
off-wall nodes. To obtain the interpolated values of flow variables at node H, an interpo-
lation point I in the fluid domain is constructed. It is the intersection between the normal
line HW and the nearest edge BC to the boundary both ends of which are regular interior
computed nodes. The values of flow variables at point I can be calculated by the interpo-
lation between two ends of the edge. Then, the flow variables at node H can be obtained
by the linear interpolation between I and W.

Figure 3: 2D schematic of the interpolation stencil. G: exterior dependent node; H: hybrid node; W: boundary-
intercept point; I: interpolation point; B and C: regular interior computed nodes.

To enhance the interpolation accuracy, the specific values of flow variables at node H
can be obtained via an approximation of quadratic polynomial in the normal direction
in conjunction with the no-slip boundary condition and the simplified local momentum
equation [17]. Let n be the distance measured from the boundary-intercept point W. In
the vicinity of the immersed boundary, the flow variables are assumed to vary with n in
a quadratic manner

ϕ(n)= c1n2+c2n+c3, (3.4)

where c1, c2, c3 are the coefficients to be determined.
The coefficients for the distribution of velocity components can be determined by

solving the following system of linear equations

uW =u(0)=VW = c3, (3.5a)

uI =u(nI)= c1n2
I +c2nI+c3, (3.5b)(∂u

∂n

)
I
=2c1nI+c2, (3.5c)
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where VW is the known velocity component of the prescribed boundary motion, nI is the
distance between I and W, and ( ∂u

∂n )I represents the derivative at point I which can be
calculated over the triangle ABC as shown in Fig. 3. Therefore, the coefficients for the
distribution of velocity components can be expressed as

c1=
nI

(
∂u
∂n

)
I
−uI+VW

n2
I

, c2=
(∂u

∂n

)
I
−2c1nI , c3=VW . (3.6)

Similarly, the coefficients for the distribution of pressure can be determined by solving
the following system of linear equations

pI = c1n2
I +c2nI+c3, (3.7a)(∂p

∂n

)
I
=2c1nI+c2, (3.7b)(∂p

∂n

)
W
= c2. (3.7c)

In (3.7b), ( ∂p
∂n )I means the derivative of pressure at I, and it can be calculated in the same

way as ( ∂u
∂n )I . (

∂p
∂n )W in (3.7c) can be obtained directly from the simplified local momen-

tum equation (3.2). Then, the coefficients for the pressure distribution can be expressed
as

c1=
1

2nI

((∂p
∂n

)
I
+
(dVn

dt

)
W

)
, c2=−

(dVn

dt

)
W

, c3= pI−
nI

2

((∂p
∂n

)
I
−
(dVn

dt

)
W

)
. (3.8)

Therefore, the interpolated values of flow variables at the node H can be obtained by
substituting n=nH into (3.4).

In the local DFD method, when the node H is close to the boundary, it may be an
exterior dependent node at the next time-step. The sudden change of the role of node H
due to the motion of the solid boundary will introduce numerical oscillations. Following
the work of Luo et al. [10], a hybrid solution reconstruction for the local DFD method
is formulated to make smooth transitions for the abrupt change of the role of the nodes
like H. When the node H locates relatively far from the immersed boundary, it tends to
be a regular interior computed node (see Fig. 2). In this case, the Navier-Stokes solution
at H obtained by the local DFD method is more accurate. When the node H is close to
the boundary, the values of flow variables at H obtained by the quadratic interpolation
described by Eqs. (3.2)-(3.8) will be more accurate (see Fig. 3). Therefore, the formulation
of the hybrid solution reconstruction at the nodes like H should combine weightly the
Navier-Stokes solution with the specific values calculated by the quadratic interpolation.
Following Luo et al. [10], we call any fluid node like H in the immediate vicinity of the
immersed boundary a hybrid node. If the flow variables at the hybrid nodes obtained by
solving the governing equations are denoted by ϕcomput and the flow variables obtained
via interpolation are denoted by ϕinterp, the reconstructed solution can be expressed as

ϕhybrid=(1−α)ϕcomput+αϕinterp, (3.9)
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where 0≤α≤1 is the weighted average factor and its construction will be discussed later
in the next subsection.

Note that the identification procedure of boundary-intercept points and interpola-
tion points associated with all hybrid nodes is performed only once for each physical
time-step, and not involved in the pseudo-time marching. The identification procedure
follows the similar way as that in the local DFD method. Furthermore, the number of
hybrid nodes is relatively small. Therefore, compared to the original local DFD, the in-
crement of computational cost due to the hybrid reconstruction is almost negligible.

3.3 Construction of the weighted average factor

As discussed in Section 3.2 and indicated by Luo et al. [10], the weighted average factor
α in (3.9) should properly take into account the influence of the abrupt change of the role
of the hybrid node due to the motion of the immersed boundary. Namely, the factor α
should approach 1 when the hybrid node is close to the boundary, and it should approach
0 when the hybrid node is far away from the boundary (its exterior dependent nodes are
close to the boundary).

Since the finite-element discretization is employed in the local DFD method, the fea-
tures of the unstructured triangular meshes must be considered in the construction of the
weighted average factor. The schematic for constructing the factor in the two-dimensional
case is illustrated in Fig. 4. In this figure, Γ represents the immersed boundary at the cur-
rent time step. The hybrid node H is assumed to have three exterior dependent nodes,
i.e., G1, G2 and G3. ∆1, ∆2 and ∆3 are distances from G1, G2 and G3 to the immersed
boundary, respectively. The weighted average factor must be related to the local mesh
intervals near the boundary and the distances from the exterior dependent nodes of H to
the boundary. Then, the weighted average factor suitable for the unstructured triangular
meshes is constructed as below

d1=
∆1

|G1H| , d2=
∆2

|G2H| , d3=
∆3

|G3H| , (3.10a)

β1=
d1

d1+d2+d3
, β2=

d2

d1+d2+d3
, β3=

d3

d1+d2+d3
, (3.10b)

α=β1d1+β2d2+β3d3=
d1

2+d2
2+d2

3
d1+d2+d3

. (3.10c)

The general formulation of the weighted average factor α can be expressed as

α=
N

∑
n=1

dn
2
/ N

∑
n=1

dn, (3.11)

where N represents the total number of the exterior dependent nodes for a given hybrid
node. Note that the value of α obtained by Eq. (3.11) may exceed 1. In this situation, α is
simply set to 1.
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Figure 4: 2D schematic for construction of the weighted average factor. Γ: the immersed boundary; H: hybrid
node; G1, G2, G3: exterior dependent nodes.

The hybrid solution reconstruction approach is originally proposed by Luo et al. for
the finite-difference discretization on the Cartesian meshes [10]. In this work, we imple-
ment it in the finite-element framework of the local DFD method. In the implementation,
the features of the unstructured triangular meshes have been considered. The specif-
ic values of flow variables at the hybrid nodes are calculated via an approximation of
quadratic polynomial in the direction normal to the wall. The weighted average factor is
properly related to the distances from the exterior dependent nodes to the wall and the
local intervals of the triangular mesh in the wall proximity that are represented by the
distances from the hybrid node to its exterior dependent nodes.

3.4 Extension to three dimensions

For three-dimensional cases, the solution domain is discretized with a tetrahedral mesh.
The body surface is discretized with an unstructured triangular mesh, which is indepen-
dent of the background mesh. The extension of the local DFD method to three dimen-
sions has been elaborated in the previous work [16]. As done in two-dimensional cases,
specific values of flow variables at the hybrid nodes are also calculated via the quadrat-
ic interpolation in the direction normal to the body surface. The interpolation stencil for
three-dimensional cases is illustrated in Fig. 5, which is the same as employed in the HCIB
approach for inviscid compressible flows [18]. In this figure, W is the boundary-intercept
point corresponding to the hybrid node H. The interpolation point I is the intersection
of the normal line and the wall-nearest face of a tetrahedral cell whose three vertices are
the interior computed points (triangle ABC in the figure). Then, ϕI , any of the flow vari-
ables at the interpolation point I, can be obtained via the linear interpolation over the
triangular face ABC

ϕI =
3

∑
k=1

Φk(xI ,yI ,zI)ϕk, (3.12)
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Figure 5: Three-dimensional schematic of the interpolation stencil. Γ: the immersed boundary; H: hybrid node;
W: boundary-intercept point; I: interpolation point.

Figure 6: Three-dimensional schematic for the construction of the weighted average factor. Γ: immersed
boundary; H: hybrid node; G1, G2, G3: exterior dependent nodes.

where the summation over k refers to the three vertices of ABC and Φk(xI ,yI ,zI) is the
linear interpolation function for each vertex at the point I. Therefore, the interpolated
flow variables at the hybrid node H can be obtained in the same way as described in
Section 3.2 for two-dimensional cases.

The hybrid solution reconstruction and the definition of the weighted average factor
can also be easily extended to three dimensions. For three-dimensional cases, the recon-
structed solution at the hybrid nodes is also expressed by (3.9). The construction of the
weighted average factor for three-dimensional cases is illustrated in Fig. 6. For the sake of
clearness, only one tetrahedron in the influence domain of the hybrid node H is shown
in this figure. The hybrid node H is assumed to have three exterior dependent nodes,
i.e., G1, G2 and G3. ∆1, ∆2 and ∆3 are the distances from G1, G2 and G3 to the immersed
boundary, respectively. For each exterior dependent node, we can define a parameter
di=

∆i
|Gi H| . Then, the general formulation of the weighted average factor (3.11) is still valid

for three-dimensional cases.



Y. Zhang and C. H. Zhou / Adv. Appl. Math. Mech., 8 (2016), pp. 145-165 155

4 Numerical experiments

In this section, the convergence rate of the local DFD method coupled with the hy-
brid solution reconstruction formulation is firstly verified. Then, numerical experiments
for two- and three-dimensional incompressible flows with moving-boundaries are per-
formed to demonstrate the effectiveness of the present hybrid approach in reducing nu-
merical oscillations. To enhance resolution locally, the meshes used in all test cases except
those in Section 4.1 have been refined in the vicinity of solid body. In the subsequen-
t discussions, the original method refers to the original local DFD method without the
introduction of the hybrid solution reconstruction.

4.1 Verification of convergence rate

We consider the Navier-Stokes equations with a forcing term to verify the convergence
rate of the improved local DFD method. The solution domain is bounded by Ω\ω, where
Ω = [−0.5,0.5]×[−0.5,0.5] and ω is a circle with the radius of 0.25 and the center coin-
ciding with that of Ω. The forcing term and the Dirichlet boundary condition can be
determined via the analytical solution provided in [19] as below

u1=2πsin2(πx1)sin(πx2)cos(πx2),
u2=−2πsin2(πx2)sin(πx1)cos(πx1),
p=20x1

2x2.
(4.1)

The L1 and L2 norms are chosen to measure the global error of the solution, and the
L∞ norm is chosen to measure the local error. The Navier-Stokes equations with the an-
alytical solution (4.1) are solved by the present improved local DFD method on a series
of structured-like uniform triangular meshes and a series of isotropic unstructured tri-
angular meshes, respectively. The initial meshes are shown in Figs. 7(a) and (b). The
averaged interval of the unstructured mesh is close to that of the structured-like mesh.

(a) Structured-like mesh (b) Unstructured mesh

Figure 7: Initial meshes for the verification of convergence rate.
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Table 1: Global and local errors of u1 on uniform structured meshes.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

2.0×10−2 1.91×10−3 – 2.84×10−3 – 1.43×10−2 –
1.0×10−2 5.03×10−4 1.93 7.61×10−4 1.90 3.92×10−3 1.87
5.0×10−3 1.31×10−4 1.94 2.04×10−4 1.90 1.03×10−3 1.93

Table 2: Global and local errors of p on uniform structured meshes.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

2.0×10−2 8.94×10−3 – 1.27×10−2 – 6.00×10−2 –
1.0×10−2 2.08×10−3 2.10 3.07×10−3 2.05 2.51×10−2 1.26
5.0×10−3 5.22×10−4 1.99 8.18×10−4 1.91 1.23×10−2 1.03

Table 3: Global and local errors of u1 on unstructured meshes.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

1 1.40×10−3 – 1.97×10−3 – 6.35×10−3 –
2 3.70×10−4 1.92 5.28×10−4 1.90 1.74×10−3 1.87
3 9.50×10−5 1.96 1.37×10−4 1.95 4.66×10−4 1.90

Table 4: Global and local errors of p on unstructured meshes.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

1 6.97×10−3 – 9.74×10−3 – 5.20×10−2 –
2 1.80×10−3 1.95 2.58×10−3 1.92 2.36×10−2 1.14
3 4.68×10−4 1.94 6.92×10−4 1.90 1.12×10−2 1.08

The error-norms and the orders of convergence rate for velocity and pressure are pre-
sented in Tables 1-4. Due to the identical status of u1 and u2, only the error-norms of u1
are listed in the tables. From these tables, we can see that for both structured-like and
unstructured triangular meshes the velocity components are globally and locally second-
order accurate while the pressure is globally second-order accurate and locally first-order
(or a little higher) accurate.

Therefore, the global second-order accuracy of the local DFD method has been well
preserved.

The convergence rate of the improved local DFD method for three-dimensional cases
is assessed on a series of structured-like uniform tetrahedral meshes. The solution do-
main is bounded by Ω\ω, where Ω=[−0.5,0.5]×[−0.5,0.5]×[−0.5,0.5] and ω is a sphere
with the radius of 0.25 and the center coinciding with that of Ω. The forcing term and the
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Table 5: Global and local errors of u1 on uniform structured meshes (3D).

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

4.0×10−2 4.60×10−4 – 6.23×10−4 – 1.06×10−2 –
2.0×10−2 1.05×10−4 2.13 1.42×10−4 2.13 2.81×10−3 1.92
1.0×10−2 2.78×10−5 1.92 3.75×10−5 1.92 7.70×10−4 1.87

Dirichlet boundary condition can be determined via the following analytical solution
u1=sin(πx2)sin(πx3),
u2=sin(πx1)sin(πx3),
u3=sin(πx1)sin(πx2),
p= x1x2x3.

(4.2)

The error-norms and the orders of convergence rate for the velocity component u1 are
listed in Table 5. From this table, it can be verified that the improved local DFD method
is still second-order in velocity for the three-dimensional problems.

4.2 Flows over a cross-flow oscillating circular cylinder

In this sub-section, a circular cylinder harmonically oscillating in the transverse direction
in a free-stream [20] is considered. The Reynolds number is defined as Re = U∞D/ν,
where U∞ is the free stream velocity and D is the diameter of the cylinder. The harmonic
motion of the cylinder is described as

yc(t)=Am sin(2π fet), (4.3)

where yc is the location of the cylinder center, and Am and fe are the amplitude and
frequency of the oscillation, respectively. We have performed calculations at Re = 185,
Am/D = 0.2. fe/ f0 varies from 0.8 to 1.2, where f0 is the natural shedding frequency
for the stationary cylinder. The size of the computational domain is 40D×40D, and the
number of computational nodes is around 31000. The mesh interval in the vicinity of
the cylinder is about 0.0125D. The non-dimensional time can be expressed as t = τ/T,
where τ is the dimensional time and T is the reference time. In this simulation, T is
taken as D/U∞. In the subsequent simulations, the non-dimensional time is defined in a
similar manner. Due to the body motion, the size of physical time-step must be limited
as discussed in [11]. In this test case, the size of non-dimensional physical time-step ∆t
is taken to be 5×10−3. Comparison of time histories of the lift coefficient obtained by the
original and improved DFD methods at fe/ f0 = 0.9 is shown in Fig. 8. From this figure,
we can see that the numerical oscillations are effectively reduced by the hybrid solution
reconstruction approach.

Furthermore, to compare the numerical oscillations in a more accurate way, the mag-
nitude of numerical oscillations is quantified by ⟨CL⟩rms, the root-mean-square of the
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(a) (b)

Figure 8: Time histories of the lift coefficient for a cross-flow oscillating cylinder at fe/ f0 =0.9. (b): zoomed
view of (a).

difference between the fitted lift coefficient and the actual one. Comparison of ⟨CL⟩rms
between the original and improved DFD results for different frequencies is presented in
Table 6. From this table, we can conclude that ⟨CL⟩rms is reduced by roughly 40%-50% for
each frequency.

Table 6: Comparison of ⟨CL⟩rms between the original and improved DFD results.

fe/ f0
⟨CL⟩rms

Original local DFD Improved local DFD
0.8 1.60×10−3 9.70×10−4

0.9 1.74×10−3 9.70×10−4

1.0 1.94×10−3 1.02×10−3

1.1 1.81×10−3 8.64×10−4

1.12 1.80×10−3 1.13×10−3

1.2 1.87×10−3 1.18×10−3

4.3 Flow over an in-line oscillating circular cylinder

The flow induced by the in-line oscillation of a circular cylinder in a fluid at rest [21] is
also simulated to validate the capability of the improved local DFD method for reducing
numerical oscillations. The two key parameters in this case are the Reynolds number
Re=UmaxD/ν and the Keulegan-Carpenter number KC =Umax/ f D, where Umax is the
maximum velocity of the cylinder and f is the frequency of oscillation. The cylinder
oscillates harmonically in the horizontal direction and its motion is described as

xc(t)=Am sin(2π f t), (4.4)
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(a) (b)

Figure 9: Variations of the drag coefficient versus time for an in-line oscillating cylinder. (b): zoomed view of
(a).

where xc is the location of the cylinder center, Am is the amplitude of the oscillation.
The parameters in the present simulation are set to be Re = 100 and KC = 5. The size
of the computational domain is 50D×30D, and the number of computational nodes is
around 38000. The mesh interval in the vicinity of the cylinder is about 0.0132D. The
non-dimensional time-step size is taken to be 4×10−3. Comparison of variations of the
drag coefficient versus time-step is illustrated in Fig. 9. From this figure, we can see
again that the numerical oscillations are effectively reduced by the hybrid reconstruction
approach. In addition, ⟨CD⟩rms obtained by the original DFD is 4.36×10−3, while ⟨CD⟩rms
obtained by the improved DFD is 2.65×10−3.

4.4 Flow over a heaving-pitching airfoil

Consider an airfoil with chord length b, moving at constant forward speed U∞ and per-
forming a harmonic heave motion h(t) and a harmonic pitch motion θ(t). The pitch mo-
tion leads the heave motion by a phase difference ψ. Hence the heave and pitch motions
can be described as

h(t)=h0sin(ωt), θ(t)= θ0sin(ωt+ψ), (4.5)

where h0 denotes the amplitude of heaving, θ0 the amplitude of pitching, ω the frequency.
Following the work of Zhou et al. for the original DFD [11], the phase angle ψ varies from
50◦ to 115◦, and the other parameters in the simulation are fixed: h0/b= 0.50, θ0 = 30◦,
the distance of the pivot point from the leading edge d/b = 0.25, the Strouhal number
St = h0ω/πU∞ = 0.25, the Reynolds number Re = 1100. The number of computational
nodes is around 86400, and the mesh interval in the vicinity of the airfoil is about 0.0063b.
The size of non-dimensional time-step is taken to be 2.5×10−3. Temporal variations of
the vertical (CV) and horizontal (CH) force coefficients for ψ=90◦ obtained by the original
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(a) Vertical force coefficient

(b) Horizontal force coefficient

Figure 10: Variations of the force coefficient as a function of time for a heaving-pitching airfoil for ψ= 90◦.
Right: zoomed view of the left figure.

and improved DFD methods are compared in Figs. 10(a) and (b), respectively. From
these figures, we can observe that the numerical oscillations are greatly reduced by the
hybrid reconstruction approach. To further verify our approach, comparison of ⟨CV⟩rms
and ⟨CH⟩rms between the original and improved DFD results for different phase angles
is presented in Table 7. From this table, we can see that ⟨CV⟩rms and ⟨CH⟩rms are reduced
by approximately 29%-44% and 11%-36%, respectively.

In this test case, compared to the original DFD, the computational time of the im-
proved one has been increased by about 1.6%. Therefore, the additional computational
cost due to the hybrid reconstruction is almost negligible.

4.5 Flows of a fish-like swimming

In this sub-section, the capability of the hybrid reconstruction approach in reducing
numerical oscillations for three-dimensional flows with complex moving-boundaries is
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Table 7: Comparison of ⟨CV⟩rms and ⟨CH⟩rms between the original and improved DFD results.

ψ
⟨CV⟩rms ⟨CH⟩rms

Original Improved Original Improved
50 7.19×10−3 5.12×10−3 7.82×10−3 6.05×10−3

70 6.04×10−3 3.59×10−3 6.36×10−3 4.83×10−3

90 5.28×10−3 2.95×10−3 5.34×10−3 3.41×10−3

100 5.82×10−3 3.80×10−3 5.32×10−3 4.09×10−3

105 6.30×10−3 4.22×10−3 5.84×10−3 4.43×10−3

110 7.46×10−3 4.62×10−3 6.17×10−3 5.17×10−3

115 8.54×10−3 5.84×10−3 6.37×10−3 5.68×10−3

demonstrated. The three-dimensional domain is discretized by a tetrahedral mesh, and
the immersed boundary (fluid/solid interface) is practically represented by a triangular
surface mesh. This surface mesh is independent of the tetrahedral mesh.

We simulate the flow induced by a fish-like, flexible object of length L, moving in a
straight line with constant axial velocity U and undulating in the lateral direction with a
characteristic frequency f . The simulation has been performed by using the original DFD
method [16]. The geometry of the three-dimensional body is provided by Sotiropoulos
and Borazjani. The three-dimensional view of the body is illustrated in Fig. 11.

The swimming motion is prescribed by the following equation [12, 16]

h(x1,t)= a(x1)sin2π(x1/λ− f t). (4.6)

In the above equation, h is the lateral displacement of the fish backbone, x1 is the axial
(flow) direction measured from the tip of the head, a(x1) is the wave amplitude that
is assumed to vary nonlinearly along the body, the non-dimensional wave length λ is
taken to be 0.95, and f is the tail beat frequency which relates to the Strouhal number St
through the equation St= 2 f hmax/U. The expression of a(x1) can be found in [12] and
the maximum lateral displacement of the fish backbone hmax=0.1.

The computational domain is a 8L×3L×2L cuboid, discretized with a mesh contain-
ing 772172 nodes and 4550644 tetrahedral cells. The mesh interval near the body surface
is about 0.008L. The physical time-step ∆t= T/500, where T is the beat period. In our
simulation, the Reynolds number Re is fixed at 4000 and the Strouhal number St varies
from 0.1 to 0.7.

Figure 11: Three-dimensional view of the fish-like body (provided by Sotiropoulos and Borazjani).
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Figure 12: Time histories of the force coefficient for a fish-like swimming at St=0.7.

Figure 13: Variation of the mean force coefficient with Strouhal numbers (Re=4000).

For St=0.7, the time histories of the thrust coefficient obtained by HCIB, the original
and improved local DFD methods are illustrated together in Fig. 12. The values of the
force coefficient have been scaled with that calculated for the rigid body (St= 0). From
this figure, we can observe that the improved DFD results are much smoother than the
HCIB and the original DFD results, and the numerical oscillations are effectively reduced
by the hybrid reconstruction approach. Note that the difference between the original and
improved DFD results is a bit large at the peak of the force coefficient. This may be at-
tributed to the fact that the used mesh is relatively coarse. The larger the mesh intervals
near the boundary, the larger the difference between the solution obtained by hybrid re-
construction ϕhybrid and the original DFD solution ϕcomput. However, the difference can
be surely diminished if a finer mesh is used. Variation of the mean force coefficient with
Strouhal numbers is shown in Fig. 13. The improved DFD result lies between the original
DFD and HCIB results. Comparison of ⟨CF⟩rms between the original and improved DFD
results for different Strouhal numbers is illustrated in Table 8. Obviously, ⟨CF⟩rms increas-
es with St for both the original and improved DFD method. We can see that ⟨CF⟩rms is
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Table 8: Comparison of ⟨CF⟩rms between the original and improved DFD results.

St ⟨CF⟩rms
Original local DFD Improved local DFD

0.1 5.43×10−3 3.77×10−3

0.2 6.60×10−3 5.59×10−3

0.3 1.44×10−2 1.27×10−2

0.5 3.76×10−2 2.66×10−2

0.6 5.58×10−2 3.74×10−2

0.7 7.87×10−2 5.29×10−2

reduced by roughly 30% for St=0.1, 0.5, 0.6, 0.7, 15% for St=0.2, and 12% for St=0.3.

5 Summary and conclusions

In this work, we present a hybrid solution reconstruction approach for reducing nu-
merical oscillations in the simulation of moving-boundary flows by using the local DFD
method. This approach originates from the work of Luo et al. [10] for the finite-difference
discretization on Cartesian meshes, and we extend it to the finite-element discretization
employed in the local DFD method. Concretely speaking, the hybrid formulation com-
bines weightly the local DFD solution at the fluid nodes in the immediate vicinity of the
immersed boundary with the specific values obtained by a quadratic interpolation along
the direction normal to the wall. Considering the finite-element framework, we construct
a weighted factor suitable for unstructured triangular and tetrahedral meshes, which is
related to the local mesh intervals near the wall and the distances from the exterior de-
pendent nodes to the wall. By reconstructing the solution at these specific fluid nodes,
the boundary movement can be treated in a smooth way. Compared to the cut-cell or
mass source/sink approaches, the hybrid reconstruction approach can be implemented
easily for the three-dimensional moving-boundary problems with complex geometries.

Several numerical experiments for two- and three-dimensional moving-boundary
flows have been conducted. It is shown that the present hybrid reconstruction approach
can effectively reduce the numerical oscillations in simulating moving-boundary prob-
lems with little additional computational cost and the desirable accuracy of the original
local DFD method can be retained.
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