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Abstract. In this paper, the static analysis of functionally graded (FG) circular plates
resting on linear elastic foundation with various edge conditions is carried out by
using a semi-analytical approach. The governing differential equations are derived
based on the three dimensional theory of elasticity and assuming that the mechan-
ical properties of the material vary exponentially along the thickness direction and
Poisson’s ratio remains constant. The solution is obtained by employing the state
space method (SSM) to express exactly the plate behavior along the graded direc-
tion and the one dimensional differential quadrature method (DQM) to approxi-
mate the radial variations of the parameters. The effects of different parameters
(e.g., material property gradient index, elastic foundation coefficients, the surfaces
conditions (hard or soft surface of the plate on foundation), plate geometric param-
eters and edges condition) on the deformation and stress distributions of the FG
circular plates are investigated.

AMS subject classifications: 15A16, 15A18, 65D32, 74B05, 74G15

Key words: Functionally graded circular plate, elastic foundation, differential quadrature
method, state-space method.

1 Introduction

Functionally graded materials (FGMs) have gained considerable attention in recent
years. FGMs are a new kind of composite materials with wide range of applications.
Since their material properties vary as a function with respect to the coordinates, their
problems are more complicated than those of the homogeneous materials. FGMs are
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composite materials that are microscopically inhomogeneous, and their mechanical
properties vary continuously in one (or more) direction(s). This is achieved by gradu-
ally changing the composition of the constituent materials along one direction, usually
in the thickness direction, to obtain smooth variation of material properties and opti-
mum response to the externally applied loading. The static and dynamic analysis of
the FGM structural components is important in the design stage. Several researchers
can be found in the literature in the field of structural analysis of FGM components
using different methods. For example, Chen et al. [1] applied the DQ method to the
analysis of geometrically nonlinear vibration of immovably simply supported beams.
Reddy et al. [2] investigated axisymmetric bending of an FGM circular plate based
on the first-order plate theory and obtained the relationships between the first-order
plate theory and the classical thin plate theory. Chen et al. [3] applied the Hadamard
and SJT matrices product with differential quadrature (DQ) rule to solution of geo-
metrically nonlinear bending of isotropic and orthotropic rectangular plates. Yang
and Shen [4] dealt with the dynamic response of initially stressed functionally graded
rectangular thin plates subjected to partially distribute impulsive lateral loads. Ma
and Wang [5] studied the axisymmetric bending of an FGM circular plate with the
third-order plate theory. Vel and Batra [6] presented a three-dimensional exact solu-
tion for free and forced vibrations of simply supported functionally graded rectangu-
lar plates. Chen [7] investigated the nonlinear vibration of functionally graded plates
with arbitrary initial stresses, effects of the amplitude of vibration, initial conditions
and volume fraction on nonlinear vibration were studied. Serge [8] considered the
problems of free vibrations, buckling, and static deflections of functionally graded
plates whose material properties vary through the thickness. Park and Kim [9] ana-
lyzed the thermal post buckling and vibration of the functionally graded plates con-
sidering nonlinear temperature-dependent material properties. Nie and Zhong [10]
investigated the bending of two-directional FG circular and annular plates based on
the three-dimensional theory of elasticity using the state- space method combined
with the DQM. Three-dimensional free and forced vibration analysis of functionally
graded circular plates with material properties that vary continuously in the thickness
direction and various boundary conditions was presented by Nie and Zhong [11].
Li et al. [12] presented the elasticity solutions for a transversely isotropic FGM cir-
cular plate subject to an axisymmetric transverse load in terms of the polynomials of
even order. Free and forced vibration analysis of functionally graded annular sectorial
plates with simply supported radial edges and arbitrary circular edges was carried out
by Nie and Zhong [13]. Huang et al. [14] presented an exact solution for FG rectangu-
lar thick plates resting on elastic foundations, based on the three-dimensional theory
of elasticity, using infinite double series of trigonometric functions combined with the
state- space method. Wang et al. [15] applied the direct displacement method to in-
vestigate the free axisymmetric vibration of the transversely isotropic circular plates.
Malekzadeh [16] used the DQ method to analysis the free vibration of thick FG rect-
angular plates supported by two-parameter elastic foundations. Hosseini-Hashemi
et al. [17] investigated buckling and free vibration behaviors of radially functionally



A. B. Rad / Adv. Appl. Math. Mech., 4 (2012), pp. 205-222 207

graded circular and annular sector thin plates subjected to uniform in-plane compres-
sive loads resting on the Pasternak elastic foundation by using the DQ method. Nie
and Zhong [18] studied free vibration behavior of two-directional FG circular and
annular plates, by using state-space-DQ method. Alibeigloo [19] presented a three-
dimensional exact solution for static analysis of simply supported functionally graded
material (FGM) rectangular plates imbedded in piezoelectric layers, resting on elastic
foundation and subjected to transverse loading. Malekzadeh et al. [20] studied the
free vibration analysis of FGMs thick annular plates based on the 3D elasticity theory
by using the DQM.

In a survey of literature, the author has found no work on static analysis of func-
tionally graded circular plates resting on elastic foundation. Therefore, this paper
deals with static behavior of FGMs circular plates subject to axisymmetric transverse
load resting on elastic foundations. The material properties are assumed to be graded
in the thickness direction according to an exponential distribution. The formulations
are based on the three-dimensional theory of elasticity. A semi-analytical method,
which makes use of the state space method and the one-dimensional differential quadra-
ture method, is employed in the static analysis.

2 The governing equations

Fig. 1 illustrates an annular plate constructed from functionally graded materials with
outer/inner radius a, b and thickness h, subjected to an axisymmetric transverse load
(uniform pressure) resting on a linear two parameter elastic foundation. A cylindri-
cal coordinate system (r, θ, z) whose origin o located at the center of bottom plane of
the plate is employed to describe the displacement field. The plate is assumed to be
isotropic and heterogeneous at any point of the volume, with a constant Poisson’s ra-
tio ν and elastic coefficients that vary exponentially along the transverse direction of
the plate according to the following law

cij(z) = c0
ij exp

[
λ
( z

h

)]
. (2.1)

Moreover, distribution of the material properties, applied loads, and boundary con-
ditions are axisymmetric. Due to the axi-symmetry of the problem, uθ = 0 and shear

Figure 1: Geometry of FGMs annular plate resting on linear two parameter elastic foundation.
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stress components τθz = 0, τrθ = 0, also the derivatives of all parameters with respect
to the coordinate θ are identically zero, i.e., ∂/∂θ = 0. Therefore, the equations of
equilibrium with neglecting the body forces, the strain-displacement relations and the
constitutive equations can be writhen as

∂σr

∂r
+

∂τrz

∂z
+

σr − σθ

r
= 0,

∂τrz

∂r
+

∂σz

∂z
+

τrz

r
= 0, (2.2a)

εr =
∂ur

∂r
, εθ =

ur

r
, εz =

∂uz

∂z
, γrz =

∂ur

∂z
+

∂uz

∂r
, (2.2b){

σr = c11(z)εr + c12(z)εθ + c13(z)εθ , σz = c13(z)εθ + c23(z)εθ + c33(z)εz,
σθ = c12(z)εr + c11(z)εθ + c13(z)εθ , τrz = c44(z)γrz.

(2.2c)

According to Eqs. (2.1)-(2.2), the governing differential equations at bottom surface of
the plate can be obtained in terms of displacement components as:

∂2ur

∂z2 = −
c0

11
c0

44

( ∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2

)
− λ

h
∂uz

∂r
− λ

h
∂ur

∂z
− ∂

∂r
∂uz

∂z
−

c0
13

c0
44

∂

∂r
∂uz

∂z
, (2.3a)

∂2uz

∂z2 = −λ

h
c0

13
c0

33

( ∂ur

∂r
+

ur

r

)
−

c0
44

c0
33

( ∂2uz

∂r2 +
1
r

∂uz

∂r

)
−

c0
13 + c0

44
c0

33

( ∂

∂r
∂ur

∂z
+

1
r

∂ur

∂z

)
− λ

h
∂uz

∂z
. (2.3b)

3 Solutions of the differential equations

In order to solve Eq. (2.3), the semi-analytical approach is used. This method combines
the state space method (SSM) to provide an analytical solution along the material gra-
dient direction (z-direction) to express the through-thickness behavior of the plate and
the one dimensional differential quadrature method (DQM) to approximate the radial
direction effects of the plate. By using this method a linear eigenvalue system in terms
of the displacements is established and by solving the resulted eigenvalue system, the
static response of the plate is obtained.

3.1 The state space method

By defining the elements of state vector as

I =
{

ur uz
∂ur

∂z
∂uz

∂z

}T
,

the state space notation of Eq. (2.3) can be written as

∂

∂z
{I} =

[
D1
D2

]
{I}, (3.1)

where the elements of matrixes D1, D2 are given by,

D1 =

[
0 0 1 0
0 0 0 1

]
, D2 =

[
d11 d12 d13 d14
d21 d22 d23 d24

]
,
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with

d11 = −
c0

11

c0
44

( ∂2

∂r2 +
1
r

∂

∂r
− 1

r2

)
, d12 = −λ

h
∂

∂r
,

d13 = −λ

h
, d14 = − ∂

∂r
−

c0
13

c0
44

∂

∂r
,

d21 = −λ

h
c0

13

c0
33

( ∂

∂r
+

1
r

)
, d22 = −

c0
44

c0
33

( ∂2

∂r2 +
1
r

∂

∂r

)
,

d23 = −
c0

13 + c0
44

c0
33

( ∂

∂r
+

1
r

)
, d24 = −λ

h
.

To normalize the elements of matrix D2 the following non-dimensional parameters
are considered

Z =
z
h

, R =
r
a

, UR =
ur

h
, UZ =

uz

h
, c−0

ij =
c0

ij

c0
33

. (3.2)

By implement these non-dimensional parameters in Eq. (3.1), the state space notation
can be written as

∂

∂Z
{I} =

[
D1

D2(R)

]
{I}, (3.3)

where

I =
{

UR UZ
∂UR

∂Z
∂UZ

∂Z

}T
,

and the elements of D2(R) are functions of the variable R.
In order to get the solution to Eq. (3.3), the elements of matrix D2(R) must be

converted to constant values with applying the DQM approximation.

3.2 DQM procedure and its application

According to the existing literature [21,22], the principle of DQ rule is stated as follow:
for a continuous function Φ(r) defined in an interval r ∈ [0, 1], its nth order derivative
with respect to argument r at an arbitrary given point ri can be approximated by a lin-
ear sum of the weighted function values of Φ(r) in the whole domain. This procedure
can be expressed mathematically as

∂(n)Φ(ri)

∂rn =
n

∑
j=1

A(n)
ij Φ(rj), i = 1, 2, · · · , N and n = 1, · · · , N − 1, (3.4)

where A(n)
ij are the weighted coefficients determined by the coordinates of the sample

points ri.
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Explicit expressions of the first and second derivatives of the weighted coefficients
matrices and also criterions to adopt non-uniformly spaced grid points are presented
in Appendix A.

The partial derivatives of the unknown displacements UR, UZ with respect to R in
the right-hand side of Eq. (3.3) after applying the DQ rule at an arbitrary point Ri can
be expressed as:

∂UR
∂R

∣∣∣
R=Ri

=
N

∑
j=1

AijURj,
∂UZ
∂R

∣∣∣
R=Ri

=
N

∑
j=1

AijUZj,
∂2UR

∂R2

∣∣∣
R=Ri

=
N

∑
j=1

BijURj, (3.5a)

∂2UZ

∂R2

∣∣∣
R=Ri

=
N

∑
j=1

BijUZj,
∂2UR
∂R∂Z

∣∣∣
R=Ri

=
N

∑
j=1

Aij
∂URj

∂Z
,

∂2UZ
∂R∂Z

∣∣∣
R=Ri

=
N

∑
j=1

Aij
∂UZj

∂Z
, (3.5b)

where URj, UZj, ∂URj/∂Z, ∂UZj/∂Z are the state variables values at the discrete point
Rj.

By substituting Eq. (3.5) in to (3.3), the state space notation at discrete points is
obtained as

∂

∂Z
{Ii} =

[
D1i

D2(Ri)

]
{Ii}, i = 1, · · · , N, (3.6)

where elements of the matrix D2(Ri) are constants. The elements of matrixes, D1i,
D2(Ri) are given in Appendix B.

According to the rules of matrix operation, the general solution to Eq. (3.6) is:

Ii(Z) = eZMi Ii(0). (3.7)

Eq. (3.7) establishes the transfer relations from the state vector on the bottom surface
to that at an arbitrary plane Z of the plate by the exponential matrix of eZMi . Setting
Z = 1 in Eq. (3.7) gives

Ii(1) = eMi Ii(0), (3.8)

where eMi is the global transfer matrix and Ii(1), Ii(0) are the values of the state vari-
ables at the upper and lower planes of the plate, respectively.

4 Boundary conditions

The following boundary conditions are considered in this study.
(i) For a solid circular plate (b = 0), the edge boundary conditions are

• Clamped edge (c):

ur = 0,
∂uz

∂r
= 0 at r = 0, (4.1a)

ur = 0, uz = 0 at r = a. (4.1b)
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• Simply-supported edge (s):

ur = 0,
∂uz

∂r
= 0 at r = 0, (4.2a)

σr = 0, uz = 0 at r = a. (4.2b)

(ii) For an annular plate with the inner radius b and outer radius a, the edges con-
ditions are

• Clamped- Clamped in the inner and outer edges (c − c):

ur = 0, uz = 0 at r = b, (4.3a)
ur = 0, uz = 0 at r = a. (4.3b)

• Simply-supported-Clamped in the inner and outer edges (s − c):

σr = 0, uz = 0 at r = b, (4.4a)
ur = 0, uz = 0 at r = a. (4.4b)

• Free-Clamped in the inner and outer edges ( f − c):

σr = 0, τrz = 0 at r = b, (4.5a)
ur = 0, uz = 0 at r = a. (4.5b)

Since the lower surface of the plate supported by a two parameter elastic foundation,
the interaction between the plate and foundation is treated as boundary condition.
The reaction-deflection relation at the bottom surface of the plate rested on Winkler-
Pasternak elastic foundation in an axisymmetric problem can be expressed as

σz0 = kwuz0 − kp

(∂2uz0

∂r2 +
1
r

∂uz0

∂r

)
, (4.6)

where σz0 is the density of reaction force on the bottom surface of the plate, and uz0 is
the deflection of that surface. Therefore, the boundary conditions at the bottom and
top surfaces of the solid circular and annular plates are

τrz = 0, σz = σz0 at z = 0, (4.7a)
τrz = 0, σz = −P at z = h. (4.7b)

The discretized forms of the edge and regularity conditions for a solid circular plate
disscused in Eqs. (4.1)-(4.2) can be expressed as follows:

• Clamped edge (c):

URN = 0, UZN = 0 at R = 1. (4.8)

• Simply-supported edge (s):

σRN = 0, UZN = 0 at R = 1. (4.9)
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• Regularity conditions in the center of the plate:

UR1 = 0, UZ1 = −
N

∑
j=2

A1j

A11
UZj at R = 0. (4.10)

The discretized forms of the edge conditions for an annular plate expressed in Eqs. (4.3)-
(4.5) can be presented as follows:

• Clamped-Clamped in the inner and outer edges (c − c):

UR1 = 0, UZ1 = 0 at R =
b
a

, (4.11a)

URN = 0, UZN = 0 at R = 1. (4.11b)

• Simply supported-Clamped in the inner and outer edges (s − c):

σR1 = 0, UZ1 = 0 at R =
b
a

, (4.12a)

URN = 0, UZN = 0 at R = 1. (4.12b)

• Free-Clamped in the inner and outer edges ( f − c):

σR1 = 0, τRZ1 = 0 at R =
b
a

, (4.13a)

URN = 0, UZN = 0 at R = 1. (4.13b)

The discretized forms of the boundary conditions at the lower and upper surfaces of
the plate, Eqs. (4.7a) and (4.7b) can be written as:

• At Z = 0,

∂URi
∂Z

+
h
a

N

∑
j=1

AijUZj = 0, (4.14a)

∂UZi
∂Z

+
h
a

c−0
13

( N

∑
j=1

AijURj +
URi
Ri

)
=

σZ0(Ri)

c0
33

= KWUZi − Kp

( N

∑
j=1

BijUZj +
1
Ri

N

∑
j=1

AijUZj

)
, (4.14b)

KW =
kwh
c0

33
, Kp =

kp

c0
33

h
a2 , i = 1, 2, 3, · · · , N, (4.14c)

where KW and Kp are the non dimensional elastic coefficients of the foundation.

• At Z = 1,

∂URi
∂Z

+
h
a

N

∑
j=1

AijUZj = 0, (4.15a)

∂UZi
∂Z

+
h
a

c−0
13

( N

∑
j=1

AijURj +
URi
Ri

)
= − P

c0
33eλ

, i = 1, 2, 3, · · · , N. (4.15b)
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By substituting the edge conditions appeared in Eqs. (4.8)-(4.13) and the correspond-
ing boundary conditions presented in Eqs. (4.14), (4.15) in to Eq. (3.6), the following
algebraic equations for bending analysis can be obtained

GT = Q, (4.16)

where G is a 4(N − 2)× 4(N − 2) matrix, Q is a traction force vector and T is:

T =
[

URi(0) UZi(0) URi(1) UZi(1)
]T , i = 2, 3, · · · N − 1.

By solving Eq. (4.16), all state parameters at Z = 0, Z = 1 are obtained. We can
use Eqs. (3.7) and (2.2c) to calculate the displacements and the stresses through the
thickness of the FGMs circular plates.

5 Numerical results

In order to extract the numerical results, Aluminum EA1 = 70GPa and Alumina Ecr =
380GPa are considered as the metal and ceramic constituents of the FGMs plate. The
material properties of the FGM constituents are taken from [9]. The numerical results
are derived for a clamped solid circular plate with the geometry (a = 1.0m, h = 0.04a),
and clamped-clamped annular plate with (a = 1.0m, b = 0.1m, h = 0.04a) resting on
linear elastic foundations. The material properties are assumed to have exponential
distributions in the thickness of the plate shown in Eq. (2.1). To achieve the numerical
results non-equally spaced discretization points (Appendix B) are considered and the
number of discrete points in the radial direction is nine. The plate material data and
the boundary conditions on the lower and the upper surfaces of the plate are

E0 = 70GPa, Eh = 380GPa, ν = 0.3, (5.1a)
τrz = 0, σz = σz0 at z = 0, (5.1b)
τrz = 0, σz = −1GPa at z = h. (5.1c)

The effects of the elastic foundation coefficients, material property graded index, the
thickness to radius ratio, the surfaces conditions and the edges support type on static
behavior of the FG circular plate are intensively discussed in the following text. The
numerical results are derived for the first time and shown in Figs. 4-9.

Since analytical and numerical solutions are not available in literature or the static
response of FGMs circular plate resting on elastic foundations, convergence analysis
of the present method is a necessity. Therefore, the convergence of the present method
is investigated for the following two cases, by solving the small bending deflection
of the clamped supported thick circular FGM plate (h/a = 0.2) under a uniformly
distributed transverse pressure p.

1. Resting on elastic foundations with coefficients KW = KP = 1.
2. In the absence of elastic foundations.
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(a) (b)
Figure 2: Convergence of non-dimensional deflection of the plate at R = 0.5: (a) on elastic foundations,
(b) in the absence of elastic foundations.

Figure 3: Comparison of the present results with the results found in the literature for a solid FG circular
plate in the absence of elastic foundations.

The non-dimensional transverse deflection UZ0 vs. number of discrete points N for
the above mentioned plate with the data expressed in Eq. (5.1) and λ = 1 at the mid-
point of radius is plotted in Fig. 2. It can be seen from Fig. 2 that the non-dimensional
deflection of the plate approaches to a specific value with an increase of the discrete
points. This confirms that the convergence of this method is excellent.

For the foregoing reason, for validation, firstly numerical results are derived for a
solid circular plate with clamped edge in the absence of elastic foundations and com-
pared with the results of [9]. To achieve the numerical results, structural parameters
of the plate are chosen as (a = 1.0m, h = 0.1m, E0 = 380GPa, ν = 0.3, λ = 1), and the
boundary conditions on the top and the bottom surfaces of the plate are considered
similar to Eq. (5.1) which are the same as those given in [9]. The curves of extracted
data from [9] and present solution are plotted in Fig. 3. From this figure, it can be
found that the present results are in good agreement with the available results in [9].

The effects of material property graded index on static behavior of the solid
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(a) (b) (c)

(d) (e) (f)
Figure 4: Effect of the material property graded index on variation of displacements and stress components
versus z/h at a location (R = 0.5) for a solid circular plate resting on elastic foundation (KW = KP = 1)
with h = 0.04a: (a) radial displacement component UR, (b) transverse displacement component UZ, (c)
radial stress component σr(GPa), (d) tangential stress component σθ(GPa), (e) transverse normal stress
component σz(GPa), (f) transverse shear stress component τrz(GPa).

clamped plate on linear elastic foundations are plotted in Fig. 4. It is seen from Fig. 4
that UR and UZ through-thickness of the plate decrease as λ increase. The value of in-
plane stresses increase gradually along the thickness of the plate when z/h is less than
0.4 and then decrease as λ increase. The transverse normal stress σz at lower surface
of the plate increases with increasing λ and it gradually changes along plate thickness
and converges to external load value at upper surface. The pick value of transverse
shear stress τrz increases as λ increases and its values through the thickness of the
plate for known λ increases when z/h is less than 0.7 and then decrease. Decrease
of displacements through plate thickness indicates that increasing the gradient index
will certainly enhance the deformation rigidity of the plate.

The effects of the thickness to radius ratio on static behavior of the plate are plotted
in Fig. 5. It is seen from Fig. 5 that the value of UR, σr and σθ decrease, and stresses σz,
τrz increase gradually as h/a ratio increases. The distribution of the transverse normal
and shear stresses through the thickness of the plate converge to the horizontal lines
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(a) (b) (c)

(d) (e) (f)
Figure 5: Effect of the thickness to radius ratio on variation of displacements and stress components
versus z/h at a location (R = 0.5) for a circular plate resting on elastic foundation (KW = KP = 1)
with λ = 1: (a) radial displacement component UR, (b) transverse displacement component UZ, (c) radial
stress component σr(GPa), (d) tangential stress component σθ(GPa), (e) transverse normal stress omponent
σz(GPa), (f) transverse shear stress component τrz(GPa).

with decreasing the thickness of the plate.
The effect of the inner to outer radius ratios on static behavior of the clamped-

clamped annular plate KW = KP = 0.1 and λ = ln(Eh/E0) is presented in Fig. 6.
It can be found from Fig. 6, that, the displacements at bottom surface and through-
thickness of the plate decrease as b/a ratio increases. The values of in plane stresses
σr and σθ decrease in bottom surface of the plate with increasing b/a ratio and along
plate thickness σr increases when z/h less than 0.6 and then decreases, and σθ increase
with increasing the b/a ratio. The value of transverse normal stress in bottom surface
of the plate decreases with increasing b/a ratio and it values through plate thickness
changes gradually and converges to the external load value at top plane for all b/a
ratios. The pick value of transverse shear stress τrz increases as b/a ratio increase.

In the next stage the effects of foundation coefficients (Winkler-Pasternak), to-
gether with changing the surfaces position (hard or soft surface) of the plate attached
to the foundation are studied, therefore two cases are considered. Case 1: the metal
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(a) (b) (c)

(d) (e) (f)
Figure 6: Effect of radius ratio on variation of displacements and stress components versus z/h at a
location (R = 0.97) for an annular clamped-clamped plate resting on elastic foundation (KW = KP = 0.1),
λ = ln(Eh/E0), h = 0.04a (metal rich plane on the foundation): (a) radial displacement component
UR, (b) transverse displacement component UZ, (c) radial stress component σr(GPa), (d) tangential stress
component σθ(GPa), (e) transverse normal stress component σz(GPa), (f) transverse shear stress component
τrz(GPa).

rich plane attached to the elastic foundation and elastic modulii at the lower and up-
per surfaces of the plate are E0 = 70GPa, Eh = 380GPa, Case 2: the ceramic rich plane
attached to the elastic foundation and Young’s modulii at the bottom and top surfaces
of the plate are E0 = 380GPa, Eh = 70GPa.

The effects of foundation stiffness on physical quantities for the Case 1 are plot-
ted in Fig. 7. It can be found from Fig. 7, that UR, UZ decrease with increasing KW ,
KP through the thickness direction of the circular FG plate. The value of stress σr
decreases at bottom surface as KW , KP increases and its magnitude for smaller foun-
dation coefficients increase when z/h is less than 0.7 and then decreases, for bigger
coefficients gradually increase through the thickness of the plate. The value of stress
σθ increases through the thickness of the plate as foundation stiffnesses increase. The
value of stress σz increases, τrz decreases through the thickness of the plate with in-
creasing the foundation coefficients.
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(a) (b) (c)

(d) (e) (f)
Figure 7: Effect of the elastic foundation coefficients on variation of displacements and stress components
versus z/h at a location (R = 0.96) for a circular plate resting on elastic foundation with λ = ln(Eh/E0),
h = 0.04a (metal rich plane on the foundation): (a) radial displacement component UR, (b) transverse
displacement component UZ, (c) radial stress component σr(GPa), (d) tangential stress component σθ(GPa),
(e) transverse normal stress component σz(GPa), (f) transverse shear stress component τrz(GPa).

The influences of foundation stiffness on physical quantities for the Case 2 are
plotted in Fig. 8. It is observed from Fig. 8, that UR, UZ, σr, τrz decrease and stresses
σθ , σz increase as increase KW , KP. Comparison of the results in Figs. 5 and 6 show
that the magnitude or variation schemes of the displacements and stresses relative to
the physical location in the plate of Case 1 and Case 2 are considerably different. The
curvatures of UZ, σr and σθ through thickness in the Case 2 are different that of in Case
1.

The effect of supports on variation of transverse normal and shear stresses through
thickness for the plate is plotted in Fig. 9. According to the figure, it can be seen
that the maximum variation of τrz through thickness of the plate at a desired location
occurs for free-clamped annular plate.

Distribution of transverse normal stress through thickness of the plate at a desired
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(a) (b) (c)

(d) (e) (f)
Figure 8: Effect of the elastic foundation coefficients on variation of displacements and stress components
versus z/h at a location (R = 0.96) for a solid circular plate resting on elastic foundation with λ =
ln(Eh/E0), h = 0.04a (ceramic rich plane on the foundation): (a) radial displacement component UR,
(b) transverse displacement component UZ, (c) radial stress component σr(GPa), (d) tangential stress
component σθ(GPa), (e) transverse normal stress component σz(GPa), (f) transverse shear stress component
τrz(GPa).

(a) (b)
Figure 9: Effect of edge supports on variation of transverse stress components versus z/h at a location
(R = 0.96) for a solid circular and annular plates, resting on elastic foundation with KW = KP = 1,
λ = ln(Eh/E0), h = 0.04a (metal rich plane on the foundation): (a) transverse normal stress component
σz(GPa), (b) transverse shear stress component τrz(GPa).
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location lies between clamped and simply supported edges plate. Variation scheme of
transverse shear stress through thickness for the plate with free-clamped and clamped
support is different with variation scheme of this quantity to other supports.

6 Conclusions

Axisymmetric static analysis of functionally graded circular plates resting on Winkler-
Pasternak elastic foundation with various boundary conditions are investigated in this
paper using semi-analytical approach (SSM-DQM). By using this method some results
are carried out, with the most important conclusions that:

• The effects of foundation stiffness on mechanical responses of the plate are considerably
different, and that, for a given FGM circular plate, the mechanical behavior of the plate with
the softer (metal rich) surface supported by elastic foundation differ significantly from that
of the plate with the harder (ceramic rich) surface subjected to the same foundation.

• The neutral surface of the FGM is not at the mid-surface but depends on the through-thickness
variation of Young’s moduli.

• The distribution of the transverse normal and shear stresses through the thickness of the
plate converge to the horizontal lines with decreasing the thickness of the plate, which is the
characteristic of the thin plate.

• The effect of elastic foundation coefficients on the through-thickness stresses is much more
than that of the in-plane stresses.

Appendix A

The elements of weighting coefficients of the first-order derivative matrix A can be
obtained from the following algebraic formulation [22],

Aik =

N

∏
j=1, j ̸=i

(ri − rj)

(ri − rk)M(rk)
, i ̸= k, i, k = 1, · · · , N,

Aii = −
N

∑
j=1, j=i

Aij, i = k, i, k = 1, · · · , N.

The weighting coefficients of the second-order derivative can be obtained from the
following recurrence relation [22]

Bik = 2
[

Aii Aik −
Aik

ri − rk

]
, i ̸= k, i, k = 1, · · · , N,

Bii = −
N

∑
j=1, j=i

Bij, i = k, i, k = 1, · · · , N.

The following criterions are used for nodes discretization
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1. Richard-Shu criterion for solid circular plates

ri =
1
2

[
1 − cos

( (i − 1)π
N − 1

)]
, i = 1, · · · , N.

2. Chebyshev criterion for annular plates

ri = b +
1
2

[
1 − cos

( (i − 1)π
N − 1

)]
(a − b), i = 1, · · · , N.

Appendix B

For matrices

D1i =

[
0 0 [δij]N×N 0
0 0 0 [δij]N×N

]
2N×4N

,

we have

δij = 0(i ̸= j), δii = 1,

D2(Ri) =

 [d11
ij ]N×N

[d12
ij ]N×N

[d13
ij ]N×N

[d14
ij ]N×N

[d21
ij ]N×N

[d22
ij ]N×N

[d23
ij ]N×N

[d24
ij ]N×N


2N×4N

,

d11
ij = −

c0
11

c0
44

(h
a

)2( N

∑
j=1

Bij +
1
Ri

N

∑
j=1

Aij −
1

R2
i

)
, d12

ij = −λh
a

N

∑
j=1

Aij,

d13
ij = 0, d14

ij = −h
a

(
1 +

c0
13

c0
44

) N

∑
j=1

Aij,

d21
ij = −λh

a
c0

13

c0
33

( N

∑
j=1

Aij +
1
Ri

)
, d22

ij = −
c0

44
c0

33

(h
a

)2( N

∑
j=1

Bij +
1
Ri

N

∑
j=1

Aij

)
,

d23
ij = −

c0
13 + c0

44

c0
33

h
a

( N

∑
j=1

Aij −
1
Ri

)
, d24

ii = −λ, d24
ij = 0.
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